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Abstract

In this paper, we introduce a novel family of iterative algorithms which carry out α-
divergence minimisation in a Variational Inference context. They do so by ensuring a
systematic decrease at each step in the α-divergence between the variational and the
posterior distributions. In its most general form, the variational distribution is a mixture
model and our framework allows us to simultaneously optimise the weights and components
parameters of this mixture model. Our approach permits us to build on various methods
previously proposed for α-divergence minimisation such as Gradient or Power Descent
schemes and we also shed a new light on an integrated Expectation Maximization algorithm.
Lastly, we provide empirical evidence that our methodology yields improved results on
several multimodal target distributions and on a real data example.

Keywords: Variational Inference, Kullback-Leibler, Alpha-Divergence, Mixture Models,
Bayesian Inference

1. Introduction

Bayesian inference tasks often induce intractable and hard-to-compute posterior densities
which need to be approximated. Among the class of approximating methods, Variational
inference methods (for example Variational Bayes Jordan et al., 1999; James Beal, 2003)
have attracted a lot of attention as they have empirically been shown to be widely applicable
to many high-dimensional machine-learning problems (Hoffman et al., 2013; Ranganath
et al., 2014; Kingma and Welling, 2014).

These optimisation-based methods introduce a simpler variational family Q and find
the best approximation to the unknown posterior density among this family in terms of a
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certain measure of dissimilarity, the most common choice of measure of dissimilarity being
the exclusive Kullback-Leibler divergence (Blei et al., 2017; Zhang et al., 2019).

However, the exclusive Kullback-Leibler divergence is known to have some drawbacks.
Indeed, its zero-forcing behavior is responsible for returning variational approximations
with light tails that severely underestimate the posterior covariance and that are unable to
capture multimodality within the posterior density (Minka, 2005; Jerfel et al., 2021; Prangle,
2021). This is especially inconvenient when the variational family Q does not exactly match
the posterior density (Yao et al., 2018; Campbell and Li, 2019) and even more so if one
wants to appeal to Importance Sampling methods to approximate integrals of interest in a
Bayesian Inference setting (Jerfel et al., 2021; Prangle, 2021).

To avoid this hurdle, advances in Variational Inference turned to more general families of
divergences such as the α-divergence (Zhu and Rohwer, 1995b,a) and Rényi’s α-divergence
(Rényi, 1961; van Erven and Harremoes, 2014). These families of divergences both recover
the exclusive Kullback-Leibler when α → 1 and thanks to the hyperparameter α, they
provide a more flexible framework that can bypass the difficulties associated to the exclusive
Kullback-Leibler divergence by choosing α < 1 (Minka, 2005). For this reason, they have
notably been used in Minka (2004); Hernandez-Lobato et al. (2016); Li and Turner (2016);
Dieng et al. (2017); Wang et al. (2018); Daudel et al. (2021); Daudel and Douc (2021).

In the spirit of Variational Inference methods based on the α-divergence, we propose in
this paper to build a framework for α-divergence minimisation in a Variational Inference
context. The particularity of our work is that our algorithms will ensure a monotonic decrease
at each step in the α-divergence between the variational and the posterior distributions. In
addition, our work will apply to variational families as wide as the class of mixture models.
The paper is then organised as follows:

• In Section 2, we introduce some notation and state the optimisation problem we aim at
solving in terms of the posterior density, the variational density q ∈ Q and the α-divergence.

• In Section 3, we consider the typical Variational Inference case where q belongs to a
parametric family. In this particular case, we state in Theorem 1 conditions which ensure
a systematic decrease in the α-divergence at each step for all α ∈ [0, 1). We then show
in Corollary 1 that these conditions are satisfied for a well-chosen iterative scheme and
we call the resulting approach the maximisation approach. This approach is particularly
convenient, a fact that we illustrate over Example 1 and Lemma 1. Furthermore, we derive
in Corollary 2 additional iterative schemes satisfying the conditions of Theorem 1 under the
name gradient-based approach, which we then use to underline the links between our approach
and Gradient Descent schemes for α-divergence and Rényi’s α-divergence minimisation.

• In Section 4, we extend the results from Section 3 to the more general case of mixture
models. We derive in Theorems 2 and 3 conditions to simultaneously optimise the weights
and the components parameters of a given mixture model, all the while maintaining the
systematic decrease in the α-divergence initially enjoyed in Section 3. These conditions are
then met in Corollary 4 and 5, which respectively generalise the maximisation approach of
Corollary 1 and the gradient-based approach of Corollary 2 to the case of mixture models.

• Section 5 is devoted to related work. We explain in more detail the links between our
framework and existing Variational Inference methods for α-divergence minimisation. We
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also connect our approach to the Power Descent algorithm from Daudel et al. (2021) and
provide in Proposition 2 additional monotonicity results which go beyond the case α ∈ [0, 1).
In addition, we obtain that an integrated Expectation Maximization algorithm introduced
in Cappé et al. (2008) can be recovered as a special case of our framework.

• In Section 6, we state generic results that solve our maximisation and gradient-based
approaches when the variational family is based on the exponential family. More specifically,
we introduce in Section 6.1 additional notation for the exponential family and we recall
several of its useful properties. Section 6.2 and Section 6.3 then focus on the maximisation
approach and gradient-based approach respectively and notably provide the theoretical
justification behind some special cases mentioned earlier in the paper, such as Gaussian
densities in Example 1. Lastly, Section 6.4 extends once again the maximisation approach in
order to incorporate variational families that were not previously included in our framework,
yet draw on the exponential family (such as multivariate Student’s t densities in Example 5).

• In Section 7, we focus on the important case of Gaussian Mixture Models (GMMs)
and we discuss practical implementations of our algorithms for GMMs optimisation.

• Finally, we show in Section 8 that our enhanced framework has empirical benefits that
permit us to improve on the existing algorithms presented in Section 5 when we consider a
variety of multimodal targets as well as a real data example.

2. Notation and Optimisation Problem

Let (Y,Y, ν) be a measured space, where ν is a σ-finite measure on (Y,Y). Assume that
we have access to some observed variables D generated from a probabilistic model p(·|y)
parameterised by a hidden random variable y ∈ Y that is drawn from a certain prior p0.
The posterior density of the latent variable y given the data D is then given by

p(y|D) = p(y,D)
p(D) = p0(y)p(D |y)

p(D) ,

where p(D) =
∫

Y p0(y)p(D |y)ν(dy) is called the marginal likelihood or model evidence. For
many interesting choices of models, sampling directly from the posterior density is impossible
and the marginal likelihood is also unknown or too costly to compute.

To address this difficulty, Variational Inference methods approximate the posterior
density by a simpler probability density belonging to a given variational family Q (from
which it is easy to sample from). They select the best probability density in Q by solving
an optimisation problem that involves a certain measure of dissimilarity, which is chosen to
be the α-divergence in this paper due to its advantages compared to the more traditional
exclusive Kullback-Leibler divergence (see for example Minka, 2005).

More precisely, let us denote by P the probability measure on (Y,Y) with corresponding
density p(·|D) with respect to ν. As for the variational family, let us denote by Q the
probability measure on (Y,Y) with associated density q ∈ Q with respect to ν. We let
fα be the convex function on (0,+∞) defined by f0(u) = − log(u), f1(u) = u log u and
fα(u) = 1

α(α−1) [uα − 1] for all α ∈ R \ {0, 1}. Then, assuming that both Q and P are
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absolutely continuous w.r.t. ν, the α-divergence between Q and P (extended by continuity
to the cases α = 0 and α = 1 as for example done in Cichocki and Amari, 2010) is given by

Dα(Q||P) =
∫

Y
fα

(
q(y)
p(y|D)

)
p(y|D)ν(dy) , (1)

and the Variational Inference optimisation problem we aim at solving is infq∈QDα(Q||P).
Notably, it can easily be proven that this optimisation problem is equivalent to solving

inf
q∈Q

Ψα(q; p) with p(y) = p(y,D) for all y ∈ Y , (2)

where, for all measurable non-negative function p on (Y,Y) and for all q ∈ Q, we have set

Ψα(q; p) =
∫

Y
fα

(
q(y)
p(y)

)
p(y)ν(dy) .

As the unknown constant p(D) does not appear anymore in the optimisation problem (2),
this formulation is often preferred. Therefore, we consider the general optimisation problem

inf
q∈Q

Ψα(q; p) , (3)

where p is any measurable positive function on (Y,Y). Note that we may drop the dependency
on p in Ψα for notational ease and when no ambiguity occurs.

At this stage, we are left with the choice of the variational family Q appearing in the
optimisation problem (3). The natural idea in Variational Inference and the starting point
of our approach is then to work within a parametric family : letting (T, T ) be a measurable
space, K : (θ,A) 7→

∫
A k(θ, y)ν(dy) be a Markov transition kernel on T × Y with kernel

density k defined on T× Y, we consider a parametric family of the form

Q = {q : y 7→ k(θ, y) : θ ∈ T} .

3. An Iterative Algorithm for Optimising Ψα(k(θ, ·); p)

In this section, our goal is to define iterative procedures which optimise Ψα(k(θ, ·); p) with
respect to θ and which are such that they ensure a systematic decrease in Ψα at each step.
For this purpose, we start by introducing some mild conditions on k, p and ν that will be
used throughout the paper.

(A1) The kernel density k on T× Y, the function p on Y and the σ-finite measure ν on (Y,Y)
satisfy, for all (θ, y) ∈ T× Y, k(θ, y) > 0, p(y) > 0 and 0 <

∫
Y p(y)ν(dy) <∞.

From this point onwards, and as announced in the previous section, we will drop the
dependency on p in Ψα for notational convenience. Let us now construct a sequence (θn)n>1
valued in T such that the sequence (Ψα(k(θn, ·)))n>1 is decreasing. The core idea of our
approach will rely on the following proposition.
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Proposition 1 Assume (A1). For all α ∈ [0, 1) and all θ, θ′ ∈ T such that Ψα(k(θ′, ·)) <∞,
it holds that

Ψα(k(θ, ·)) 6
∫

Y

k(θ′, y)αp(y)1−α

α− 1 log
(
k(θ, y)
k(θ′, y)

)
ν(dy) + Ψα(k(θ′, ·)) . (4)

Moreover, if α = 0, this inequality is an equality and, if α ∈ (0, 1), equality in (4) is equivalent
to having k(θ, y) = k(θ′, y) for ν-a.e. y ∈ {p > 0}.

Proof We treat the two cases α = 0 and α ∈ (0, 1) separately.

(a) Case α = 0 with f0(u) = − log(u) for all u > 0. This case is immediate since

Ψ0(k(θ, ·)) = −
∫

Y
p(y) log

(
k(θ, y)
k(θ′, y)

)
ν(dy) + Ψ0(k(θ′, ·)) .

(b) Case α ∈ (0, 1) with fα(u) = 1
α(α−1) [uα − 1] for all u > 0. We have that

Ψα(k(θ, ·)) =
∫

Y

[(
k(θ,y)
p(y)

)α
− 1

]
α(α− 1) p(y)ν(dy)

=
∫

Y

(
k(θ′, y)
p(y)

)α [( k(θ,y)
k(θ′,y)

)α
− 1

]
α(α− 1) p(y)ν(dy) + Ψα(k(θ′, ·))

Furthermore, using that log(uα) 6 uα− 1 for all u > 0 with equality only if u = 1, and since
α ∈ (0, 1), this inequality becomes

uα − 1
α(α− 1) 6

log(uα)
α(α− 1) = log(u)

α− 1 .

Applying this with u = k(θ, y)/k(θ′, y) in the previous expression, we get that

Ψα(k(θ, ·)) 6
∫

Y

k(θ′, y)αp(y)1−α

α− 1 log
(
k(θ, y)
k(θ′, y)

)
ν(dy) + Ψα(k(θ′, ·))

which is exactly (4). Moreover, the equality holds if k(θ, y)/k(θ′, y) = 1 for ν-a.e. y such
that k(θ′, y)αp(y)1−α > 0, which, by (A1), only happens if p(y) > 0.

This result then allows us to deduce Theorem 1 below.

Theorem 1 Assume (A1). Let α ∈ [0, 1) and starting from an initial θ1 ∈ T, let (θn)n>1 be
defined iteratively such that for all n > 1,∫

Y

k(θn, y)αp(y)1−α

α− 1 log
(
k(θn+1, y)
k(θn, y)

)
ν(dy) 6 0 . (5)

Further assume that Ψα(k(θ1, ·)) < ∞. Then, Ψα(k(θn+1, ·)) 6 Ψα(k(θn, ·)) for all n > 1
with an equality occurring only if (5) is also an equality.
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Proof Applying Proposition 1 iteratively for n = 1, 2, . . . with θ = θn+1 and θ′ = θn in (4)
combined with (5), we get that Ψα(k(θn, ·)) <∞ and

Ψα(k(θn+1, ·)) 6
∫

Y

k(θn, y)αp(y)1−α

α− 1 log
(
k(θn+1, y)
k(θn, y)

)
ν(dy) + Ψα(k(θn, ·)) 6 Ψα(k(θn, ·)) .

Suppose now that Ψα(k(θn+1, ·)) = Ψα(k(θn, ·)) for some n > 1. Then we have equalities in
the previous display and thus an equality in (5) and in (4) with θ = θn+1 and θ′ = θn.

At this point, we seek to find iterative schemes satisfying (5). To do so, for all α ∈ [0, 1),
all n > 1 and all y ∈ Y, we introduce the notation:

ϕ(α)
n (y) = k(θn, y)αp(y)1−α (6)

ϕ̌(α)
n = ϕ

(α)
n∫

ϕ
(α)
n dν

.

Note that under (A1), the normalisation in ϕ̌
(α)
n satisfies 0 <

∫
ϕ

(α)
n dν < ∞, where the

right inequality in particular follows from Jensen’s inequality applied to the strictly concave
function u 7→ u1−α. We then state our first corollary.

Corollary 1 (Maximisation approach) Assume (A1). Let α ∈ [0, 1) and let (bn)n>1 be
a non-negative sequence. Starting from an initial θ1 ∈ T, let (θn)n>1 be defined iteratively as
follows

θn+1 = argmax
θ∈T

∫
Y

[
ϕ(α)
n (y) + bnk(θn, y)

]
log

(
k(θ, y)
k(θn, y)

)
ν(dy) , n > 1 , (7)

where we assume that this argmax is uniquely defined at each step. Then (5) holds at all
times n > 1 and we can apply Theorem 1.

Proof Under (A1) and using that α ∈ [0, 1), we can rewrite (5) as∫
Y
ϕ(α)
n (y) log

(
k(θn+1, y)
k(θn, y)

)
ν(dy) > 0 .

Since
∫

Y k(θn, y) log
(
k(θn+1,y)
k(θn,y)

)
ν(dy) = −D1(K(θn, ·)||K(θn+1, ·)) 6 0, we also obtain that

∫
Y
ϕ(α)
n (y) log

(
k(θn+1, y)
k(θn, y)

)
ν(dy) >

∫
Y

[
ϕ(α)
n (y) + bnk(θn, y)

]
log

(
k(θn+1, y)
k(θn, y)

)
ν(dy) .

Thus, (5) holds at all times n if the following condition is satisfied:∫
Y

[
ϕ(α)
n (y) + bnk(θn, y)

]
log

(
k(θn+1, y)
k(θn, y)

)
ν(dy) > 0 , n > 1 ,

which is implied by the definition of θn+1 in (7).

We now make three comments regarding Corollary 1.
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• The r.h.s. of (7) can be simplified, yielding the equivalent iterative scheme

θn+1 = argmax
θ∈T

∫
Y

[
ϕ(α)
n (y) + bnk(θn, y)

]
log k(θ, y)ν(dy) , n > 1 ,

provided that
∫

Y

[
ϕ

(α)
n (y) + bnk(θn, y)

]
| log k(θn, y)|ν(dy) <∞ for all n > 1.

• While it suffices to find any θn+1 so that (5) holds to obtain a systematic decrease
in Ψα, defining θn+1 as in (7) enables us to solve this argmax problem for notable
choices of kernel density k. A remarkable aspect is indeed that (7) is written as a
maximisation problem involving the logarithm of the ratio k(θ, y)/k(θn, y) whereas Ψα

is not directly expressed in terms of logarithm of this ratio for α /∈ {0, 1}. As a result,
we can use the maximisation approach of Corollary 1 to derive simple update rules for
(θn)n>1. An example and a lemma are provided thereafter to illustrate this fact and
more general results regarding exponential families will follow later in Section 6.

• The sequence (bn)n>1 appearing in (7) is arbitrary and can as a result be chosen by
the practitioner. It is responsible for introducing a regularisation term in the argmax
problem (7) so that the larger bn is, the closer θn+1 is to θn.

We next provide a motivating example where the maximisation approach is applicable.

Example 1 (Maximisation approach for a Gaussian density)We consider a d-dimen-
sional Gaussian density, in which case Y = Rd, ν is the d-dimensional Lebesgue measure
and k(θ, y) = N (y;m,Σ), where θ = (m,Σ) ∈ T denotes the mean and covariance matrix of
the Gaussian density. We let the parameter set T include all possible means m in Rd and
all possible positive-definite covariance matrices Σ. Finally, denoting by ‖·‖ the Euclidean
norm, we assume that the non-negative function p defined on Y satisfies

0 <
∫

Y

(
1 + ‖y‖2/(1−α)

)
p(y) dy <∞ . (8)

Then (A1) holds. Furthermore, starting from any θ1 = (m1,Σ1) ∈ T so that Ψα(k(θ1, ·)) <∞
and denoting θn = (mn,Σn) for all n > 1, it holds that: for all n > 1 and all γn ∈ (0, 1],
there exists bn > 0 such that the argmax problem (7) has a unique solution defined by

mn+1 = γn m̂n + (1− γn)mn ,

Σn+1 = γn Σ̂n + (1− γn) Σn + γn(1− γn) (m̂n −mn) (m̂n −mn)T ,
(9)

where, using the definition of ϕ̌(α)
n in (6), we set

m̂n =
∫

Y
y ϕ̌(α)

n (y) ν(dy) ,

Σ̂n =
∫

Y
yyT ϕ̌(α)

n (y) ν(dy)− m̂nm̂
T
n .

Here, the detailed derivation of (9) is deferred to Section 6.2 as we focus on interpreting
this result in light of Corollary 1 (in particular we will see in Corollary 6 that the case
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γn = 1 corresponding to bn = 0 will require an additional non-degenerate condition on p).
By Corollary 1, the systematic decrease in (Ψα(k(θn, ·)))n>1 holds for any choice of sequence
(γn)n>1 valued in (0, 1] in the updates (9). In addition, γn permits us to build a tradeoff at
time n > 1 between selecting an update close to the current parameter (that is, taking γn
close to zero) and choosing the Gaussian density with exactly the same mean and covariance
matrix as ϕ̌(α)

n (that is, setting γn = 1). This is a key idea that is linked to the regularisation
term appearing in (7) and that we will revisit several times throughout the paper.

The maximisation approach of Corollary 1 is also applicable to the commonly-used mean-
field variational family, which approximates the true density by a density with independent
components parameterised separately. The following lemma indeed states that the global
argmax problem can be separated into component-wise argmax problems in that case.

Lemma 1 (Maximisation approach for the mean-field family) A generic member
of the mean-field variational family is given by k(θ, y) =

∏L
`=1 k

(`)(θ(`), y(`)) with θ =
(θ(1), . . . , θ(L)) ∈ T and y = (y(1), . . . , y(L)) ∈ Y. Then, starting from θ1 ∈ T and denoting
θn = (θ(1)

n , . . . , θ
(L)
n ) for all n > 1, solving (7) yields the following update formulas:

θ
(`)
n+1 = argmax

θ(`)

∫
Y

[
ϕ(α)
n (y) + bnk(θn, y)

]
log

(
k(`)(θ(`), y(`))
k(`)(θ(`)

n , y(`))

)
ν(dy) , ` = 1 . . . L, n > 1 .

The maximisation approach is not the only way to satisfy (5). Indeed, this can also be
achieved by taking a gradient-based approach and relying on additional smoothness conditions
(see Appendix A.1 for the definition of β-smoothness), as written in Corollary 2.

Corollary 2 (Gradient-based approach) Assume (A1). Let T ⊆ Rd be a convex set, let
α ∈ [0, 1) and let (γn)n>1 be valued in (0, 1]. Starting from an initial θ1 ∈ T, let (θn)n>1 be
defined iteratively as follows

θn+1 = θn −
γn
βn
∇gn(θn) , n > 1 , (10)

where (gn)n>1 is the sequence of functions defined by: for all n > 1 and all θ ∈ T,

gn(θ) =
∫

Y

ϕ
(α)
n (y)
α− 1 log

(
k(θ, y)
k(θn, y)

)
ν(dy) (11)

and gn is assumed to be βn-smooth. Then (5) holds for all n > 1 and we can apply Theorem 1.

Proof Since γn ∈ (0, 1] and gn is a βn-smooth function by assumption, we can apply
Lemma 2 and we obtain that for all n > 1,

gn(θn)− gn
(
θn −

γn
βn
∇gn(θn)

)
>

γn
2βn
‖∇gn(θn)‖2 .

Thus, by definition of θn+1 in (10), we have 0 = gn(θn) > gn(θn+1), which in turn implies
(5) and the proof is concluded.
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Let us now reflect on the implications of Corollary 2. Under common differentiability
assumptions, we can write: for all n > 1 and all θ′ ∈ T

∇gn(θ′) =
∫

Y

ϕ
(α)
n (y)
α− 1

∂ log k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θ′,y)

ν(dy) .

Then, (10) becomes

θn+1 = θn −
γn
βn

∫
Y

ϕ
(α)
n (y)
α− 1

∂ log k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θn,y)

ν(dy) , n > 1 . (12)

Under this form, the iterative scheme (12) bears similarities with Gradient Descent iterations
for α-divergence and Rényi’s α-divergence minimisation. Indeed, given a learning rate policy
(rn)n>1 and setting p = p(·,D), such Gradient Descent iterations are given respectively by

θn+1 = θn − rn
∫

Y

ϕ
(α)
n (y)
α− 1

∂ log k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θn,y)

ν(dy) , n > 1

θn+1 = θn − rn
∫

Y

ϕ̌
(α)
n (y)
α− 1

∂ log k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θn,y)

ν(dy) , n > 1

(we refer to Appendix A.2 for details regarding how these updates are obtained). Building on
this comment, let us now give an example where the conditions on (gn)n>1 from Corollary 2
are satisfied and show how Gradient Descent steps (in that case for Rényi’s α-divergence
minimisation) can originate from our gradient-based approach.

Example 2 (Gradient-based approach for a Gaussian density)We consider the case
of a d-dimensional Gaussian density with k(θ, y) = N (y;m,Σ), where this time θ = m.
Further assume that T ⊆ Rd is a convex subset and that Σ = σ2Id, where σ2 > 0 and Id
denotes the d-dimensional identity matrix. Finally, denoting by ‖·‖ the Euclidean norm, we
assume that the non-negative function p defined on Y satisfies

0 <
∫

Y

(
1 + ‖y‖1/(1−α)

)
p(y)dy <∞ . (13)

Then, (A1) holds. Furthermore, denoting θn = mn and setting βn = σ−2(1− α)−1 ∫ ϕ(α)
n dν

for all n > 1, the conditions on (gn)n>1 from Corollary 2 are satisfied so that the mean of
the Gaussian density N (y;m,Σ) can be optimised as follows: for all n > 1 and all γn ∈ [0, 1)

mn+1 = γnm̂n + (1− γn)mn , (14)

where m̂n =
∫

Y y ϕ̌
(α)
n (y) ν(dy) (we refer to Corollary 8 for the detailed derivation). Setting

p = p(·,D), the update (14) can notably be seen as a Gradient Descent step for Rényi’s
α-divergence minimisation with a learning rate rn = σ2(1− α)γn, where γn ∈ [0, 1).

We now make two important comments.
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• Corollary 2 sheds light on the links between our approach and the more traditional
Gradient Descent methodology for optimising objective functions based on the α-
divergence in Variational Inference (Li and Turner, 2016; Dieng et al., 2017).

Unlike the usual Gradient Descent methodology, Corollary 2 requires a smoothness
condition on gn. Smoothness conditions are tools that are often used to obtain
stronger convergence guarantees for Variational Inference algorithms (see for example
Buchholz et al., 2018; Alquier and Ridgway, 2020). Yet, it can be difficult to satisfy
these smoothness assumptions in practice, even if some results have been derived for
specific variational families when using the exclusive Kullback-Leibler divergence as
the objective function (Domke, 2020).

To the best of our knowledge, no such results have been proven for α-divergence
minimisation. In our case, we obtain that a smoothness condition on gn translates
into a systematic decrease in Ψα. As we shall see in the forthcoming section, being
able to establish monotonicity results on (θn)n>1 will come in handy as we try to go
beyond the framework considered in Section 3.

• To put things into perspective with the maximisation approach from earlier, observe
that the updates on the means in Examples 1 and 2 coincide. The difference between
the two examples is due to the fact that the former provides an update for the
covariance matrix as well, without sacrificing the monotonicity of the overall algorithm.
It is in fact hard to derive a covariance matrix update in the Gaussian case using the
gradient-based approach (see Section 6.3 for details). In that sense, the maximisation
approach provides an interesting alternative that can bypass this difficult smoothness
assumption on gn. We will further delve into this aspect as we reach Section 6.

So far, the log function appearing in Theorem 1 considerably eased the derivation of
iterative update formulas for well-chosen kernel densities k that can exploit this log structure
(Examples 1-2 and Lemma 1). Yet, these choices of kernel densities can be too restrictive
to fully capture complex and multimodal posterior densities. Since working with a larger
variational family might lead to more accurate approximations of the posterior density, an
idea is then to investigate whether the iterative update formulas from Section 3 can be
generalised to the mixture model variational family (for example whether we can extend the
updates for a Gaussian kernel from Example 1 to Gaussian Mixture Models).

As we shall see in the next section, further theoretical developments will be required
in order to derive valid iterative schemes that optimise both the mixture weights and the
mixture components parameters of a given mixture model.

4. Extension to Mixture Models

Let us first formally define the class of mixture models we are going to be working with.
Given J ∈ N?, we introduce the simplex of RJ :

SJ =

λ = (λ1, . . . , λJ) ∈ RJ : ∀j ∈ {1, . . . , J} , λj > 0 and
J∑
j=1

λj = 1

 ,

10
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we define S+
J = {λ ∈ SJ : ∀j ∈ {1, . . . , J} , λj > 0} and we denote Θ = (θ1, . . . , θJ) ∈ TJ .

We consider the mixture model variational family given by

Q =

q : y 7→ µλ,Θk(y) :=
J∑
j=1

λjk(θj , y) : λ ∈ SJ ,Θ ∈ TJ
 (15)

that is, we are interested in solving the optimisation problem

inf
λ∈SJ ,Θ∈TJ

Ψα(µλ,Θk) ,

with J > 1. Let us next denote λn = (λj,n)16j6J and Θn = (θj,n)16j6J for all n > 1. For
convenience, we also introduce the shorthand notation µnk = µλn,Θnk and

ϕ
(α)
j,n (y) = k(θj,n, y)

(
µnk(y)
p(y)

)α−1
(16)

ϕ̌
(α)
j,n =

ϕ
(α)
j,n∫

ϕ
(α)
j,ndν

for all α ∈ [0, 1), all j = 1 . . . J , all n > 1 and all y ∈ Y.
Our goal in this section is to derive iterative schemes for the mixture weights and the

mixture components parameters (λn,Θn)n>1 ensuring that the sequence (Ψα(µnk))n>1 is
decreasing. As Theorem 1 holds for any choice of parametric family, a first idea is to apply
Theorem 1 to the variational family (15), which gives Corollary 3 below.

Corollary 3 Assume (A1). Let J ∈ N?, let α ∈ [0, 1) and starting from an initial parameter
set (λ1,Θ1) ∈ S+

J × TJ , let (λn,Θn)n>1 be defined iteratively such that for all n > 1,∫
Y

(µnk(y))αp(y)1−α

α− 1 log
(
µn+1k(y)
µnk(y)

)
ν(dy) 6 0 . (17)

Further assume that Ψα(µ1k) <∞. Then, Ψα(µn+1k) 6 Ψα(µnk) for all n > 1.

Observe that we are in a less favourable situation in Corollary 3 with J > 1 compared to
the cases we previously studied in Section 3. Indeed, we now have a ratio of sums inside the
log function in (17), meaning that the approach from Theorem 1 to derive simple iterative
schemes does not directly transfer to the variational family (15) for choices of kernel densities
k identified in Examples 1-2 and Lemma 1. However, by carefully exploiting the condition
(17), we are able to overcome this difficulty in our second main theorem below.

Theorem 2 Assume (A1). Let J ∈ N?, α ∈ [0, 1) and starting from an initial parameter
set (λ1,Θ1) ∈ S+

J × TJ , let (λn,Θn)n>1 be defined iteratively such that for all n > 1,∫
Y

J∑
j=1

λj,n
ϕ

(α)
j,n (y)
α− 1 log

(
λj,n+1
λj,n

)
ν(dy) 6 0 (18)

∫
Y

J∑
j=1

λj,n
ϕ

(α)
j,n (y)
α− 1 log

(
k(θj,n+1, y)
k(θj,n, y)

)
ν(dy) 6 0 . (19)

Further assume that Ψα(µ1k) <∞. Then, Ψα(µn+1k) 6 Ψα(µnk) for all n > 1.

11
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Proof By Corollary 3, we can conclude if we show that (18) and (19) together imply (17).
To show this, first observe that since the function u 7→ 1

α−1 log(u) is convex and α ∈ [0, 1),
Jensen’s inequality implies that: for all y ∈ Y and all n > 1,

1
α− 1 log

(
µn+1k(y)
µnk(y)

)
= 1
α− 1 log

 J∑
j=1

λj,nk(θj,n, y)∑J
`=1 λ`,nk(θ`,n, y)

λj,n+1k(θj,n+1, y)
λj,nk(θj,n, y)


6

J∑
j=1

λj,nk(θj,n, y)∑J
`=1 λ`,nk(θ`,n, y)

1
α− 1 log

(
λj,n+1k(θj,n+1, y)
λj,nk(θj,n, y)

)

that is:

1
α− 1 log

(
µn+1k(y)
µnk(y)

)
6

J∑
j=1

λj,n
α− 1

k(θj,n, y)
µnk(y) log

(
λj,n+1k(θj,n+1, y)
λj,nk(θj,n, y)

)
.

Multiplying by (µnk(y))αp(y)1−α on both sides, integrating with respect to ν(dy) and using
the definition of ϕ(α)

j,n (y) in (16), this in turn implies that: for all n > 1,

∫
Y

(µnk(y))αp(y)1−α

α− 1 log
(
µn+1k(y)
µnk(y)

)
ν(dy)

6
∫

Y

J∑
j=1

λj,n
ϕ

(α)
j,n (y)
α− 1 log

(
λj,n+1k(θj,n+1, y)
λj,nk(θj,n, y)

)
ν(dy) .

As a consequence, the condition∫
Y

J∑
j=1

λj,n
ϕ

(α)
j,n (y)
α− 1 log

(
λj,n+1k(θj,n+1, y)
λj,nk(θj,n, y)

)
ν(dy) 6 0 (20)

implies (17). The condition (20) in itself is then straightforwardly implied by (18) and (19)
and the proof is concluded.

Strikingly, (18) does not depend on Θn+1 nor does (19) depend on λn+1 in Theorem 2. This
means that we can treat these two conditions separately and thus that the weights and
components parameters of the mixture can be optimised simultaneously. This result was
far from immediate by looking at the initial condition (17) and, as we shall see laterly in
Section 8, will lead to reduced computational power in practice.

In addition, we have recovered in (19) the key property used in Section 3: compared to
the condition (17) which involved the log of weighted sums of kernel densities, (19) considers
a sum of logs of kernel densities. This suggests that we can extend the updates derived in
Section 3 for well-chosen kernel densities k to the more general case of mixture models.

Observe finally that the dependency in λj,n+1 appearing in (18) is simpler than the
dependency in θj,n+1 appearing in (19) and that is expressed through the kernel density k.
As a result, we will first study (18), in the hope of deriving iterative update formulas for
the mixture weights that do not require a specific choice of kernel density k. Interestingly,
while the natural idea is to perform direct optimisation of the left-hand side of (18), we
will derive a more general expression for the mixture weights update, which shall induce
numerical advantages later illustrated in Section 8.

12
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4.1 Choice of (λn)n>1

In the following theorem, we identify an update formula which satisfies (18), regardless of
the choice of the kernel density k.

Theorem 3 Assume (A1). Let α ∈ [0, 1), let (ηn)n>1 be valued in (0, 1], let (κn)n>1 be such
that (α− 1)κn > 0 at all times n > 1 and let (Θn)n>1 be any sequence valued in TJ . Starting
from an initial λ1 ∈ S+

J , let (λn)n>1 be defined iteratively such that for all n > 1

λj,n+1 =
λj,n

[∫
Y ϕ

(α)
j,n (y)ν(dy) + (α− 1)κn

]ηn
∑J
`=1 λ`,n

[∫
Y ϕ

(α)
`,n (y)ν(dy) + (α− 1)κn

]ηn , j = 1 . . . J . (21)

Then (18) holds.

Proof We first check that the integrals appearing in (21) are finite:∫
Y
ϕ

(α)
j,n (y) ν(dy) <∞ , j = 1, . . . , J , n > 1 . (22)

Using (16), that λj,n > 0, that λj,nk(θj,n, y) 6 µnk(y) and Jensen’s inequality applied to the
concave function u 7→ u1−α, we have, for any j = 1, . . . , J and n > 1,

∫
Y
ϕ

(α)
j,n (y) ν(dy) =

∫
Y
k(θj,n, y)

(
µnk(y)
p(y)

)α−1
ν(dy)

6
1
λj,n

∫
Y
µnk(y)

(
p(y)
µnk(y)

)1−α
ν(dy)

6
1
λj,n

(∫
Y
p(y)ν(dy)

)1−α
.

The bound (22) follows by (A1). Now, to prove (18), we treat the cases ηn = 1 and ηn ∈ (0, 1)
separately.

(a) Case ηn = 1. Since (α− 1)κn > 0 with α ∈ (0, 1), we have that

κn

J∑
j=1

λj,n log(λj/λj,n) > 0

where we have used that
∑J
j=1 λj,n log(λj/λj,n) 6

∑J
j=1 λj,n(λj/λj,n − 1) = 0. In other

words, to obtain (18) in the particular case ηn = 1, it is enough to show

∫
Y

J∑
j=1

λj,n
ϕ

(α)
j,n (y)
α− 1 log

(
λj,n+1
λj,n

)
ν(dy) + κn

J∑
j=1

λj,n log
(
λj,n+1
λj,n

)
6 0

that is, since (22) holds,

J∑
j=1

λj,n

∫
Y

ϕ
(α)
j,n (y)
α− 1 ν(dy) + κn

 log
(
λj,n+1
λj,n

)
6 0 . (23)
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Notice then that by definition of (λj,n+1)16j6J when ηn = 1, we can write

λn+1 = argmin
λ∈S+

J

J∑
j=1

λj,n

∫
Y

ϕ
(α)
j,n (y)
α− 1 ν(dy) + κn

 log
(
λj
λj,n

)
.

[Indeed, setting βj = λj,n
[∫

Y ϕ
(α)
j,n (y)ν(dy) + (α− 1)κn

]
and β̄j = βj/

∑J
`=1 β` for all j =

1 . . . J , we have that
∑J
j=1 β̄j log

(
β̄j/λj

)
> 0 and that this quantity is minimal when λj = β̄j

for j = 1 . . . J .] This implies (23) and settles the case ηn = 1.

(b) For the particular case ηn ∈ (0, 1), we will use that for all ε > 0 and all u > 0,

log(u) = 1
ε

log(uε) > 1
ε

(
1− 1

uε

)
.

Indeed, since
∫

Y
ϕ

(α)
j,n (y)
α−1 ν(dy) + κn 6 0 for all j = 1 . . . J , we can then write that for all ε > 0,

J∑
j=1

λj,n

∫
Y

ϕ
(α)
j,n (y)
α− 1 ν(dy) + κn

 log
(
λj,n+1
λj,n

)

6
1
ε

J∑
j=1

λj,n

∫
Y

ϕ
(α)
j,n (y)
α− 1 ν(dy) + κn

[1−
(

λj,n
λj,n+1

)ε]
. (24)

Now notice that by definition of (λj,n+1)16j6J we can write

λn+1 = argmin
λ∈S+

J

1
ε

J∑
j=1

λj,n

∫
Y

ϕ
(α)
j,n (y)
α− 1 ν(dy) + κn

[1−
(
λj,n
λj

)ε]

when ε satisfies ηn = 1
1+ε . [Indeed setting βj = λj,n

[∫
Y ϕ

(α)
j,n (y)ν(dy) + (α− 1)κn

] 1
1+ε and

β̄j = βj/
∑J
`=1 β` for all j = 1 . . . J , we have by convexity of the function u 7→ u1+ε that∑J

j=1

(
β̄j/λj

)1+ε
λj > (

∑J
j=1 β̄j)1+ε and that this quantity is minimal when λj = β̄j for

j = 1 . . . J .] We then deduce that taking ε = η−1
n − 1 (it is always possible since ηn ∈ (0, 1)

by assumption) yields

1
ε

J∑
j=1

λj,n

∫
Y

ϕ
(α)
j,n (y)
α− 1 ν(dy) + κn

[1−
(

λj,n
λj,n+1

)ε]
6 0

which in turn yields (18) [since combined with (24) it implies (23) which itself implies (18)
as seen in the case ηn = 1]. This settles the case ηn ∈ (0, 1).

Notice that as a byproduct of the proof of Theorem 3, the mixture weights update given by
(21) can be rewritten under the form: for all n > 1,

λn+1 = argmin
λ∈S+

J

hn(λ)

14
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where, setting ε = η−1
n − 1, we have defined for all λ ∈ S+

J ,

hn(λ) =


∑J
j=1 λj,n

[∫
Y
ϕ

(α)
j,n (y)
α−1 ν(dy) + κn

]
log

(
λj
λj,n

)
, if ηn = 1 ,

1
ε

∑J
j=1 λj,n

[∫
Y
ϕ

(α)
j,n (y)
α−1 ν(dy) + κn

] [
1−

(
λj,n
λj

)ε]
, if ηn ∈ (0, 1) .

More specifically, hn(λ) acts as an upper bound of the left-hand side of (18) and we recover
exactly the left-hand side of (18) in the particular case ηn = 1 and κn = 0.

Now that we have established the mixture weights updates (21) in Theorem 3, we are
interested in deriving update formulas for the sequence (Θn)n>1 satisfying (19), which we
will then pair up with (21) in order to apply Theorem 2. From this point onwards, all the
proofs of the coming results will be deferred to the appendices to ease the reading.

4.2 Choice of (Θn)n>1

We investigate two different approaches for choosing (Θn)n>1.

4.2.1 A Maximisation Approach

As done in Corollary 1, an idea is to consider an update for (Θn)n>1 of the form

Θn+1 = argmax
Θ∈TJ

gn(Θ) , n > 1 ,

where the function gn is constructed as a lower bound on Θ ∈ TJ of the function Θ 7→∫
Y
∑J
j=1 λj,nϕ

(α)
j,n (y) log (k(θj , y)/k(θj,n, y)) ν(dy) that satisfies gn(Θn) = 0. In doing so, the

function g̃n : Θ 7→ gn(Θ)/(α− 1) evaluated at Θn+1 is an upper bound of the left-hand side
of (19) and g̃n(Θn+1) 6 0 implies (19). This leads us to Corollary 4 below.

Corollary 4 (Generalised maximisation approach) Assume (A1). Let α ∈ [0, 1), let
(ηn)n>1 be valued in (0, 1] and let (κn)n>1 be such that (α − 1)κn > 0 at all times n > 1.
Furthermore, let (bj,n)n>1 be a non-negative sequence for all j = 1 . . . J . Starting from an
initial parameter set (λ1,Θ1) ∈ S+

J × TJ , let (λn,Θn)n>1 be defined iteratively for all n > 1
in such a way that (21) holds and

θj,n+1 = argmax
θ∈T

∫
Y

[
ϕ

(α)
j,n (y) + bj,nk(θj,n, y)

]
log

(
k(θ, y)
k(θj,n, y)

)
ν(dy) , j = 1 . . . J , (25)

where we assume that this argmax is uniquely defined at each step. Then, we can apply
Theorem 2.

The proof of this result is deferred to Appendix B.1. Under the assumptions of Corollary 4,
Algorithm 1 leads to a systematic decrease in Ψα at each step. This result effectively
generalises the monotonicity property from Corollary 1 to the case of mixture models and
we can deduce simple iterative schemes satisfying (25) for well-chosen kernel densities k. To
illustrate this, we provide below the extension of Example 1 to Gaussian Mixture Models
(and Lemma 1 can be extended in the same way, see Appendix B.2).
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Algorithm 1: Maximisation approach algorithm for mixture models
At iteration n,
For all j = 1 . . . J , set

λj,n+1 =
λj,n

[∫
Y ϕ

(α)
j,n (y)ν(dy) + (α− 1)κn

]ηn
∑J
`=1 λ`,n

[∫
Y ϕ

(α)
`,n (y)ν(dy) + (α− 1)κn

]ηn
θj,n+1 = argmax

θ∈T

∫
Y

[
ϕ

(α)
j,n (y) + bj,nk(θj,n, y)

]
log

(
k(θ, y)
k(θj,n, y)

)
ν(dy) .

Example 3 (Maximisation approach for Gaussian Mixture Models) We consider
the case of d-dimensional Gaussian mixture densities, in which case Y = Rd, ν is the
d-dimensional Lebesgue measure and k(θj , y) = N (y;mj ,Σj), where θj = (mj ,Σj) ∈ T
denotes the mean and covariance matrix of the j-th Gaussian component density. We let the
parameter set T include all possible means in Rd and all possible positive-definite covariance
matrices. Finally, we assume that the non-negative function p defined on Y satisfies (8).

Then (A1) holds. Moreover, starting from any (λ1,Θ1) ∈ S+
J ×TJ so that Ψα(µ1k) <∞

and denoting θj,n = (mj,n,Σj,n) for all j = 1 . . . J and all n > 1, it holds that: for all
j = 1 . . . J , all n > 1 and all γj,n ∈ (0, 1], there exists bj,n > 0 such that the argmax problem
(25) has a unique solution defined by:

mj,n+1 = γj,nm̂j,n + (1− γj,n)mj,n

Σj,n+1 = γj,nΣ̂j,n + (1− γj,n)Σj,n + γj,n(1− γj,n) (m̂j,n −mj,n) (m̂j,n −mj,n)T ,

where, using the definition of ϕ̌(α)
j,n in (16), we set

m̂j,n =
∫

Y
y ϕ̌

(α)
j,n (y) ν(dy) ,

Σ̂j,n =
∫

Y
yyT ϕ̌

(α)
j,n (y) ν(dy)− m̂j,nm̂

T
j,n .

The detailed derivation of the mean and covariance updates above is deferred to Section 6.2.
The interpretation of these updates is akin to the one already made in Example 1: bj,n acts
as a regularisation parameter which, through γj,n, permits a tradeoff between an update close
to the current parameter θj,n and choosing the Gaussian density with exactly the same mean
and covariance matrix as ϕ̌(α)

j,n . As per written in Corollary 4, these updates are compatible
with the mixture weights updates (21), resulting in a systematic decrease of (Ψα(µnk))n>1.

We next present another possible update formula for (λn,Θn)n>1.

4.2.2 A Gradient-based Approach

In the spirit of Corollary 2, we now resort to Gradient Descent steps to satisfy (18).
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Algorithm 2: Gradient-based approach algorithm for mixture models
At iteration n,
For all j = 1 . . . J , set

λj,n+1 =
λj,n

[∫
Y ϕ

(α)
j,n (y)ν(dy) + (α− 1)κn

]ηn
∑J
`=1 λ`,n

[∫
Y ϕ

(α)
`,n (y)ν(dy) + (α− 1)κn

]ηn
θj,n+1 = θj,n −

γj,n
βj,n
∇gj,n(θj,n) .

Corollary 5 (Generalised gradient-based approach) Assume (A1). Let T ⊆ Rd be
a convex set, let α ∈ [0, 1), let (ηn)n>1 be valued in (0, 1] and let (κn)n>1 be such that
(α − 1)κn > 0 at all times n. Furthermore, for all j = 1 . . . J , let (γj,n)n>1 be valued in
(0, 1]. Starting from an initial parameter set (λ1,Θ1) ∈ S+

J × TJ , let (λn,Θn)n>1 be defined
iteratively for all n > 1 in such a way that (21) holds and

θj,n+1 = θj,n −
γj,n
βj,n
∇gj,n(θj,n) , j = 1 . . . J , (26)

where for all j = 1 . . . J , (gj,n)n>1 is defined by: for all n > 1 and all θ ∈ T,

gj,n(θ) =
∫

Y

ϕ
(α)
j,n (y)
α− 1 log

(
k(θ, y)
k(θj,n, y)

)
ν(dy) .

and gj,n is assumed to be βj,n-smooth. Then, we can apply Theorem 2.

The proof of this result is deferred to Appendix B.3. Under the assumptions of Corollary 5,
Algorithm 2 ensures a systematic decrease in Ψα at each step and Corollary 5 thus extends
Corollary 2 to mixture models. Much like what we did for Corollary 2, we want to identify
how our updates relate to Gradient Descent-based techniques for optimising Θ. Under
common differentiability assumptions, we have: for all n > 1, all j = 1 . . . J and all θ′ ∈ T,

∇gj,n(θ′) =
∫

Y

ϕ
(α)
j,n (y)
α− 1

∂ log k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θ′,y)

ν(dy) ,

so that (26) becomes

θj,n+1 = θj,n −
γj,n
βj,n

∫
Y

ϕ
(α)
j,n (y)
α− 1

∂ log k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θj,n,y)

ν(dy) , j = 1 . . . J . (27)

The link with Gradient Descent-based Variational Inference shall become apparent by (i)
writing the update formulas that ensue from Gradient Descent iterations for α-divergence
and Rényi’s α-divergence minimisation and (ii) understanding how Example 2 generalises
to Gaussian Mixture Models. Given (λn,Θn) ∈ S+

J × TJ , an index j in 1 . . . J and letting
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p = p(·,D), performing one Gradient Descent iteration w.r.t. θj,n for α-divergence and
Rényi’s α-divergence minimisation indeed respectively amounts to updating θj,n+1 as follows

θj,n+1 = θj,n − rj,nλj,n
∫

Y

ϕ
(α)
j,n (y)
α− 1

∂ log k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θj,n,y)

ν(dy) ,

θj,n+1 = θj,n − rj,n
λj,n∑J

j=1 λj,n
∫

Y ϕ
(α)
j,n (y)ν(dy)

∫
Y

ϕ
(α)
j,n (y)
α− 1

∂ log k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θj,n,y)

ν(dy)

where rj,n > 0 is the learning rate (we refer to Appendix B.4 for details regarding these
updates). There is thus a similarity between (27) and the Gradient Descent updates above.
To fully comprehend the connection between our gradient-based approach and Gradient
Descent steps, we present below the generalisation of Example 2 to Gaussian Mixture Models.
The smoothness assumption on gj,n will be satisfied in that example and we will recover a
Gradient Descent scheme for Rényi’s α-divergence minimisation as a special case.

Example 4 (Gradient-based approach for Gaussian Mixture Models) We consider
the case of d-dimensional Gaussian mixture densities with k(θj , y) = N (y;mj ,Σj), where
this time θj = mj. Further assume that T ⊆ Rd is a convex subset and that Σj = σ2

j Id,
where σ2

j > 0 and Id denotes the d-dimensional identity matrix. Finally, we assume that the
non-negative function p defined on Y satisfies (13).

Then, (A1) holds. Setting βj,n = σ−2
j (1− α)−1 ∫

Y ϕ
(α)
j,n (y)ν(dy) and denoting θj,n = mj,n,

the function gj,n is βj,n-smooth for all j = 1 . . . J and all n > 1 so that the means of the
Gaussian densities (N (y;mj ,Σj))16j6J can be optimised as follows: for all n > 1,

mj,n+1 = γj,nm̂j,n + (1− γj,n)mj,n , j = 1 . . . J ,

where ϕ̌
(α)
j,n is defined in (16), γj,n ∈ [0, 1) and m̂j,n =

∫
Y y ϕ̌

(α)
j,n (y) ν(dy) (we refer to

Corollary 8 for details). In particular, letting (γ′j,n)n>1 be valued in (0, 1] for all j = 1 . . . J ,

γj,n = γ′j,n
λj,n

∫
Y ϕ

(α)
j,n (y)ν(dy)∫

Y µnk(y)αp(y)1−αν(dy) ∈ (0, 1], j = 1 . . . J, n > 1,

(since
∫

Y µnk(y)αp(y)1−αν(dy) =
∑J
j=1 λj,n

∫
Y ϕ

(α)
j,n (y)ν(dy)). The resulting iterative algo-

rithm is given by the following update at time n > 1:

mj,n+1 = mj,n + γ′j,n

∫
Y λj,nϕ

(α)
j,n (y)(y −mj,n)ν(dy)∫

Y µnk(y)αp(y)1−αν(dy) , j = 1 . . . J . (28)

Interestingly, (28) can be seen as a Gradient Descent step w.r.t. θj,n for Rényi’s α-divergence
minimisation with a learning rate rj,n = σ2

j (1− α)γ′j,n. Hence, if we were to solely rely on
the Gradient Descent literature, the convergence of the iterative sequence (θj,n)n>1 defined by
(28) would require the sequence (λn)n>1 to be constant. This is in contrast with Corollary 5,
which allows for a simultaneous optimisation of λ and Θ according to (21) and (28).

We now add on the comments made in Section 3 for the gradient-based methodology (which
we built in Corollary 2 and have since extended to mixture models in Corollary 5):
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• A core insight from Corollary 5, which is exemplified in Example 4, is that under a
smoothness assumption on gj,n our mixture weights iterative updates are compatible
with gradient-based updates, themselves linked to the Gradient Descent literature.
In other words, we have embedded Gradient Descent-based iterative updates, which
only act on Θ, within a larger framework where simultaneous updates for the mixture
components parameters and the mixture weights are well-supported theoretically.

• Putting things into perspective with the maximisation approach once again, notice
that our previous conclusions from Section 3 still hold. Namely: (i) the updates on the
means from Examples 3 and 4 coincide, meaning that contrary to the gradient-based
approach, the maximisation approach enables covariance matrices updates on top of
means updates (ii) the maximisation approach permits us to bypass the smoothness
assumption made in Corollary 5. As a whole, these properties make the maximisation
approach a compelling alternative to the gradient-based approach.

We presented two approaches to construct iterative schemes (λn,Θn)n>1 that ensure a
monotonic decrease in Ψα at each step and lead to simple updates formulas for Gaussian
Mixture Models. We now describe how our framework can be linked to the existing literature.

5. Related Work

In this section, we detail how our work relates to and improve on previous algorithms
proposed for α-/Rényi’s α-divergence minimisation.

5.1 Rényi Divergence Variational Inference (Li and Turner, 2016)

In Li and Turner (2016), they seek to maximise the Variational Rényi (VR) Bound via
(Stochastic) Gradient Ascent. This objective function is derived from Rényi’s α-divergence
and is given by: for all variational density q ∈ Q and all α ∈ R \ {1},

Lα(q,D) := 1
1− α log

(∫
Y
q(y)αp(y,D)1−αν(dy)

)
. (29)

Contrary to us, the work from Li and Turner (2016) does not consider the case where q
belongs to the mixture models variational family (15), that is q = µλ,Θk.

Yet, a parallel can be drawn in the GMM case between Li and Turner (2016) and our
approach by observing that the gradient-based updates on the means in Example 4 each
coincide with a Gradient Ascent step on the objective function (29) for a well-chosen learning
rate (since the gradient of Lα is proportional to the gradient of Rényi’s α-divergence with a
factor −α−1, this follows from the remarks made in Section 4.2.2 regarding Gradient Descent
steps for Rényi’s α-divergence minimisation in the GMM case).

Our work hence provides a theoretical framework which enables simultaneous optimisa-
tion of the mixture weights λ and of the mixture components parameters Θ. In addition,
beyond the gradient-based updates, we propose the novel maximisation updates and we allow
for covariance matrices optimisation. We also emphasise that our maximisation approach
will apply to well-chosen kernels k beyond the Gaussian case, as we will detail in Section 6.
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5.2 The Power Descent Algorithm (Daudel et al., 2021)

In order to identify the connection between our work and the Power Descent algorithm
introduced in Daudel et al. (2021), let us briefly present the latter.

The Power Descent is a gradient-based algorithm that operates on probability measures
and performs α-divergence minimisation for all α ∈ R \ {1}. More precisely, equipping T
with a σ-field T and denoting by M1(T) the space of probability measures on (T, T ), the
Power Descent optimises Ψα(µk) with respect to µ ∈ M1(T), where µk(y) =

∫
T µ(dθ)k(θ, y)

for all µ ∈ M1(T) and all y ∈ Y. Given an initial probability measure µ1 ∈ M1(T), it does so
by performing several one-step transitions of the Power Descent algorithm:

µn+1 = Iα(µn) , n > 1 , (30)

where, for all µ ∈ M1(T) and all θ ∈ T,

bµ,α(θ) =
∫

Y
k(θ, y) 1

α− 1

[(
µk(y)
p(y)

)α−1
− 1

]
ν(dy)

Iα(µ)(dθ) = µ(dθ) [(α− 1)(bµ,α(θ) + κ) + 1]
η

1−α

µ([(α− 1)(bµ,α + κ) + 1]
η

1−α )
.

Daudel et al. (2021) motivated the Power Descent algorithm by establishing a monotonicity
result for this algorithm obtained as a particular case of (Daudel et al., 2021, Theorem 1).
In their result, the monotonic decrease in Ψα of the scheme (30) holds for all µ ∈ M1(T), all
α ∈ R \ {1}, all η ∈ (0, 1] and all κ such that (α− 1)κ > 0. We provide below a more general
version of their result, where the monotonic decrease in Ψα holds for well-chosen values of η
that are larger than 1 when α < 0 (we refer to Appendix B.5 for the proof of this result).

Proposition 2 Assume that p and k are as in (A1). Let (α, η) belong to any of the following
cases.

(i) α 6 −1 and η ∈ (0, (α− 1)/α];

(ii) α ∈ (−1, 0) and η ∈ (0, 1− α];

(iii) α ∈ [0, 1) or α > 1 and η ∈ (0, 1].

Moreover, let µ ∈ M1(T) be such that Ψα(µk) < ∞ and let κ be such that (α − 1)κ > 0.
Then, the two following assertions hold.

(i) We have Ψα(Iα(µ)k) 6 Ψα(µk).

(ii) We have Ψα(Iα(µ)k) = Ψα(µk) if and only if µ = Iα(µ).

Building on the monotonicity result provided by (Daudel et al., 2021, Theorem 1) for the
Power Descent algorithm - that we generalised in Proposition 2 - Daudel et al. (2021) then
applied this algorithm to mixture weights optimisation by letting the initial probability
measure µ1 ∈ M1(T) be a weighted sum of Dirac measures of the form µ1 =

∑J
j=1 λj,nδθj , with
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Θ ∈ T and λ1 ∈ SJ . For that choice of µ1, µn in (30) can be written as µn =
∑J
j=1 λj,nδθj

at time n and the Power Descent amounts to performing the update

λj,n+1 = λj,n [(α− 1)(bµn,α(θj) + κ) + 1]
η

1−α∑J
`=1 λ`,n[(α− 1)(bµn,α(θ`) + κ) + 1]

η
1−α

, j = 1 . . . J. (31)

Interestingly, the update (31) corresponds to the update on the mixture weights (21) we
have identified in Theorem 3 for Θn = Θ, ηn = η/(1− α) and κn = κ. Steaming from this
link between our approach and Daudel et al. (2021), we now make two important comments.

• Benefits of our approach compared to Daudel et al. (2021). The monotonicity result
from Daudel et al. (2021) generalised in Proposition 2 requires the sequence (Θn)n>1
to be constant when applied to mixture weights optimisation in (31). This restricts
the variational family to mixture models with fixed mixture components parameters.
To remedy this problem, Daudel et al. (2021) proposed a fully-adaptive algorithm that
alternates between an Exploitation step optimising the mixture weights according to
(31) and an Exploration step acting on the mixture components parameters. However,
they established no theoretical guarantees for their complete Exploitation-Exploration
algorithm, as the choice of the Exploration step remained mostly unexplored.
A strong improvement of our approach is then that we provide theoretically-sound
updates for (λn,Θn)n>1, with the particularity that our mixture weights updates
relate to the framework of Daudel et al. (2021). In that sense, our approach supple-
ments the work done in Daudel et al. (2021) (albeit by an entirely different proof
technique). Furthermore, we do not need to alternate between mixture weights and
mixture components parameters updates in our algorithms, as both can be carried out
simultaneously (as done in Algorithms 1 and 2). In practice, this will permit us to
reduce the computational cost (as the samples will be shared throughout the mixture
weights and the mixture components parameters approximated updates, see Section 7).

• A gradient-based mixture weights update. Daudel et al. (2021) establishes that the
Power Descent belongs to a family of gradient-based algorithms which includes the
Entropic Mirror Descent algorithm, a typical optimisation algorithm for optimisation
under simplex constraints, as a special case. Viewed from this angle, the parameter
η in (31) can be understood as a learning rate with bµn,α playing the role of the
gradient of Ψα. Connecting the Power Descent to our framework thus sheds light on
the gradient-based nature of the mixture weights update (21) from Theorem 3 and
provides a better understanding of the role of the parameter ηn appearing in this
update. This aspect will be helpful to interpret our numerical experiments in Section 8.

5.3 The M-PMC Algorithm (Cappé et al., 2008)

For any measurable positive function p on (Y,Y), the M-PMC algorithm (Cappé et al., 2008)
aims at solving the optimisation problem

sup
(λ∈SJ ,Θ∈TJ )

∫
Y

log

 J∑
j=1

λjk(θj , y)

 p(y)ν(dy) ,
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or equivalently, at minimising the inclusive Kullback-Leibler divergence D0(µλ,ΘK||P) w.r.t.
to (λ,Θ), where P(A) =

∫
A p dν/

∫
Y p dν for all A ∈ Y. This is done in (Cappé et al., 2008,

Section 2) by introducing the following iterative updates: for all j = 1 . . . J and all n > 1,

λj,n+1 =
∫

Y

λj,nk(θj,n, y)∑J
`=1 λ`,nk(θ`,n, y)

p(y)∫
Y p(y)ν(dy)ν(dy)

θj,n+1 = argmax
θj∈T

∫
Y

λj,nk(θj,n, y)∑J
`=1 λ`,nk(θ`,n, y)

log(k(θj , y))p(y)ν(dy) .

Cappé et al. (2008) motivated the two updates above by noticing that they can be seen as
integrated versions under the target distribution of the update formulas for the Expectation-
Maximisation (EM) algorithm applied to the mixture density parameter estimation problem

sup
(λ∈SJ ,Θ∈TJ )

M∑
m=1

log

 J∑
j=1

λjk(θj , Ym)

 ,

meaning that these updates ensure a systematic increase in the integrated likelihood at each
step. As these updates also correspond to the case α = 0, ηn = 1, κn = 0, aj,n = 1 and
bj,n = 0 in Algorithm 1, the M-PMC algorithm is in fact included in our framework and we
can interpret our theoretical results in light of this algorithm.

More precisely, we have generalised an integrated EM algorithm by preserving its mono-
tonicity property for a wide range of hyperparameters. A particularly striking fact is that
the monotonicity property holds for α ∈ [0, 1), hence updates akin to an EM procedure
can be derived past the traditional case of likelihood optimisation. As we shall see, the
additional layers of flexibility obtained in Algorithm 1 will also have important practical
consequences due to the underlying gradient-based structure behind the mixture weights
(and the mixture components parameters updates in the GMMs case) we have uncovered.

Table 1 summarises the main improvements of our framework compared to the existing
literature and in the coming section, we revisit the maximisation and the gradient-based
approaches when the variational family is based on the exponential family.

6. Exponential Family Distributions: a Closer Look

In this section, we state generic results for the maximisation and the gradient-based ap-
proaches in the important case where the variational family is based on the exponential
family. Those results will in particular enable us to show how the update formulas in
Examples 3 and 4 are derived, before allowing us to incorporate novel variational families in
our framework such as multivariate Student’s t densities. To do so, let us first review the
exponential family and some of its well-known properties.

6.1 Notation and Useful Definitions

We start with the definition of an exponential family distribution.
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Improvements of our framework

Rényi Gradient Descent Simultaneous optimisation w.r.t. (λ,Θ)
Li and Turner (2016) (prev. mixture weights λ optimisation not considered)

For GMMs : maximisation approach encompasses Rényi
Gradient Descent and provides covariance matrices updates

Power Descent Simultaneous optimisation w.r.t. (λ,Θ)
Daudel et al. (2021) (prev. (Θn)n>1 constant)

M-PMC algorithm Extension of an Integrated EM algorithm to:
Cappé et al. (2008) α ∈ [0, 1), ηn ∈ (0, 1], (α− 1)κn > 0 and bj,n > 0

(prev. α = 0, ηn = 1, κn = 0 and bj,n = 0)

Table 1: Key improvements of our framework for mixture models optimisation compared to
related works (prev. stands for previously in the literature).

Definition 1 (Exponential family) Let ν be a σ-finite measure on (Y,Y), E be a Eu-
clidean space endowed with an inner product 〈·, ·〉E and its corresponding norm ‖·‖E, h be a
non-negative function defined on Y and S : Y → E be a measurable function. In its canonical
form, a member of the exponential family is defined by the parametric probability density

k(o)(ζ, y) = h(y) exp (〈ζ, S(y)〉E −A(ζ)) , y ∈ Y , ζ ∈ E0

where
E0 :=

{
ζ ∈ E :

∫
Y
h(y) e〈ζ,S(y)〉E ν(dy) <∞

}
and where the values taken by A on the subset E0 are obtained from the normalising constraint∫
k(o)(ζ, ·) dν = 1. In this setting, ν is called the dominating measure and S the natural

statistic. In what follows, IntE0 denotes the interior of E0.

Recall now that S defines an exhaustive statistic for this model, that E0 is a convex subset of
E and that A is infinitely differentiable in IntE0. Moreover, for all ζ ∈ IntE0, the expectation
and covariance operator of S under the density k(o)(ζ, ·) are the gradient ∇A and the Hessian
∇∇TA of A taken at ζ, respectively. For later reference, we also recall

∇A(ζ) =
∫

Y
S(y) k(o)(ζ, y) ν(dy) (32)

and we introduce the following assumption.

(B1) The kernel density k(o) defined on E0 × Y is a member of the exponential family as in
Definition 1. Moreover, we assume that:

(a) The function h on Y is positive.
(b) There is no affine hyperplane of E to which S(y) belongs for ν-almost all y ∈ Y.

Notice that the assumption (B1)(a) can be circumvented by changing the dominating measure
ν and therefore the assumptions (B1)(a) and (B1)(b) should be considered together. These
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assumptions notably imply that the covariance operator of S under the density k(o)(ζ, ·) is
positive definite and thus so is ∇∇TA(ζ) for all ζ ∈ IntE0. In addition, one often relies on a
non-canonical parameterisation (see for example Example 1), leading to the kernel density

k(θ, y) = k(o)(υ(θ), y) = h(y) exp (〈υ(θ), S(y)〉E −A ◦ υ(θ)) , θ ∈ T , y ∈ Y (33)

where υ maps the parameter space T to a subset of IntE0. In that case, the assumption
(B1)(a) will ensure that the assumption made on k in (A1) holds.

6.2 The Maximisation Approach for the Exponential Family

Recall that the maximisation approach proposed in Corollary 1 aims at solving the optimi-
sation problem (7) given by

θn+1 = argmax
θ∈T

∫
Y

[
ϕ(α)
n (y) + bnk(θn, y)

]
log

(
k(θ, y)
k(θn, y)

)
ν(dy) , n > 1 .

Furthermore, in the more general case of mixture models described in Corollary 4, the
maximisation approach leads to the argmax problem (25). This second argmax problem is
similar to (7) in the sense that it updates Θn = (θj,n)16j6J by solving J component-wise
argmax problems of the same form as (7) (with θn+1, ϕ(α)

n , bn and θn being replaced by
θj,n+1, ϕ(α)

j,n , bj,n and θj,n, for j = 1 . . . J):

θj,n+1 = argmax
θ∈T

∫
Y

[
ϕ

(α)
j,n (y) + bj,nk(θj,n, y)

]
log

(
k(θ, y)
k(θj,n, y)

)
ν(dy) , j = 1 . . . J , n > 1 .

Our goal is now to solve the argmax problems above for a member of the exponential
family. To do so, we first state a theorem in which the kernel k is in its canonical form,
that is v is the identity mapping in (33) and k(θ, ·) = k(o)(ζ, ·). Other parameterisations
will then be built using this theorem and as a result we will deduce corollaries that include
non-canonical parameterisations and that are applicable to the general case of mixture
models. All the proofs of the results stated in Section 6.2 are deferred to Appendix C.2.

Theorem 4 Let k(o) satisfy (B1) and O be an open subset of E0. Let ϕ̌ be a probability
density function with respect to the measure ν such that∫

‖S‖E ϕ̌ dν <∞ . (34)

Let ζ0 ∈ O and b > 0. Then the argmax problem

argmax
ζ∈O

∫
Y

[
ϕ̌(y) + b k(o)(ζ0, y)

]
log

(
k(o)(ζ, y)
k(o)(ζ0, y)

)
ν(dy) (35)

admits at least a solution if and only if

s∗ := 1
1 + b

∫
S ϕ̌ dν + b

1 + b
∇A(ζ0) (36)

belongs to the image set ∇A(O), in which case (35) has a unique solution ζ∗ defined by

∇A(ζ∗) = s∗ . (37)
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Theorem 4 shows the equivalence between the argmax problem (35) and the equation (37)
under the canonical parameterisation. From there, using the expression of ∇A given in
(32) and considering the non-canonical exponential family probability density (33), we can
interpret the equation (37) as an equality between two means of the statistic S computed
under two different distributions. Setting ζ∗ = υ(θ∗) and ζ0 = υ(θ0), we indeed obtain∫

Y
S(y)k(θ∗, y)ν(dy) =

∫
Y
S(y)ψ(y)ν(dy) (38)

where ψ is the mixture

ψ(y) = 1
1 + b

ϕ̌(y) + b

1 + b
k(θ0, y) , y ∈ Y .

As exemplified in the following corollary, an adequate parameterisation ζ = υ(θ) may then
lead to a simple solution of (38), which in turn provides a solution to the argmax problem

argmax
θ∈T

∫
Y

[ϕ̌(y) + bk(θ0, y)] log
(
k(θ, y)
k(θ0, y)

)
ν(dy) . (39)

Corollary 6 (Gaussian density) Let d > 1 and Y = Rd. Let M>0(d) denote the set
of symmetric positive definite d × d matrices. We consider the case of a d-dimensional
Gaussian density with k(θ, y) = N (y;m,Σ), where θ = (m,Σ) ∈ T = Rd ×M>0(d). Let ϕ̌
be a probability density function on Y such that (34) holds, that is in the Gaussian case∫

Y
‖y‖2 ϕ̌(y) dy <∞ .

Let θ0 = (m0,Σ0) ∈ T and b > 0. If b = 0, assume moreover that ϕ̌ is non-degenerate in
the sense that its covariance matrix is positive definite. Then (39) has a unique solution
θ∗ = (m∗,Σ∗) ∈ T defined by m∗ = E[Y ] and Σ∗ = Cov(Y ), where Y is a random variable
valued in Rd with density

ψ(y) = 1
1 + b

ϕ̌(y) + b

1 + b
N (y;m0,Σ0) , y ∈ Y .

It now remains to choose ϕ̌ adequately to relate (39) to (7), or rather to its generalisation
(25). That way, we will in particular get that the update formulas given in Examples 1 and 3
are straightforward consequences of Corollary 6. This is the purpose of Corollary 7 below,
in which we also rewrite the assumption (34) made on ϕ̌ under a more convenient form.

Corollary 7 Let k(o) satisfy (B1). Further assume that the kernel k is of the form (33)
with a one-to-one mapping υ defined on T such that its image υ(T) is an open subset of E0.
Let α ∈ [0, 1) and let p : Y → R+ be such that

0 <
∫

Y

(
1 + ‖S(y)‖1/(1−α)

E

)
p(y) ν(dy) <∞ (40)

holds. Let J ∈ N, n > 1 and (λn,Θn) ∈ S+
J × TJ . Then, for all j = 1 . . . J , (34) holds with

ϕ̌ = ϕ̌
(α)
j,n as defined in (16) and setting γj,n =

∫
ϕ

(α)
j,ndν/(

∫
ϕ

(α)
j,ndν + bj,n), we have that

argmax
θ∈T

∫
Y

[
ϕ

(α)
j,n (y) + bj,nk(θj,n, y)

]
log

(
k(θ, y)
k(θj,n, y)

)
ν(dy) (41)
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admits at least a solution if and only if

s∗j := γj,n

∫
S ϕ̌

(α)
j,n dν + (1− γj,n)∇A ◦ υ(θj,n) (42)

belongs to the image set ∇A ◦ υ(T), in which case (41) has a unique solution θ∗j defined by

∇A ◦ υ(θ∗j ) = s∗j
and we can set θj,n+1 = θ∗j for all j = 1 . . . J in (25) of Corollary 4.

Since the argmax problem (41) is immune to change of variables thanks to its argmax form,
the maximisation approach can be solved using the canonical parameter ζ in Theorem 4
and transported to the parameter θ via the one-to-one mapping v as written in Corollary 7.

The updates from Examples 1 and 3 then follow from Corollary 7, paired up with
Corollary 6 and with the fact that (40) simplifies to (8) (since in the Gaussian case we have
set S(y) = (y,−yyT /2) for all y ∈ Y). More generally, we can always solve the argmax
problem (41), that is the argmax problem of Corollary 4 with k belonging to the exponential
family, for bj,n > 0 large enough.1

We now move on to the study of the gradient-based approach for the exponential family.

6.3 The Gradient-based Approach for an Exponential Family Distribution

Remember that to construct the sequence (θn)n>1 according to the gradient-based approach
from Corollary 2 we need to compute the gradient of the function gn defined in (11) by

gn(θ) =
∫

Y

ϕ
(α)
n (y)
α− 1 log

(
k(θ, y)
k(θn, y)

)
ν(dy) , θ ∈ T ,

and verify that gn satisfies a βn-smoothness condition, which leads to updates of the form

θn+1 = θn −
γn
βn
∇gn(θn) , n > 1

with γn ∈ (0, 1]. Furthermore, the extension to mixture models in Corollary 5 involves the
gradient of J functions gj,n that resemble gn (gn, ϕ(α)

n and θn are replaced by gj,n, ϕ(α)
j,n and

θj,n in the definition of gn above) and where each function gj,n is assumed to be βj,n-smooth.
Let us now solve the gradient-based approach for a member of the exponential family.

Like in the previous section, we start with a result handling the case where the kernel k is
in its canonical form (that is, v is the identity mapping in (33) and k(θ, ·) = k(o)(ζ, ·)). All
the proofs of the results stated in Section 6.3 are deferred to Appendix C.3.

Proposition 3 Let k(o) satisfy (B1). Let ϕ̌ be a probability density function with respect to
ν satisfying (34). Let ζ0 ∈ IntE0 and set

g(o)(ζ) = −
∫

Y
ϕ̌(y) log

(
k(o)(ζ, y)
k(o)(ζ0, y)

)
ν(dy) , ζ ∈ IntE0 . (43)

1. Under the assumptions of Corollary 7, υ(T) is an open subset of E0 and ∇A is a C∞-diffeomorphism on
IntE0. Hence, ∇A ◦ υ(T) is an open subset of E. Since s∗j in (42) tends to ∇A ◦ υ(θj,n) as bj,n → ∞,
s∗j ends up belonging to ∇A ◦ υ(T) for bj,n large enough. The desired result follows by using that the
regularisation parameter bj,n > 0 in Corollary 4 can be freely chosen at each step n > 1.
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Then, for any convex subset C0 ⊆ IntE0, the function g(o) is β0-smooth over C0 with

∇g(o)(ζ) = ∇A(ζ)−
∫
S ϕ̌ dν and β0 > sup

ζ∈C0

∥∥∥∇∇TA(ζ)
∥∥∥

op
, (44)

where ‖·‖op denotes the operator norm.

Letting C0 be the line segment {ζ0 − t
β0

(∇A(ζ0)−
∫
S ϕ̌ dν) : t ∈ [0, 1]} in Proposition 3,

we have that C0 stays in IntE0 for β0 large enough. Since the Hessian of A is continuous on
IntE0, the inequality in (44) can also be satisfied. Hence, the following gradient step

ζ = ζ0 −
γ

β0

(
∇A(ζ0)−

∫
Y
S ϕ̌ dν

)
(45)

can always be performed for all γ ∈ (0, 1] and we can always apply the gradient-based
approach when the kernel k is in its canonical form. When considering non-canonical expo-
nential family probability densities of the form (33) and under some reasonable assumptions
on the mapping υ (for instance, if υ is a C2 diffeomorphism), one is left with choosing
between two alternative ways of exploiting Proposition 3:

(i) Apply a gradient step on the canonical parameter ζ using the objective g(o) in (43)
and translate it into an update of the parameter θ via a change of variable. In this case, we
set ζ0 = υ(θ0), we apply the step (45) and we then perform the change of variable θ = υ−1(ζ)
to get back to a parameter in T. Overall, this leads to an update of the form

θ = υ−1
(
υ(θ0)− γ

β0

(
∇A ◦ υ(θ0)−

∫
Y
S ϕ̌ dν

))
.

(ii) Apply a gradient step directly on the parameter θ using the objective

g(θ) = −
∫
ϕ̌(y) log

(
k(θ, y)
k(θ0, y)

)
dy , θ ∈ T .

In that case, since g = g(o) ◦ υ where g(o) is again as in (43) with ζ0 = υ(θ0), this leads to
an update of the form

θ = θ0 −
γ

β
∇υ(θ0) ·

(
∇A ◦ υ(θ0)−

∫
Y
S ϕ̌ dν

)
.

In both approaches, γ ∈ (0, 1] and the smoothness indices β0 and β have to be taken large
enough in order to guarantee a decrease of the objective function. In practice, it is not clear
which parameterisation leads to the simpler or more efficient algorithm. We investigate a
particular setting in the following result.

Corollary 8 (Gaussian density with known covariance matrix) Let d > 1 and Y =
Rd. We consider the exponential family of a d-dimensional Gaussian density with k(θ, y) =
N (y; θ,Σ), where θ ∈ T := Rd and Σ is a (known) covariance matrix in M>0(d). Let ϕ̌ be
a probability density function w.r.t. ν such that (34) holds, that is in the Gaussian case∫

‖y‖ ϕ̌(y) dy <∞ .
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Set υ(θ) = Σ−1θ and define the canonical kernel k(o) with h(y) = (2π)−d/2 |Σ|−1/2 e−yTΣ−1y/2,
S(y) = y and A(ζ) = ζTΣζ/2. Then (33) holds and the methods (i) and (ii) lead to the the
following gradient-based updates, respectively,

θ = θ0 −
γ

β0
Σ
(
θ0 −

∫
y ϕ̌(y) dy

)
(46)

θ = θ0 −
γ

β
Σ−1

(
θ0 −

∫
yϕ̌(y) dy

)
(47)

where β0 is the largest eigenvalue of Σ and β is the largest eigenvalue of Σ−1. They correspond
to the smoothness indices of g(o) and g over Rd, respectively.

Corollary 8 illustrates how, even in a simple framework, the gradient-based updates strongly
depend on the parameterisation chosen. They in fact coincide only if Σ is scalar in the above
corollary, in which case Σ/β0 and Σ−1/β above are both equal to the identity matrix.

Following the reasoning of Section 6.2, we can then apply Corollary 8 with ϕ̌ = ϕ̌
(α)
n (and

more generally with ϕ̌ = ϕ̌
(α)
j,n ). As (34) is implied by (13) (using Lemma 8 in Appendix C.2

and that here S(y) = y), this enables us to deduce the updates in Examples 2 and 4. Note
that we did not introduce a convex subset C0 in Corollary 8 (this is due to the fact that
the smoothness index is constant over the whole parameter space for both gradient-based
updates in that case), which is why C0 does not appear in Examples 2 and 4.

Let us next put into perspective Corollary 6, in which we considered a Gaussian density
with varying mean vector and covariance matrix, and Corollary 8, where the covariance
matrix is assumed to be known. While Corollary 8 kept the computations straightforward
and provided gradient-based updates that do not require to introduce a convex subset C0,
this is no longer the case if we take the same exact setting as in Corollary 6. Indeed, when
θ = (m,Σ) ∈ T = Rd ×M>0(d) and under the condition (34), the gradient of g is given by

∇g(θ) =
(

Σ−1
(
m−

∫
yϕ̌(y) dy

)
,
1
2Σ−1

(∫
yyT ϕ̌(y) dy − Σ +mmT

)
Σ−1

)
.

The smoothness index β is now no longer constant here, which makes it much more involved
to choose a convenient convex subset C0 and to bound the smoothness index over it.

At this stage, we can solve the maximisation and gradient-based approaches when the
kernel k belongs to the exponential family for variational families as large as (finite) mixture
models. The maximisation approach appears to be preferable to the gradient-based one as
it does not require a smoothness assumption and does not depend on the parameterisation.

In the next section, we investigate how our maximisation approach may further generalise
to include extensions of the exponential family distribution such as Student’s t distributions,
hence further motivating the maximisation approach over the gradient-based approach.

6.4 Extension to Linear Mixture (LM) Models

The goal of this section is to examine what becomes of the maximisation approach for a
specific extension of the exponential family distribution, which we will refer to as exponential
linear mixture (ELM) family. The ELM family will in particular encompass the Student’s
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t distribution with mean m, covariance matrix Σ and a degrees of freedom which can be
defined as the continuous mixture

t(y;m,Σ, a) =
∫ ∞

0
N (y;m, z−1Σ) τ̌a(dz) ,

where τ̌a denotes the χ2 distribution with a degrees of freedom. As a result, building
a maximisation approach within the ELM family will lead to new iterative schemes for
variational families that go beyond the cases considered thus far. To this end, let us first
provide a precise definition of the ELM family we want to study and introduce the main
assumptions of this section. All the proofs from Section 6.4 are deferred to Appendix C.4.

6.4.1 The (E)LM Family: Definition and Notation

Let F be an Euclidean space endowed with the inner product 〈·, ·〉F and norm ‖·‖F . We
denote by L(F,E) and L(F ) the (finite-dimensional) linear spaces of linear operators from F
to E and from F to itself, respectively. We now provide the definition of the (E)LM family.

Definition 2 ((E)LM family) Let k(o) : E0 × Y → R+ be a kernel density w.r.t. the
dominating measure ν, with E0 ⊆ E and let Υ : T̃→ F . Set Z = L(F,E) and denote by Z
its Borel σ-field. Let M be a subset of probability measures on (Z,Z) satisfying

(i) for all τ, τ ′ in M, the distributions τ and τ ′ are equivalent;

(ii) for all τ ∈ M and τ -almost all ` ∈ Z, the image set ` ◦Υ(T̃) is included in E0.

A member of the linear mixture (LM) family with canonical kernel k(o), mixing class M and
parameter mapping Υ, is defined for a parameter θ = (ϑ, τ) ∈ T = T̃ ×M by the density
w.r.t. ν

k(1)(θ, y) =
∫

Z
k(o)(` ◦Υ(ϑ), y) τ(d`) , y ∈ Y . (48)

If moreover k(o) satisfies (B1), we say that k(1)(θ, ·) is a member of the exponential linear
mixture (ELM) family.

Here, Assumption (i) implies that we only need to check Assumption (ii) for one τ in
M. As for Assumption (ii), it ensures that for all ϑ ∈ T̃ and all τ ∈ M, the function
(y, `) 7→ k(o)(` ◦Υ(ϑ), y) appearing in (48) is a probability density function w.r.t. ν ⊗ τ , so
that for all θ ∈ T, the function y 7→ k(1)(θ, y) is a probability density function w.r.t. ν.

Furthermore, the mapping Υ in Definition 2 allows us to introduce various parameterisa-
tions. It is also important to note that for θ = (ϑ, τ) ∈ T, the probability density function
k(1)(θ, ·) only depends on ξ = Υ(ϑ) ∈ Υ(T̃) and τ ∈ M. As we shall see later, Student’s t
distributions in particular will fit this general setting. Before that, let us state conditions
leading to a systematic decrease in Ψα when the kernel k(1) is as in Definition 2 and from
there, let us see how a maximisation approach for the ELM family can be derived.
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6.4.2 Monotonic Decrease Conditions for the (E)LM Family

In the case of an ELM family, we are not able to directly solve the argmax problem (25) as
we did for the exponential family in Section 6.2. Instead, given an (E)LM family k(1) as in
Definition 2, we come back to a monotonic decrease condition of the form

∫
Y
ϕ̌(y) log

(
k(1)(θ, y)
k(1)(θ0, y)

)
ν(dy) > 0 . (49)

As detailed in the remark below, for selected choices of ϕ̌ and of (θ, θ0), (49) can indeed be
linked to the conditions (5) and (19) appearing in Theorem 1 and Theorem 2 respectively.

Remark 1 Let α ∈ [0, 1). Taking ϕ̌ = ϕ̌
(α)
n defined by (6) and (θ, θ0) = (θn+1, θn), (49)

becomes the condition (5) of Theorem 1. Applying (49) for j = 1, . . . , J with ϕ̌ = ϕ̌
(α)
j,n

defined by (16) and (θ, θ0) = (θj,n+1, θj,n) yields the condition (19) of Theorem 2.

Let Dτ ′,τ = dτ ′
dτ denote the Radon-Nikodym derivative of τ ′ w.r.t. τ . We then have the

following proposition (we defer the proofs of the results from Section 6.4.2 to Appendix C.4.1).

Proposition 4 (Conditions for a monotonic decrease within the (E)LM family)
Let k(1) be an LM family as in Definition 2. Let ϕ̌ : Y → R+ be a probability density function
with respect to ν. Let ϑ0, ϑ ∈ T̃ and τ0, τ ∈ M such that∫

Y

(∫
Z
ϕ(`, y) log (Dτ,τ0(`)) τ0(d`)

)
ν(dy) > 0 , (50)∫

Y

(∫
Z
ϕ(`, y) log

(
k(o)(` ◦Υ(ϑ), y)
k(o)(` ◦Υ(ϑ0), y)

)
τ0(d`)

)
ν(dy) > 0 (51)

where we set

ϕ(`, y) = ϕ̌(y) k
(o)(` ◦Υ(ϑ0), y)
k(1)(θ0, y)

. (52)

Then (49) holds with θ = (ϑ, τ) and θ0 = (ϑ0, τ0) .

One possible way to obtain (50) is to observe that since the left-hand side of (50) is zero for
τ = τ0, (50) is fulfilled by setting

τ = argmax
τ ′∈M

∫
Y

(∫
Z
ϕ(`, y) log

(
Dτ ′,τ0(`)

)
τ0(d`)

)
ν(dy) , (53)

assuming that this argmax is well-defined. This will notably be done later in order to get
the update formula (70) of Example 5 (see the proof of Corollary 10 in Appendix C.4).

As for the updating of ϑ, we can again adopt a maximisation approach to derive a
convenient ϑ. This is the purpose of the following result, where we directly update ξ = Υ(ϑ)
since Υ is a known mapping in Definition 2.
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Corollary 9 Consider an LM family as in Definition 2 and θ0 = (ϑ0, τ0) ∈ T̃ ×M. Set
ξ0 = Υ(ϑ0), let ϕ̌ : Y → R+ be a probability density function with respect to ν and define
ϕ : Z× Y → R+ by (52). Let ϑ ∈ T̃ be such that Υ(ϑ) is a solution of the argmax problem

argmax
ξ∈Υ(T̃)

∫
Y

(∫
Z

[
ϕ(`, y) + b0(`) k(o)(`(ξ0), y)

]
log

(
k(o)(`(ξ), y)
k(o)(`(ξ0), y)

)
τ0(d`)

)
ν(dy) , (54)

where b0 is any non-negative function defined on Z such that
∫
b0 dτ0 <∞. Then (51) holds.

As we will see, (53) and (54) can be achieved for continuous mixtures such as the one used
to define Student’s t distributions but they require a thorough analysis. To this end, we next
formulate and solve a maximisation approach for a kernel k(1) belonging to the ELM family.

6.4.3 The Maximisation Approach for the ELM Family

Let us show that we can solve an argmax of the form (54) for an adequate choice of b0
by fully exploiting the fact that k(o)(ζ, y) is a canonical kernel of the exponential family
distribution which satisfies (B1) and by relying on additional assumptions to be introduced
alongside some helpful notation. Our first assumption is the following.

(C1) The image set Υ(T̃) is an open subset of F and for all τ ∈ M, τ -a.e. ` is full rank.

(C1) guarantees that, for all ϑ ∈ T̃, τ ∈ M and τ -almost all ` in Z, ` ◦Υ(ϑ) belongs to IntE0,
the interior set of E0 (see Lemma 9 in Appendix C.4 for details). This will come in handy
in the upcoming derivations and we now introduce some helpful notation, before presenting
our next two assumptions. We let ‖·‖op denote operator norms, for instance, for any ` ∈ Z,

‖`‖op = sup {‖`(x)‖F : x ∈ E , ‖x‖E 6 1} .

We further denote the adjoint of the linear operator ` by `T , for instance, in the case ` ∈ Z,
`T ∈ L(E,F ) is defined by

〈`(x), y〉E =
〈
x, `T (y)

〉
F

for all (x, y) ∈ F × E (55)

and, for convenience, we also denote

`∇ := `T ◦ ∇A ◦ ` . (56)

Here, A is the function appearing in the definition of an exponential family (Definition 1).
Recall that A is infinitely differentiable on IntE0 so that by (C1), `∇ is well-defined on Υ(T̃)
for τ -a.e. ` with τ ∈ M. Furthermore, we use Pϑ,τ and Eϑ,τ to denote the probability and its
corresponding expectation under which the pair (Y,L) has density (y, `) 7→ k(o)(` ◦Υ(ϑ), y)
with respect to ν ⊗ τ . Namely, for any non-negative measurable g on Y × Z,

Eϑ,τ [g(Y, L)] =
∫
g(y, `) k(o)(` ◦Υ(ϑ), y) ν(dy)τ(d`) . (57)

We now introduce, for any (ϑ0, τ0) ∈ T̃×M, two auxiliary functions m̃ϑ0,τ0 and s̃ϑ0τ0 , both
defined from Y to R+, such that the two following conditions hold.
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(C2) For all ϑ0 ∈ T̃ and τ0 ∈ M, we have

Eϑ0,τ0

[
‖L‖op

∣∣∣ Y ] 6 m̃ϑ0,τ0(Y ) Pϑ0,τ0 − a.s.

(C3) For all ϑ0 ∈ T̃ and τ0 ∈ M, we have

∀ξ ∈ Υ(T̃) , ∃ε, C > 0 , Eϑ0,τ0

[
eε‖L

∇(ξ)‖
F

∣∣∣ Y ] 6 C es̃ϑ0,τ0 (Y ) Pϑ0,τ0 − a.s.

(C2) and (C3) are made to ensure that the integrals used to solve the argmax problem from
Corollary 9 will be well-defined. We finally present our last assumption, which corresponds
to some sort of identifiability assumption (see Lemma 10 in Appendix C.4 for details). It is
used to obtain the uniqueness for the argmax problem we will solve.

(C4) For all ξ 6= ξ′ ∈ Υ(T̃) and τ0 ∈ M, we have τ0 ({` ∈ Z : `(ξ) 6= `(ξ′)}) > 0.

We can now state the following result, whose proof can be found in Appendix C.4.2.

Theorem 5 Consider an ELM family as in Definition 2 and let θ0 = (ϑ0, τ0) ∈ T̃ ×M.
Assume (C1)–(C4) hold. Let ϕ̌ be a probability density function w.r.t. ν such that∫

Y
ϕ̌(y)

(
‖S(y)‖E m̃ϑ0,τ0(y) + es̃ϑ0,τ0 (y)

)
ν(dy) <∞ , (58)

define ϕ : Z×Y → R+ by (52) and set for all (`, y, ξ) ∈ Z×Y×Υ(T̃) such that `◦Υ(ϑ0) ∈ IntE0

ϕ̃(`) =
∫

Y
ϕ(`, y) ν(dy) , (59)

w∇τ0(ξ) =
∫

Z
ϕ̃(`) `∇(ξ) τ0(d`) . (60)

Then ϕ̃ <∞ τ0-a.s., and w∇τ0 is well-defined from Υ(T̃) to F and one-to-one on Υ(T̃), hence
bijective from Υ(T̃) to its image w∇τ0 ◦Υ(T̃), and satisfies, for all ϑ ∈ T̃,

w∇τ0 ◦Υ(ϑ) = Eϑ,τ0
[
LT ◦ S(Y ) ϕ̃(L)

]
. (61)

Moreover, setting ξ0 = Υ(ϑ0), for any b ∈ R+, the argmax problem

argmax
ξ∈Υ(T̃)

∫
Y

(∫
Z

[
ϕ(`, y) + b ϕ̃(`) k(o)(`(ξ0), y)

]
log

(
k(o)(`(ξ), y)
k(o)(`(ξ0), y)

)
τ0(d`)

)
ν(dy) , (62)

has at least a solution if and only if

w∗ = 1
1 + b

∫
ϕ(`, y) `T ◦ S(y) ν(dy)τ0(d`) + b

1 + b
w∇τ0(ξ0) (63)

belongs to w∇τ0 ◦Υ(T̃), in which case (62) has a unique solution ξ∗ defined by

w∇τ0(ξ∗) = w∗ . (64)
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By setting ξ∗ = Υ(ϑ∗) and ξ0 = Υ(ϑ0) as well as using (61), (64) can be interpreted as

Eϑ∗,τ0
[
LT ◦ S(Y ) ϕ̃(L)

]
= Eϑ0,τ̃0

[
LT ◦ S(Ỹ )

]
, (65)

where τ̃0 denotes the probability having density ϕ̃ with respect to τ0 and Ỹ denotes a random
variable valued in Y such that, under Pϑ0,τ̃0 , the pair (Ỹ , L) is distributed according to the
mixture density

(y, `) 7→ ψ(y, `) = 1
1 + b

ϕ(`, y) + b

1 + b
k(o)(` ◦Υ(ϑ0), y) ϕ̃(`)

with respect to ν ⊗ τ0. Interestingly, the second marginals of these two mixands are τ̃0. The
distribution of (Ỹ , L) under Pϑ0,τ̃0 can thus equivalently be defined by saying that L ∼ τ̃0
and the conditional distribution of Ỹ given L = ` is the mixture with density

y 7→ ψ [y | `] = 1
1 + b

ϕ(`, y)
ϕ̃(`) + b

1 + b
k(o)(` ◦Υ(ϑ0), y) .

Using the definition of τ̃0 on the left-hand side of (65) as well, the latter reads

Eϑ∗,τ̃0
[
LT ◦ S(Y )

]
= Eϑ0,τ̃0

[
LT ◦ S(Ỹ )

]
. (66)

Hence, Theorem 5 along with (66) can be used to solve the argmax problem (54) in the case
where (B1) and (C1)–(C4) hold and for b0(`) = b ϕ̃(`) with b being a non-negative constant.
From there, it only remains to find ways to check that the condition (58) on ϕ̌ holds. This
can notably be done when ϕ̌ takes one of the two forms listed in Remark 1 (see Lemma 8 in
Appendix C.2 for details) and we now provide an example of particular interest.

Example 5 (Finite mixture of Student’s t distributions) Let ν be the Lebesgue mea-
sure on Y = Rd, with d > 1. Let α ∈ [0, 1) and p : Rd → R+ such that

0 <
∫
Rd

(1 + ‖y‖2)1/(1−α) p(y) dy <∞ . (67)

Let J > 1 and consider a J-mixture family Q as in (15), with k(θ, ·) being the density of the
Student’s t distribution with parameter θ = (m,Σ, a) ∈ T = Rd ×M>0(d)× (0,∞), given by

k(θ, y) = Γ ((a+ d)/2)
Γ (a/2) (aπ)d/2 |Σ|1/2

(
1 + 1

a
(y −m)TΣ−1(y −m)

)−(a+d)/2
.

Define a sequence (µnk)n>1 valued in Q where µn = µλn,Θn with λn ∈ S+
J and Θn =

(mj,n,Σj,n, aj,n)j=1...J ∈ TJ such that, for all n > 1,

(i) given (ηn)n>1 valued in (0, 1], (κn)n>1 valued in (−∞, 0] and λ1 ∈ S+
J , (λn)n>2 is

defined by the iterative formula (21);
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(ii) given (γj,n)j=1,...,J,n>1 valued in (0, 1] and Θ1 ∈ TJ , (Θn)n>2 is defined by

mj,n+1 =
(∫

Rd×R+
z ψj,n(z, y) dy τ̌aj,n(dz)

)−1 ∫
Rd×R+

y z ψj,n(z, y) dy τ̌aj,n(dz) , (68)

Σj,n+1 =
∫
Rd×R+

(y −mj,n+1)(y −mj,n+1)T z ψj,n(z, y) dy τ̌aj,n(dz) , (69)

aj,n+1 = 2κ−1
(∫

Rd×R+
(z − ln(z))ϕj,n(z, y) dy τ̌aj,n(dz)

)
, (70)

where, defining ϕ̌
(α)
j,n as in (16) and denoting κ−1 : R → (0,∞) the inverse mapping of

κ(x) = log(x) + Γ′(x)/Γ(x), we set

ϕj,n(z, y) = ϕ̌
(α)
j,n (y) e

−z
2 (y−mj,n)TΣ−1

j,n(y−mj,n)

(2π/z)d/2 |Σj,n|1/2 k(θj,n, y)
, (71)

ψj,n(z, y) = γj,n ϕj,n(z, y) + (1− γj,n) e
−z
2 (y−mj,n)TΣ−1

j,n(y−mj,n)

(2π/z)d/2 |Σj,n|1/2

(∫
ϕj,n(z, y) dy

)
, (72)

τ̌a(dz) = 1R+(z) (a/2)a/2

Γ(a/2) z
a/2−1e−za dz for any a > 0 , (73)

Here, τ̌a in (73) is the χ2 distribution with a degrees of freedom and κ−1 in (70) is well-defined
(this follows from Lemma 13 in Appendix C.4.3).

We then have the following result, whose proof is postponed to Appendix C.4.3.
Corollary 10 In the setting of Example 5, if Ψα(µ1k) <∞, then, at any time n > 1, we
have Ψα(µn+1k) 6 Ψα(µnk).
We have stated results that solve our maximisation and gradient-based approaches when the
variational family is based on the exponential family. However, all the update formulas we
have obtained so far involve intractable integrals. In the next section, we focus on the case
of Gaussian Mixture Models optimisation seen in Examples 3 and 4 and we investigate how
our framework can be used to derive tractable algorithms in that case.

7. Gaussian Mixture Models (GMMs) Optimisation

We consider d-dimensional Gaussian mixture densities with k(θj , y) = N (y;mj ,Σj), where
θj = (mj ,Σj) ∈ T denotes the mean and covariance matrix of the j-th Gaussian component
density. By Theorem 2, a valid update formula at time n > 1 for (λn)n>1 is

λj,n+1 =
λj,n

[∫
Y ϕ

(α)
j,n (y)ν(dy) + (α− 1)κn

]ηn
∑J
`=1 λ`,n

[∫
Y ϕ

(α)
`,n (y)ν(dy) + (α− 1)κn

]ηn , j = 1 . . . J . (74)

Furthermore, as underlined in Example 3, a valid update at time n > 1 for the means
(mj,n+1)16j6J and the covariances matrices (Σj,n+1)16j6J is given by

∀j = 1 . . . J, mj,n+1 = (1− γj,n)mj,n + γj,nm̂j,n (75)
Σj,n+1 = (1− γj,n)Σj,n + γj,nΣ̂j,n + γj,n(1− γj,n) (m̂j,n −mj,n) (m̂j,n −mj,n)T
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where m̂j,n =
∫

Y y ϕ̌
(α)
j,n (y) ν(dy), Σ̂j,n =

∫
Y yy

T ϕ̌
(α)
j,n (y) ν(dy) − m̂j,nm̂

T
j,n with ϕ̌

(α)
j,n =

ϕ
(α)
j,n/

∫
ϕ

(α)
j,n ν(dy) and γj,n ∈ (0, 1]. In addition, another possible update for the means is

mj,n+1 = mj,n + γj,n

∫
Y λj,nϕ

(α)
j,n (y)(y −mj,n)ν(dy)∫

Y µnk(y)αp(y)1−αν(dy) , j = 1 . . . J . (76)

By virtue of Example 4, this update can be used in lieu of the means update written in
(75) with γj,n still in (0, 1]. Since the update (76) is linked to Gradient Descent steps for
Rényi’s α-divergence minimisation (see Example 4), we will refer to this update as the Rényi
Gradient Descent (RGD) update in the following. One the other hand, the update on the
means written in (75) will be referred to as the Maximisation Gradient (MG) update.

Notice that the updates (74), (75) and (76) all involve intractable integrals. However,
we can resort to approximate update rules and take advantage of the fact that the integrals
appearing in these update formulas are of the form∫

Y
ϕ

(α)
j,n (y)g(y)ν(dy) , (77)

where g is a well-chosen function defined on Y and where ϕ(α)
j,n is defined in (16) by ϕ(α)

j,n (y) =
k(θj,n, y) (µnk(y)/p(y))α−1 for all y ∈ Y. Many choices are indeed possible to approximate
(77) and for simplicity we restrict ourselves to typical Importance Sampling estimation.
Looking at the definition of ϕ(α)

j,n , a first idea would be to sample M i.i.d. random variables
(Y (j)
m,n)16m6M according to k(θj,n, ·) for j = 1 . . . J and to use the unbiased estimator of (77)

1
M

M∑
m=1

(
µnk(Y (j)

m,n)
p(Y (j)

m,n)

)α−1

g(Y (j)
m,n) .

As this sampler depends on j, this option becomes very computationally heavy as J and M
increase due to the sampling cost (J ×M) and to the evaluation cost (µnk and p need to be
evaluated M × J times each, where µnk is a sum over J). To reduce this computational
bottleneck, it is then preferable to consider sequences of samplers (qn)n>n that do not depend
on j at time n. More specifically, we discuss two possibilities.

(i) Best sampler at time n (IS-n). Approximated update rules can be obtained by
sampling M i.i.d. random variables (Ym,n)16m6M according to the best approximation of p
we have a time n, that is qn = µnk. Then, the samples are shared throughout the J mixture
weights and mixture components parameters updates. This eases the computational burden,
with both a sampling and an evaluation costs of M , as an unbiased estimator of (77) is

1
M

M∑
m=1

ϕ̂
(α)
j,n (Ym,n)g(Ym,n) where ϕ̂

(α)
j,n (y) = k(θj,n, y)

qn(y)

(
µnk(y)
p(y)

)α−1
, y ∈ Y . (78)

(ii) Uniform sampler (IS-unif). Approximated update rules can be obtained by
sampling according to the uniform sampler qn = J−1∑J

j=1 k(θj,n, ·) and using the unbiased
estimator (78). That way, the sampling and evaluation costs are also M each. Contrary to
IS-n, this sampler ensures a fair sampling among all components, as it entails sampling an
index vector [i1, i2, . . . , iM ] uniformly from {1, . . . , J} whereas IS-n samples an index vector
[i1, i2, . . . , iM ] according to the mixture weights λn.
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Algorithm 3: GMMs optimisation with the IS-n/IS-unif sampler
At iteration n,
1. Draw independently M samples (Ym,n)16m6M from the proposal qn.

2. For all j = 1 . . . J ,

(a) Set m̂j,n =
∑M

m=1 ϕ̂
(α)
j,n (Ym,n)·Ym,n∑M

m=1 ϕ̂
(α)
j,n (Ym,n)

and Σ̂j,n =
∑M

m=1 ϕ̂
(α)
j,n (Ym,n)·Ym,nY Tm,n∑M

m=1 ϕ̂
(α)
j,n (Ym,n)

− m̂j,nm̂
T
j,n.

(b) Choose one between the (MG) and (RGD) approaches

(MG) mj,n+1 = (1− γn)mj,n + γnm̂j,n

(RGD) mj,n+1 = mj,n + γn
λj,n

∑M
m=1 ϕ̂

(α)
j,n (Ym,n) · (Ym,n −mj,n)∑J

j=1
∑M
m=1 λj,nϕ̂

(α)
j,n (Ym,n)

and set

λj,n+1 =
λj,n

[∑M
m=1 ϕ̂

(α)
j,n (Ym,n) + (α− 1)κn

]ηn
∑J
`=1 λ`,n

[∑M
m=1 ϕ̂

(α)
`,n (Ym,n) + (α− 1)κn

]ηn
Σj,n+1 = (1− γn)Σj,n + γnΣ̂j,n + γn(1− γn) (m̂j,n −mj,n) (m̂j,n −mj,n)T .

Remark 2 Approximated update rules for GMMs can be obtained by sampling according
to qn = N (·; 0d, Id), where 0d is the null vector of dimension d. These can be deduced
by applying the reparameterisation trick: for all m = 1 . . .M , Y (j)

m,n ∼ k(θj,n, ·) if Y (j)
m,n =

mj,n + Σ−1/2
j,n εm,n with εm,n ∼ qn and by observing that an unbiased estimator of (77) is

M−1∑M
m=1

(
µnk(Y (j)

m,n)/p(Y (j)
m,n)

)α−1
g(Y (j)

m,n). This choice of qn relies on the existence of a
reparameterisation and while it incurs a gain in terms of sampling cost as we only need M
samples, the evaluation cost remains M × J .

We thus have access to tractable algorithms that iteratively update both the weights and
components parameters of a GMM by optimising the α-divergence between the mixture
distribution and the targeted distribution. Our framework also allows the use of learning
rates γj,n that are dependent on j. This means that the learning rates can differ for
each component parameters update and it paves the way for adaptive learning rates per
components. This aspect is left for future work as we will focus on the case γj,n := γn
according to Algorithm 3 and move on to presenting our numerical experiments.

Remark 3 Computing the estimator (78) can be expensive for two reasons: (i) µnk involves
a sum over J so that evaluating this function requires heavier computations as the number of
components J grows and (ii) bayesian applications with p = p(·,D) often consider large-scale
data sets D . To alleviate this computational burden, one can (i) approximate the summation
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appearing in µnk using subsampling and (ii) use a mini-batch approach to approximate
p = p(·,D), as detailed in (Li and Turner, 2016, Section 4.3).

8. Numerical Experiments

In our numerical experiments, we are interested in understanding the behaviour of Algorithm 3
in practice. We first investigate the challenging case of multimodal targets, as our framework
is designed to handle multimodality thanks to the hyperparameter α ∈ [0, 1) and to the use
of mixture models as a variational family.

8.1 Toy multimodal targets

Let ud be the d-dimensional vector whose coordinates are all equal to 1, Id be the identity
matrix and c be a positive constant (we set c = 2). We consider three multimodal examples:

(i) Equally-weighted Gaussian Mixture Model. The target p is a mixture density of two
equally-weighted d-dimensional Gaussian distributions multiplied by c such that

p(y) = c× [0.5N (y;−2ud, Id) + 0.5N (y; 2ud, Id)] .

(ii) Imbalanced Gaussian Mixture Model. The target p is a mixture density of three
d-dimensional Gaussian distributions with unequal weights and multiplied by c such that

p(y) = c× [0.35N (y;−2ud, Id) + 0.25N (y; 2ud, Id) + 0.4N (y;ud, Id)]

(iii) Equally-weighted Student’s t Mixture Model. The target p is a mixture density of
two equally-weighted d-dimensional Student’s t distributions with two degree of freedom (i.e.
a = 2) multiplied by c such that

p(y) = c× [0.5 t(y;−2ud, Id, a) + 0.5 t(y; 2ud, Id, a)] .

8.1.1 Comparing the RGD and the MG Approaches with ηn = 0

Setting ηn = 0 at all times n > 1 keeps the mixture weights fixed in Algorithm 3. In that
case, our RGD approach relates to Gradient Ascent steps on the VR Bound (Li and Turner,
2016) w.r.t. the means of our Gaussian components (see Section 5.1). We then want to
compare the performances of the RGD approach (that can be derived from Li and Turner,
2016) to the novel MG approach we have introduced in our work.

Implementation details. The covariance matrices of the mixture components are fixed
and equal to σ2Id with σ2 = 1, α = 0.2, J ∈ {10, 50}, d = 16, M = 200, the total number of
iterations N is equal to 100, Θ1 is generated by sampling from a centered normal distribution
with covariance matrix 10Id, λ1 = [1/J, . . . , 1/J ] and for all time n = 1 . . . N , κn = 0,
ηn = 0. and γn = γ with γ ∈ {0.1, 0.5, 1.}. The experiments are replicated independently 30
times and the convergence of the RGD and of the MG approaches is monitored for the three
multimodal examples (i), (ii) and (iii) by computing a Monte Carlo estimator of the VR
Bound (since we have sampled M samples from qn at time n, these samples can readily be
used to obtain an estimate the VR Bound with no additional computational cost).
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J = 10 J = 50
(i)

(ii)

(iii)

Figure 1: Monte Carlo estimate of the VR Bound for the RGD and the MG approaches
(fixed mixture weights) when considering each of the target distributions (i), (ii) and (iii).

Our results are plotted on Figure 1, where RGD-IS-n(γ) and MG-IS-n(γ) denote the
algorithms originating from the RGD and MG approaches (the IS-n and IS-unif samplers are
equivalent here), and error bounds plots can be found in Figures 5 and 6 of Appendix D. As
minimising Ψα is equivalent to maximising the VR Bound when α ∈ (0, 1), our theoretical
results predict a systematic increase in the VR Bound for the algorithms considered. This is
what we observe in Figure 1 and we also see that the choice of γ plays the role of a learning
rate our algorithms: while increasing γ mostly improves the speed of convergence, it may
deteriorate the performances if chosen too large, such as when J = 50 with the target (iii).

Furthermore, MG-IS-n(γ) leads to better performances in all but one case compared to
RDG-IS-n(γ). This renders the MG-IS-n(γ) algorithm more suitable overall for capturing
the multimodality of the various multimodal targets p we considered, a fact that is further
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J = 10 J = 50
γ = 0.1 γ = 0.5 γ = 1.0 γ = 0.1 γ = 0.5 γ = 1.0

(i) RGD-IS-n(γ) -0.081 -0.076 -0.218 -1.640 -1.673 -1.560
MG-IS-n(γ) -3.702 -1.875 -2.711 -2.760 -2.771 -2.788

(ii) RGD-IS-n(γ) -0.211 -0.072 -0.015 -1.401 -1.437 -1.515
MG-IS-n(γ) -2.581 -2.101 -1.742 -2.611 -2.328 -1.933

(iii) RGD-IS-n(γ) -0.108 -0.008 -0.111 -1.652 -1.654 -1.634
MG-IS-n(γ) -0.913 -1.489 -1.846 -2.036 -2.530 -0.717

Table 2: LogMSE averaged for the RGD and the MG approaches (fixed mixture weights)
when considering each of the target distributions (i), (ii) and (iii).

supported in Table 2, in which we compare the log of the Mean-Squared Error (logMSE)
returned by each algorithm. (The MSE is computed as the average of ‖mapprox−mtrue‖2 over
30 independent runs of each algorithm, where ‖.‖ stands for the Euclidean norm, mtrue =
EP[Y ] with P(A) =

∫
A p(y)ν(dy)/

∫
Y p(y)ν(dy) for all A ∈ Y and where mapprox is the mean

of the optimised variational distribution, that is in our setting mapprox =
∑J
j=1 λj,Nmj,N .)

Let us next pair up the means optimisation with mixture weights optimisation and
investigate the impact of the sequence (ηn)n>1 on our algorithms.

8.1.2 Comparing the RGD and the MG Approaches with ηn > 0.

So far, we have demonstrated the viability of our novel MG approach compared to the more
usual Rényi’s α-divergence-based RGD approach. Yet, we have not taken advantage of the
fact that we can perform mixture weights optimisation on top of means optimisation, which
is another novelty of our framework compared to traditional Variational Inference methods.

Implementation details. We work with the same implementation details as those described
in Section 8.1.1, except for the fact that we will now let ηn = η at time n and we will vary the
value of η. In addition to the RGD-IS-n(γ) and the MG-IS-n(γ) algorithms, we also include
the RGD-IS-unif(γ) and the MG-IS-unif(γ) algorithms in our results (that is, the algorithms
resulting from pairing up the RGD and MG approaches with the IS-unif sampler).

The plots for the averaged Monte Carlo estimate of the VR Bound with η = 0.1 and
γ = 0.5 are then available in Figure 2 (and similar plots for η ∈ {0.05, 0.5} are provided
in Figures 7 and 8 of Appendix D respectively). According to Figure 2, MG-IS-unif(0.5)
outperforms most of the time the other methods (this trend for MG-IS-unif(γ) is further
confirmed by looking at the logMSE in Table 3 of Appendix D, which includes the cases
γ ∈ {0.1, 1.} for completeness).

We also plot in Figure 3 the final mixture weights λN obtained after one typical run
of MG-IS-unif(0.5) for η ∈ {0.05, 0.1, 0.5} and J ∈ {10, 50} (and additional LogMSE re-
sults can be found in Table 4 of Appendix D). This is done in order to delve into how η
impacts the variational density returned at the end of Algorithm 3 (MG-IS-unif(0.5) was cho-
sen among all four options since it enjoys good empirical performances according to Figure 2).
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J = 10 J = 50
(i)

(ii)

(iii)

Figure 2: Monte Carlo estimate of the VR Bound for the RGD and the MG approaches
(η = 0.1) when considering each of the target distributions (i), (ii) and (iii).

A key insight from Figure 3 is that optimising the mixture weights permits us to select
the components appearing in our mixture model according to their overall contribution in
constructing a good approximation of the targeted density.

On the one hand, we enable more flexibility in our variational approximation as we
optimise over a set of component parameters Θ with J > 1 instead of just one component
parameter θ (J = 1). On the other hand, we avoid complexifying unecessarily the variational
distribution returned at the end of the optimisation procedure since we perform mixture
weights optimisation alongside components parameters optimisation. That way, we can
bypass the limitation of the case η = 0, which may use more components than needed
when approximating the targeted density (this is the case here since the targeted densities
considered have three modes at best while J = {10, 50}).

However, there is a tradeoff to find between the simplicity of the variational density
that is returned and its accuracy at describing the targeted density, which is expressed via
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J = 10 J = 50
(i)

(ii)

(iii)

Figure 3: Final mixture weights λN for one run of the MG-IS-unif(0.5) algorithm (varying
mixture weights) when considering each of the target distributions (i), (ii) and (iii).

the choice of the learning rate η. Indeed, choosing η too large might lead to missing some
of the modes while having η too small may not discriminate quickly enough between the
components. Observe in particular that the number of components J too plays a role in
how fast the components selection process occurs, as for the same value of η, this selection
process is slower as J increases.

8.2 Bayesian Logistic Regression

We consider the Bayesian Logistic Regression setting from Gershman et al. (2012). Namely,
the data D = {c,x} is made of I binary class labels, ci ∈ {−1, 1}, and of L covariates for
each datapoint, xi ∈ RL. The latent variable y = {w, β} consists of L regression coefficients
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η J = 50 J = 100

0.1

0.5

Figure 4: Monte Carlo estimate of the VR Bound for the RGD and the MG approaches
when considering the Bayesian Logistic Regression on the Covertype data set.

wl ∈ R, and a precision parameter β ∈ R+. Furthermore, the following model is assumed

p0(β) = Gamma(β; a, b), p0(w|β) = N (w; 0, β−1IL), p(ci = 1|xi,w) = 1
1 + e−wTxi

,

where a = 1 and b = 0.01, so that p(y,D) = p0(β)p0(w|β)
∏I
i=1 p(ci|xi, y). We now want

to demonstrate the practicability of our framework in a real data scenario. To this end,
we select the Covertype data set (581, 012 data points and 54 features, available at https:
//www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html) and we compare
the RGD and the MG approaches for this choice of target density.

Implementation details. The covariance matrices of the mixture components are fixed
and equal to σ2Id with σ2 = 1, α = 0.2, J ∈ {50, 100}, d = 56, M = 200, the total number of
iterations N is equal to 200, Θ1 is generated by sampling from a centered normal distribution
with covariance matrix 5Id, λ1 = [1/J, . . . , 1/J ] and for all time n = 1 . . . N , κn = 0, ηn = η,
γn = γ where η ∈ {0.1, 0.5} and γ ∈ {0.05, 0.1, 0.2, 0.3}. Computing p(y,D) constitutes the
major computation bottleneck here since I = 581, 012. To address this problem, p(y,D)
is approximated according to Remark 3 with subsampled mini-batches of size 100. The
experiments are replicated independently 30 times and the convergence of the RGD and of
the MG approaches is monitored by computing a Monte Carlo estimator of the VR Bound.

Our results are plotted in Figure 4, in which we focus on RGD-IS-n(γ) and MG-IS-unif(γ)
(those two versions of Algorithm 3 are the most interesting to compare in this particular
setting since MG-IS-n(γ) enjoys similar performances to RGD-IS-n(γ) and RGD-IS-unif(γ)
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underperforms, see Figure 9 of Appendix D for details). We observe that both algorithms
are able to learn in a real data scenario for a proper tuning of (η, γ) and that selecting either
η or γ too small/large can deteriorate the performance (as per the learning rate behaviour
associated to those parameters). Furthermore, MG-IS-unif(γ) can be tuned to outperform
RGD-IS-n(γ), which confirms our previous empirical findings regarding the relevance of the
novel MG approach compared to the more traditional RGD one.

9. Conclusion

We introduced a novel methodology to build algorithms ensuring a monotonic decrease in
the α-divergence at each step. Our methodology enabled simultaneous updates for both
the weights and components parameters of a given mixture model, making it suitable for
capturing complex multimodal target densities. Our work also connected and improved on
different approaches: Gradient Descent for α-divergence minimisation, Power Descent and
an Integrated EM algorithm. By investigating variational families based on the exponential
family, we applied our framework to important classes of models such as Gaussian Mixture
Models and Student’s t Mixture Models. Finally, we provided empirical evidence that our
methodology can be used to enhance the aformentioned existing algorithms.

To conclude, we state several directions to extend our work. Now that we have established
a systematic decrease for our iterative schemes, the next step could be to derive convergence
results and to compare them with those obtained using typical Gradient Descent schemes.
Based on Proposition 2, another direction is to generalise the monotonicity property from
Theorem 3 beyond the case α ∈ [0, 1). Lastly, much like it is already the case in traditional
Black-Box Variational Inference, we expect that fine-tuning our hyperparameters and
resorting to more advanced Monte Carlo methods in the estimation of the intractable
integrals appearing in our ideal algorithms will lead to further improved numerical results.
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Appendix A. Deferred Proofs and Results for Section 3

A.1 Quantifying the Improvement in one Step of Gradient Descent

Let T ⊆ Rd be a convex set. Here, 〈·, ·〉 is the standard inner product on Rd and ‖.‖ is the
Euclidean norm.

Definition 3 A continuously differentiable function g defined on T is said to be β-smooth
if for all θ, θ′ ∈ T,

‖∇g(θ)−∇g(θ′)‖ 6 β‖θ − θ′‖ .
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Lemma 2 Let γ ∈ (0, 1], let g be a β-smooth function defined on T. Then, for all θ ∈ T it
holds that

g(θ)− g
(
θ − γ

β
∇g(θ)

)
>

γ

2β ‖∇g(θ)‖2 .

Proof By assumption on g, we have that for all θ, θ′ ∈ T

g(θ′)− g(θ)− 〈∇g(θ), θ′ − θ〉 6 β

2 ‖θ − θ
′‖2 .

In particular, setting θ′ = θ − γ
β∇g(θ) yields

g(θ)− g
(
θ − γ

β
∇g(θ)

)
>
γ

β
‖∇g(θ)‖2 − γ2

2β ‖∇g(θ)‖2

>
γ

β

(
1− γ

2

)
‖∇g(θ)‖2 .

Since γ ∈ (0, 1], we can deduce the desired result.

A.2 Gradient Descent for α- / Rényi’s α-divergence Minimisation in Section 3

Let us first write the definition of the α-divergence (resp. of Rényi’s α-divergence) between
the two absolutely continuous probability measures K(θ, ·) and P

Dα(K(θ, ·)||P) =
∫

Y

1
α(α− 1)

[(
k(θ, y)
p(y|D)

)α
− 1

]
p(y|D)ν(dy)

D(AR)
α (K(θ, ·)||P) = 1

α(α− 1) log
(∫

Y
k(θ, y)αp(y|D)1−αν(dy)

)
.

Here, the Rényi divergence is defined following the convention from Cichocki and Amari
(2010), alternative definitions may use a different scaling factor.

A.2.1 Gradient Descent for α-divergence Minimisation

As underlined in the introduction, minimising the α-divergence Dα(Q||P) w.r.t q is equivalent
to minimising Ψα(q; p) with p = p(·,D) w.r.t q, where we have gotten rid of p(D) in the opti-
misation problem as written in (2). Letting Q be of the form Q = {q : y 7→ k(θ, y) : θ ∈ T},
the traditional Variational Inference way to optimise Ψα(k(θ, ·); p) with p = p(·,D) w.r.t
θ corresponds to performing Gradient Descent steps on θ to construct a sequence (θn)n>1
that converges towards a local optimum of the function θ 7→ Ψα(k(θ, ·); p). This procedure
involves a well-chosen learning rate policy (rn)n>1 and sets:

θn+1 = θn − rn∇Ψα(k(θn, ·); p) , n > 1 . (79)
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Under common differentiability assumptions,

∇Ψα(k(θn, ·); p) = ∇
(∫

Y
fα

(
k(θn, y)
p(y)

)
p(y)ν(dy)

)
=
∫

Y

∂

∂θ

(
fα

(
k(θ, y)
p(y)

)) ∣∣∣∣
(θ,y)=(θn,y)

p(y)ν(dy)

=
∫

Y
f ′α

(
k(θn, y)
p(y)

)
∂k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θn,y)

ν(dy)

=
∫

Y

k(θn, y)αp(y)1−α

α− 1
∂ log k(θ, y)

∂θ

∣∣∣∣
(θ,y)=(θn,y)

ν(dy)

so that (79) becomes

θn+1 = θn − rn
∫

Y

ϕ
(α)
n (y)
α− 1

∂ log k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θn,y)

ν(dy) , n > 1 .

A.2.2 Gradient Descent for Rényi’s α-divergence Minimisation

Considering yet again Q = {q : y 7→ k(θ, y) : θ ∈ T}, minimising Rényi’s α-divergence

D(AR)
α (K(θ, ·)||P) = 1

α(α− 1) log
(∫

Y
k(θ, y)αp(y|D)1−αν(dy)

)
w.r.t θ can be done by performing Gradient Descent steps on θ to construct a sequence
(θn)n>1 that converges towards a local optimum of the function θ 7→ D

(AR)
α (K(θ, ·)||P). This

procedure involves a well-chosen learning rate policy (rn)n>1 and sets:

θn+1 = θn − rn∇D(AR)
α (K(θn, ·)||P) , n > 1 . (80)

Under common differentiability assumptions and setting p = p(·,D),

∇D(AR)
α (K(θn, ·)||P) = ∇

( 1
α(α− 1) log

(∫
Y
k(θn, y)αp(y|D)1−αν(dy)

))

= 1
α(α− 1)

∇
(∫

Y k(θn, y)αp(y,D)1−αν(dy)
)

∫
Y k(θn, y)αp(y,D)1−αν(dy)

=
∫

Y

ϕ̌
(α)
n (y)
α− 1

∂ log k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θn,y)

ν(dy)

so that (80) becomes

θn+1 = θn − rn
∫

Y

ϕ̌
(α)
n (y)
α− 1

∂ log k(θ, y)
∂θ

∣∣∣∣
(θ,y)=(θn,y)

ν(dy) , n > 1 .

Appendix B. Deferred Proofs and Results for Section 4

B.1 Proof of Corollary 4

Proof of Corollary 4 Following the proof of Corollary 1, we obtain that (19) holds by using
the definition of Θn+1 combined with the fact that α ∈ [0, 1), D1(K(θj,n, ·)||K(θj,n+1, ·)) > 0
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and λj,n > 0 for all j = 1 . . . J . (18) holds by Theorem 3 and we can thus apply Theorem 2.

B.2 Extension of Lemma 1 to Mixture Models

Lemma 3 (Generalised maximisation approach for the mean-field family) Let
each component of the mixture be a member of the same mean-field variational family so that
k(θj , y) =

∏L
`=1 k

(`)(θ(`)
j , y(`)) with θj = (θ(1)

j , . . . , θ
(L)
j ) ∈ T. Then, starting from Θ1 ∈ T

and denoting Θn = (θ1,n, . . . θj,n) with θj,n = (θ(1)
j,n, . . . , θ

(L)
j,n ) for all n > 1 and all j = 1 . . . J ,

solving (25) yields the following update formulas: for all n > 1 and all j = 1 . . . J ,

θ
(`)
j,n+1 = argmax

θ(`)

∫
Y

[
ϕ

(α)
j,n (y) + bj,nk(θn, y)

]
log

k(`)(θ(`), y(`))
k(`)(θ(`)

j,n, y
(`))

 ν(dy), ` = 1 . . . L .

B.3 Proof of Corollary 5

Proof of Corollary 5 Following the proof of Corollary 2, we will use that γj,n ∈ (0, 1] and
that gj,n is a βj,n-smooth function. Indeed, we can thus apply Lemma 2 and we obtain by defi-
nition of θj,n+1 in (26) that 0 = gj,n(θj,n) > gj,n(θj,n+1) for all n > 1 and all j = 1 . . . J , which
in turn implies (19). In addition, (18) holds by Theorem 3, hence we can apply Theorem 2.

B.4 Gradient Descent for α- / Rényi’s α-divergence Minimisation in Section 4

We obtain the desired results by adapting the reasoning from Appendix A.2 to the case

Q =

q : y 7→ µλ,Θk(y) =
J∑
j=1

λjk(θj , y) : Θ ∈ TJ
 ,

with λ ∈ SJ , meaning that we consider the α-divergence (resp. Rényi’s α-divergence)
between the two absolutely continuous probability measures µλ,ΘK and P:

Dα(µλ,ΘK||P) =
∫

Y

1
α(α− 1)

[(
µλ,Θk(y)
p(y|D)

)α
− 1

]
p(y|D)ν(dy)

D(AR)
α (µλ,ΘK||P) = 1

α(α− 1) log
(∫

Y
(µλ,Θk(y))αp(y|D)1−αν(dy)

)
,

(we use the convention from Cichocki and Amari (2010) for Rényi’s α-divergence).

B.5 Monotonicity Property for the Power Descent

B.5.1 Preliminary Remarks

For convenience, we redefine in this section the function bµ,α for all µ ∈ M1(T) by

bµ,α(θ) =
∫

Y
k(θ, y) 1

α− 1

(
µk(y)
p(y)

)α−1
ν(dy), θ ∈ T .
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Then, for all η > 0, the iteration µ 7→ Iα(µ) is well-defined if we have

0 < µ(|bµ,α + κ|
η

1−α ) <∞ . (81)

Furthermore, Daudel et al. (2021) already established that one transition of the Power
Descent algorithm ensures a monotonic decrease in the α-divergence at each step for all
η ∈ (0, 1] and all κ such that (α − 1)κ > 0 under the assumption of Proposition 2, which
settles the case (iii). Finally, while we establish our results for (i) and (ii) in the general case
where µ ∈ M1(T), the particular case of mixture models follows immediately by choosing µ
as a weighted sum of dirac measures.

B.5.2 Extending the Monotonicity

Let (ζ, µ) be a couple of probability measures where ζ is dominated by µ, which we denote
by ζ � µ. A first lower-bound for the difference Ψα(µk)−Ψα(ζk) was derived in Daudel
et al. (2021) and was used to establish that the Power Descent algorithm diminishes Ψα

for all η ∈ (0, 1]. We now prove a novel lower-bound for the difference Ψα(µk) − Ψα(ζk)
which will allow us to extend the monotonicity results from Daudel et al. (2021) beyond the
case η ∈ (0, 1] when α < 0. This result relies on the existence of an exponent % satisfying
condition (A2) below, which will later on be used to specify a range of values for η ensuring
that Ψα is decreasing after having applied one transition µ 7→ Iα(µ)

(A2) We have % ∈ R \ [0, 1] and the function fα,% : u 7→ fα(u1/%) is non-decreasing and concave
on R>0.

Proposition 5 Assume (A1). Let α ∈ R \ {1}, assume that % satisfies (A2) and let κ be
such that (α− 1)κ > 0. Then, for all µ, ζ ∈ M1(T) such that µ(|bµ,α|) <∞ and ζ � µ,

|%|−1 {µ(|bµ,α + κ|)− µ (|bµ,α + κ|g%)} 6 Ψα(µk)−Ψα(ζk) , (82)

where g is the density of ζ wrt µ, i.e. ζ(dθ) = µ(dθ)g(θ). Moreover, equality holds in (82) if
and only if ζ = µ.

Proof First note that for all α ∈ R \ {1}, we have by (A2) that f ′α,%(u) > 0 for all
u > 0, and thus that sg(%) = sg(α− 1) where sg(v) = 1 if v > 0 and −1 otherwise. Since
sg(f ′α(u)) = sg(α − 1) = sg(κ) for all u > 0, this implies that %−1f ′α(u) = |%|−1|f ′α(u)|,
%−1κ = |%−1κ| and finally that %−1(bµ,α(θ) + κ) = |%−1||bµ,α(θ) + κ| for all θ ∈ T, which will
be used later in the proof.

Write by definition of fα,% in (A2) and ζ,

Ψα(ζk) =
∫

Y
fα

(
ζk(y)
p(y)

)
p(y)ν(dy)

=
∫

Y
fα,%

([
ζk(y)
p(y)

]%)
p(y)ν(dy)

=
∫

Y
fα,%

([∫
T
µ(dθ)k(θ, y)

µk(y)

(
g(θ)µk(y)
p(y)

)]%)
p(y)ν(dy)

6
∫

Y
fα,%

(∫
T
µ(dθ)k(θ, y)

µk(y)

(
g(θ)µk(y)
p(y)

)%)
p(y)ν(dy) (83)
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where the last inequality follows from Jensen’s inequality applied to the convex function
u 7→ u% (since % ∈ R \ [0, 1]) and the fact that fα,% is non-decreasing. Now set

uy =
∫

T
µ(dθ)k(θ, y)

µk(y)

(
g(θ)µk(y)
p(y)

)%
vy =

(
µk(y)
p(y)

)%
and note that

uy − vy =
(
µk(y)
p(y)

)% (∫
T
µ(dθ)k(θ, y)

µk(y) g
%(θ)− 1

)
. (84)

Since fα,% is concave, fα,%(uy) 6 fα,%(vy) + f ′α,%(vy)(uy − vy). Combining with (83), we get

Ψα(ζk) 6
∫

Y
fα,%(uy)p(y)ν(dy) (85)

6
∫

Y
fα,%(vy)p(y)ν(dy) +

∫
Y
f ′α,%(vy)(uy − vy)p(y)ν(dy)

Note that the first term of the rhs can be written as∫
Y
fα,%(vy)p(y)ν(dy) =

∫
Y
fα

(
µk(y)
p(y)

)
p(y)ν(dy) = Ψα(µk) . (86)

Using now f ′α,%(vy) = %−1v
1/%−1
y f ′α(v1/%

y ) and (84), the second term of the rhs of (85) may
be expressed as∫

Y
f ′α,%(vy)(uy − vy)p(y)ν(dy)

= %−1
∫

Y

(
µk(y)
p(y)

)1−%
f ′α

(
µk(y)
p(y)

)
(
µk(y)
p(y)

)% (∫
T
µ(dθ)k(θ, y)

µk(y) g
%(θ)− 1

)
p(y)ν(dy)

= %−1
∫

T
µ(dθ)

(∫
Y
k(θ, y)f ′α

(
µk(y)
p(y)

)
ν(dy)

)
g%(θ)

− %−1
∫

Y
µk(y)f ′α

(
µk(y)
p(y)

)
ν(dy)

= %−1 {µ (bµ,α · g%)− µ(bµ,α)}
= |%|−1 {µ (|bµ,α + κ|g%)− µ(|bµ,α + κ|)}+ |%−1κ|(1− µ(g%)) ,

where we have used that %−1(bµ,α(θ) + κ) = |%−1||bµ,α(θ) + κ| for all θ ∈ T and that
%−1κ = |%−1κ|. In addition, Jensen’s inequality applied to the convex function u 7→ u%

implies that µ(g%) > 1 and thus∫
Y
f ′α,%(vy)(uy − vy)p(y)ν(dy) 6 |%|−1 {µ (|bµ,α + κ|g%)− µ(|bµ,α + κ|)} . (87)
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Combining this inequality with (85) and (86) finishes the proof of the inequality. Further-
more, if the equality holds in (82), then the equality in Jensen’s inequality (87) shows that
g is constant µ-a.e. so that ζ = µ, and the proof is completed.

Remark 4 The proof of Proposition 5 relies on f ′α being of constant sign. Notice however
that the definition of the α-divergence in (1) is invariant with respect to the transformation
f̃α(u) = fα(u) +κ(u− 1) for any arbitrary constant κ, that is fα can be equivalently replaced
by f̃α in (1). This aspect is in fact expressed through the constant κ appearing in the update
formula, that we however need to assume to satisfy (α− 1)κ > 0 in our proofs.

We now plan on setting ζ = Iα(µ) in Proposition 5 and obtain that one iteration of
the Power Descent yields Ψα(Iα(µ)k) 6 Ψα(µk). For this purpose and based on the upper
bound obtained in Proposition 5, we strengthen the condition (81) as follows to take into
account the exponent %

0 < µ(|bµ,α + κ|
η

1−α ) <∞ and µ(|bµ,α + κ|g%) 6 µ(|bµ,α + κ|)

with g = |bµ,α+κ|
η

1−α

µ(|bµ,α+κ|
η

1−α )
. (88)

This leads to the following result.

Proposition 6 Assume (A1). Let α ∈ R \ {1}, assume that % satisfies (A2) and let κ be
such that (α−1)κ > 0. Let µ ∈ M1(T) be such that µ(|bµ,α|) <∞ and assume that η satisfies
(88). Then, the two following assertions hold.

(i) We have Ψα(Iα(µ)k) 6 Ψα(µk).

(ii) We have Ψα(Iα(µ)k) = Ψα(µk) if and only if µ = Iα(µ).

Proof We treat the case κ = 0 in the proof below (the case κ 6= 0 unfolds simi-
larly). We apply Proposition 5 with ζ = Iα(µ) so that ζ(dθ) = µ(dθ)g(θ) with g =
|bµ,α|η/(1−α)/µ(|bµ,α|η/(1−α)). Then,

Ψα(Iα(µ)k) 6 Ψα(µk) + |%|−1 {µ (|bµ,α|g%)− µ(|bµ,α|)} 6 Ψα(µk) , (89)

where the last inequality follows from condition (88). Let us now show (ii). The if part is
obvious. As for the only if part, Ψα(Iα(µ)k) = Ψα(µk) combined with (89) yields

Ψα(Iα(µ)k) = Ψα(µk) + |%|−1 {µ (|bµ,α|g%)− µ(|bµ,α|)} ,

which is the case of equality in Proposition 5. Therefore, Iα(µ) = µ.

While Proposition 6 resembles (Daudel et al., 2021, Theorem 1) in its formulation and
in the properties on the iteration µ 7→ Iα(µ) it establishes, it is important to note that the
proof techniques used, and thus the conditions on η obtained, are different. This brings us
to the proof of Proposition 2. The proof of this theorem requires intermediate results, which
are derived in Appendix B.5.3 alongside the proof of Proposition 2.
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B.5.3 Proof of Proposition 2

For the sake of readability, we only treat the case κ = 0 in the proofs below (the case κ 6= 0
unfolds similarly). In Proposition 5, the difference Ψα(ζk)−Ψα(µk) is split into two terms

Ψα(ζk)−Ψα(µk) = A(µ, ζ) + |%|−1 {µ (|bµ,α|g%)− µ(|bµ,α|)} ,

where g = dζ/dµ. Moreover, Proposition 5 states that A(µ, ζ) is always non-positive. It
turns out that the second term is minimal over all positive probability densities g when it is
proportional to |bµ,α|1/(1−%), as we show in Lemma 4 below.

Lemma 4 Let % ∈ R \ [0, 1]. Then, for any positive probability density g w.r.t µ, we have

µ (|bµ,α|g%) >
[
µ
(
|bµ,α|1/(1−%)

)]1−%
,

with equality if and only if g ∝ |bµ,α|1/(1−%).

Proof The function x 7→ x1−% is strictly convex for % ∈ R \ [0, 1]. Thus Jensen’s inequality
yields, for any positive probability density g w.r.t. µ,

µ (|bµ,α|g%) =
∫

T
µ(dθ)

(
|bµ,α(θ)|1/(1−%)

g(θ)

)1−%

g(θ) >
[
µ
(
|bµ,α|1/(1−%)

)]1−%
(90)

which finishes the proof of the inequality. The next statement follows from the case of
equality in Jensen’s inequality: g must be proportional to |bµ,α|1/(1−%).

The next lemma shows that this choice leads to a non-positive second term, thus implying
that Ψα(ζk) 6 Ψα(µk).

Lemma 5 Assume (A1). Let α ∈ R \ {1} and assume that % satisfies (A2). Then η =
(1− α)/(1− %) satisfies (88) for any µ ∈ M1(T) such that µ(|bµ,α|) <∞.

Proof We apply (90) with g = 1 and get that[
µ
(
|bµ,α|1/(1−%)

)]1−%
6 µ(|bµ,α|) <∞ . (91)

Then (88) can be readily checked with η = (1− α)/(1− %). Set φ = η/(1− α). Using that
µ(|bµ,α|) < ∞ when φ < 0 and (A1) for φ > 0, we obtain µ(|bµ,α|φ) > 0, which concludes
the proof.

While Lemma 5 seems to advocate for g = dζ/dµ to be proportional to |bµ,α|1/(1−%),
notice that this choice of g might not be optimal to minimize Ψα(ζk)−Ψα(µk), as A(µ, ζ)
also depends on g through ζ. In the next lemma, we thus propose another choice of the
tuning parameter η, which also satisfies (88) for any µ ∈ M1(T) such that µ(|bµ,α|) <∞.

Lemma 6 Assume (A1). Let α ∈ R \ {1} and assume that % satisfies (A2). Let µ ∈ M1(T)
be such that µ(|bµ,α|) <∞. Further assume that |%| > 1, then η = (α− 1)/% satisfies (88).

50



Monotonic Alpha-divergence Minimisation for Variational Inference

Proof Setting g ∝ |bµ,α|−1/%, we get

µ(|bµ,α|g%) = µ(|bµ,α|1−%/%)[µ(|bµ,α|−1/%)]−% = [µ(|bµ,α|−1/%)]−% 6 µ(|bµ,α|)

where the last inequality follows from Jensen’s inequality applied to the convex function
u 7→ u−% (since |%| > 1). Since µ(|bµ,α|) < ∞, the parameter η = (α − 1)/% satisfies (88).
Set φ = η/(1 − α). Using that µ(|bµ,α|) < ∞ when φ < 0 and (A1) for φ > 0, we obtain
µ(|bµ,α|φ) > 0, which concludes the proof.

Lemma 5 and Lemma 6 allow us to define a range of values for η that decreases Ψα after
one transition of the Power Descent, under the assumption that % satisfies (A2). Now, in
order to prove Proposition 2 and given α ∈ R \ {1}, we need to check which values of %
satisfy the conditions expressed in (A2).

Proof of Proposition 2 The proof consists in verifying that we can apply Proposition 6,
that is, given α ∈ R \ {1}, we must find a range of constants % which satisfy (A2). We then
use Lemma 5 or Lemma 6 to deduce that, for the provided constants η, (88) holds.

(i) Assumption (A2) holds for all % < 0, with fα,%(u) = − log(u)/%. Moreover, by
definition of bµ,α, we get for all n > 1,

µ(|bµ,α|) =
∫

Y
µk(y) p(y)

µk(y)ν(dy) =
∫

Y
p(y)ν(dy) <∞ .

Combining with Lemma 5 and Lemma 6, (88) holds for all µ ∈ M1(T) and for any η ∈ (0, 1].

(ii) Observing that for α /∈ {0, 1},

fα,%(u) = 1
α(α− 1)

(
uα/% − 1

)
,

we get that (A2) holds for % 6 α if α < 0 Lemmas 5 and 6 provide the corresponding ranges
for η in Cases (i) and (ii). To finish the proof, we now show that for all µ ∈ M1(T), µ(|bµ,α|)
is finite, so that Lemmas 5 and 6 can indeed be applied.
Since uf ′α(u) = αfα(u) + 1/(α− 1), we have, for all n > 1,

µ(|bµ,α|) =
∫

Y

∣∣∣∣(µk(y)
p(y)

)
f ′α

(
µk(y)
p(y)

)∣∣∣∣ p(y)ν(dy) (92)

6 |α|
∫

Y

∣∣∣∣fα (µk(y)
p(y)

)∣∣∣∣ p(y)ν(dy) + 1
|α− 1|

Using that Ψα(µk) > −∞ (which is a consequence of (A1) and of Jensen’s inequality applied
to the convex function u 7→ ufα(1/u)), the r.h.s is finite if and only if Ψα(µk) is finite, which
is what we have assumed and thus the proof is finished.
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Appendix C. Deferred Proofs and Results of Section 6

We start with a useful lemma.

C.1 A Useful Lemma

The following lemma will be used for the proofs of Theorems 4 and 5 and Proposition 3.

Lemma 7 Let k(o) satisfy (B1). We have, for all ζ, ζ ′ ∈ IntE0,

log
(
k(o)(ζ ′, y)
k(o)(ζ, y)

)
>
〈
S(y)−∇A(ζ ′), ζ ′ − ζ

〉
E , with equality if and only if ζ ′ = ζ, (93)

0 >
∫

Y
log

(
k(o)(ζ ′, y)
k(o)(ζ, y)

)
k(o)(ζ, y) ν(dy) >

〈
∇A(ζ)−∇A(ζ ′), ζ ′ − ζ

〉
E . (94)

Proof Let ζ, ζ ′ ∈ IntE0. We have, since IntE0 is convx,

log
(
k(o)(ζ ′, y)
k(o)(ζ, y)

)
=
〈
S(y), ζ ′ − ζ

〉
E +A(ζ)−A(ζ ′)

=
〈
S(y), ζ ′ − ζ

〉
E +

〈
∇A(ζ ′), ζ − ζ ′

〉
E

+ (ζ − ζ ′)T
(∫ 1

0
(1− t)

[
∇∇TA(t ζ + (1− t) ζ ′)

]
dt
)

(ζ − ζ ′) .

The inequality and the equality case of (93) then follow from the fact that the hessian
∇∇TA is positive definite in IntE0. Using (93) and (32), we further obtain the lower bound
displayed in (94) on the negated exclusive Kullback-Leibler divergence between the two
(absolutely continuous w.r.t. ν) probability distributions with probability density functions
k(o)(ζ, ·) and k(o)(ζ ′, ·) respectively.

C.2 Proofs of Section 6.2

The following lemma will be useful.

Lemma 8 Let let p and g be functions measurable from (Y,Y) to the Borel sets of R+ such
that

0 <
∫

Y
p(y) (1 + g(y))1/(1−α) ν(dy) <∞ . (95)

Let α ∈ [0, 1) and k : T× Y → R+ be a positive kernel density with respect to ν. Let θ0 ∈ T
and µ be a probability on T such that

inf
y∈Y

k(θ0, y)
µk(y) > 0 . (96)

Then, setting

ϕ(y) = k(θ0, y)α
(
p(y)
µk(y)

)1−α
,
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we have
∫
ϕ dν > 0 and the probability density function ϕ̌ = ϕ/ (

∫
ϕ dν) satisfies∫

ϕ̌(y) g(y) ν(dy) <∞ . (97)

Proof We have µk > 0 by assumption on k and µ. Thus ϕ is well defined and
∫
ϕ dν > 0

as a consequence of p > 0 with the left-hand side of (95). We now check (97) in which ϕ̌ can
equivalently be replaced by ϕ. We have∫

ϕ(y) g(y) ν(dy) =
∫
k(θ0, y)

(
p(y)
µk(y)

)1−α
g(y) ν(dy)

6
(∫

k(θ0, y) p(y)
µk(y) g(y)1/(1−α) ν(dy)

)α
,

by Jensen’s inequality and concavity of x 7→ x1−α for α ∈ [0, 1). Hence we obtain (97) as a
consequence of (95) and (96).

Proof of Theorem 4 Let ζ0 ∈ O and b > 0. In the following, we denote by C0(ζ) the
value of the integral in the argmax in (35). Using that ϕ̌ is a probability density function
paired up with (32) and (34), we have∫

Y

[
ϕ̌(y) + b k(o)(ζ0, y)

]
ν(dy) = 1 + b > 0 ,∫

Y

[
ϕ̌(y) + b k(o)(ζ0, y)

]
S(y)ν(dy) =

∫
Y
ϕ̌ S dν + b∇A(ζ0) ∈ E .

By (93) in Lemma 7, for all ζ ′ 6= ζ in O and all y ∈ Y, we have

log
(
k(o)(ζ ′, y)
k(o)(ζ, y)

)
>
〈
S(y)−∇A(ζ ′), ζ ′ − ζ

〉
E .

Hence, combining with the three previous identities, we get that, for all ζ ′ 6= ζ in O,

C0(ζ ′)− C0(ζ) =
∫

Y

[
ϕ̌(y) + b k(o)(ζ0, y)

]
log

(
k(o)(ζ ′, y)
k(o)(ζ, y)

)
ν(dy)

>

〈∫
Y
ϕ̌ S dν + b∇A(ζ0)− (1 + b)∇A(ζ ′), ζ ′ − ζ

〉
E

= (1 + b)
〈
s∗ −∇A(ζ ′), ζ ′ − ζ

〉
E , (98)

where we used the definition of s∗ in (36). Now, since ∇A is a C∞-diffeomorphism on IntE0,
if s∗ belongs to ∇A(O) then there exists a unique ζ∗ ∈ O such that ∇A(ζ∗) = s∗. As a
result, plugging this into (98) and setting ζ ′ = ζ∗, we have that C0(ζ∗) > C0(ζ) for all ζ 6= ζ∗.
This shows that ζ∗ is the (unique) solution to the argmax problem (35).

We conclude this proof with the proof of the reciprocal implication. Suppose that the
argmax problem (35) has a solution ζ ∈ O so that, for all ζ ′ ∈ O, C0(ζ ′)− C0(ζ) 6 0. Using
(98), this would imply 〈s∗ −∇A(ζ ′), ζ ′ − ζ〉 < 0 for all ζ ′ ∈ O \ {ζ}. Since O is an open set,
we can take ζ ′ = ζ + ε (s∗ −∇A(ζ)) with ε > 0 small enough, which gives〈

s∗ −∇A(ζ ′), s∗ −∇A(ζ)
〉
< 0 .
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Now letting ε ↓ 0 and since ∇A is continuous, we get that s∗ −∇A(ζ) = 0 and thus that s∗
belongs to ∇A(O).

Proof of Corollary 6 First note that letting ν be the d-dimensional Lebesgue measure
and setting S(y) = (y,−yyT /2), the condition (34) written in Theorem 4 takes the form∫

Y
‖y‖2 ϕ̌(y) dy <∞ . (99)

Furthermore, setting υ(θ) = (Σ−1m,Σ−1) with θ = (m,Σ), we obtain that υ(T) = Rd ×
M>0(d), which is the whole interior set IntE0, seen as an open set of E = Rd × Rd×d.
Hence Theorem 4 applies and we can use the interpretation (38) of the equation (37) with
k(θ∗, y) = N (y;m∗,Σ∗) and k(θ0, y) = N (y;m0,Σ0), that is∫

Y
S(y) N (y;m∗,Σ∗)ν(dy) =

∫
Y
S(y)ψ(y)ν(dy) , (100)

where ψ is the mixture

ψ(y) = 1
1 + b

ϕ̌(y) + b

1 + b
N (y;m0,Σ0) , y ∈ Y .

Using now that S(y) = (y,−yyT /2), (100) is equivalent to saying that the distributions on
both sides of this equation have the same mean and covariance matrix. Since the left-hand
side distribution is a Gaussian distribution, we directly obtain that the solution of (100)
is given by θ∗ = (m∗,Σ∗) with m∗ and Σ∗ being the mean and covariance matrix of the
random variable Y with density ψ.

Observe that these mean and covariance matrix are well-defined due to the condition (99).
This means that we only have to check that the covariance matrix is positive definite in
order to have a solution in T = Rd ×M>0(d). If b > 0, then 1/(1 + b) < 1 and the fact
that θ ∈ T guaranties that the covariance matrix of Y is positive definite. If b = 0, then Y
has density ϕ̌ and the non-degenerate condition on ϕ̌ guaranties that the covariance is also
positive definite in this case. This concludes the proof.

Proof of Corollary 7 Recall from (16) that ϕ(α)
j,n (y) = k(θj,n, y)(p(y)/µnk(y))1−α with

k(θj,n, y) > 0. Then Lemma 8 gives that

0 <
∫

Y
(1 + ‖S(y)‖E) ϕ(α)

j,n (y) ν(dy) <∞ . (101)

We can thus apply Theorem 4 with ζ0 = υ(θj,n), O = υ(T), b = bj,n/
∫

Y ϕ
(α)
j,n dν and

ϕ̌ = ϕ
(α)
j,n/

∫
ϕ

(α)
j,n dν, which satisfies (34).

C.3 Proofs of Section 6.3

Proof of Proposition 3 Following the proof of Theorem 4 but with b = 0, we have using
(98) that: for all ζ ′, ζ ∈ IntE0,〈

∇A(ζ)−
∫

Y
S ϕ̌ dν, ζ ′ − ζ

〉
E
6 g(o)(ζ ′)− g(o)(ζ) 6

〈
∇A(ζ ′)−

∫
Y
S ϕ̌ dν, ζ ′ − ζ

〉
E
.
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Since ∇A is continuous in IntE0, we get that g(o) is C1 over IntE0 and, for all ζ ∈ IntE0,

∇g(o)(ζ) = ∇A(ζ)−
∫

Y
S ϕ̌ dν .

The β0-smoothness condition follows from the mean value theorem applied to ∇g(o) whose
Jacobian is ∇∇TA.

Proof of Corollary 8 The context is similar to the proof of Corollary 6 except that the
covariance matrix is known and thus the sufficient statistic reduces to S(y) = y and the
canonical parameter to υ(θ) = Σ−1θ. The given expressions of h and A follow. Then we
have, for all ζ ∈ Rd, ∇A(ζ) = Σζ. Applying Proposition 3, we get that

∇g(o)(ζ) = Σζ −
∫

Y
yϕ̌(y) dy .

This gives that g(o) is β0-smooth over Rd with β0 equal to the maximal eigenvalue of Σ and
leads to the gradient step

ζ = ζ0 −
γ

β0

(
Σζ0 −

∫
Y
yϕ̌(y) dy

)
.

Multiplying on both sides by Σ leads to the gradient-based update (46).
We now derive (47). Using that g = g(o) ◦ υ, we get that ∇g(θ) = Σ−1∇g(o)(Σ−1θ) and

thus

∇g(θ) = Σ−1
(
θ −

∫
Y
y ϕ̌(y)

)
.

We obtain that g is β-smooth over Rd with β equal to the maximal eigenvalue of Σ−1, which
leads to the gradient update (47).

C.4 Proofs of Section 6.4

C.4.1 Proofs of Preliminary Results

It will be convenient to use the shorthand notation: for all (`, y, ξ) ∈ Z× Y × F ,

kξ(`, y) := k(o)(`(ξ), y) ,

ǩξ,τ (`, y) := kξ(`, y)
τkξ(y) ,

where τkξ denotes the mapping y 7→
∫
kξ(`, y) τ(d`).
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Proof of Proposition 4 We have, for all τ0, τ ∈ M, ξ0, ξ ∈ F and y ∈ Y, using the
definitions above and that of Dτ,τ0 ,

log τkξ(y)
τ0kξ0(y) = log

∫
Z

(
kξ(`, y)
kξ0(`, y)

)
ǩξ0,τ0(`, y) τ(d`)

= log
∫

Z

(
kξ(`, y)
kξ0(`, y) Dτ,τ0(`)

)
ǩξ0,τ0(`, y) τ0(d`)

>
∫

Z
ǩξ0,τ0(`, y) log

(
kξ(`, y)
kξ0(`, y) Dτ,τ0(`)

)
τ0(d`) ,

where we used the concavity of the log function and the fact that ǩξ0,τ0(·, y) is a probability
density function with respect to τ0. Let ξ = Υ(ϑ) and ξ0 = Υ(ϑ0) and set θ = (ϑ, τ) and
θ0 = (ϑ0, τ0), so that, by Definition 2, we have τkξ(y) = k(1)(θ, y) and τ0kξ0(y) = k(1)(θ0, y).
Applying the previous bound and integrating w.r.t. ϕ̌(y)ν(dy) thus yields

∫
Y
ϕ̌(y) log

(
k(1)(θ, y)
k(1)(θ0, y)

)
ν(dy)

>
∫

Y

(∫
Z
ϕ(`, y) log

(
kξ(`, y)
kξ0(`, y) Dτ,τ0(`)

)
τ0(d`)

)
ν(dy) , (102)

where we used that ϕ̌(y)ǩξ0,τ0(`, y) = ϕ(`, y) as a consequence of (52). We conclude by
noting that (50), (51) and (102) imply (49).

Proof of Corollary 9 Suppose that Υ(ϑ) belongs to the argmax (54), and let us show
that (51) holds. Note that the objective function in the argmax is zero for ξ = ξ0 and thus
must be non-negative for ξ = Υ(ϑ) in the argmax. Note also that the left-hand side of (51)
is the sum of this objective function at ξ = Υ(ϑ) with the term

−
∫

Y

(∫
Z
b0(`) kξ0(`, y) log

(
kΥ(ϑ)(`, y)
kξ0(`, y)

)
τ0(d`)

)
ν(dy) , (103)

and it only remains to show that this term is also non-negative. To conclude, we observe
that, for τ0-a.e. ` ∈ Z, Condition (ii) of Definition 1 implies that kξ0(`, ·) and kΥ(ϑ)(`, ·) are
probability densities, so that

−
∫

Y
kξ0(`, y) log

(
kΥ(ϑ)(`, y)
kξ0(`, y)

)
ν(dy) > 0 ,

and thus, b0 being non-negative,

−
∫

Z

(∫
Y
b0(`) kξ0(`, y) log

(
kΥ(ϑ)(`, y)
kξ0(`, y)

)
ν(dy)

)
τ0(d`) > 0 .

Using that log+(x) 6 x for all x > 0, the positive part inside this double integral is at most
b0(`) kΥ(ϑ)(`, y), whose integral w.r.t. ν(dy)τ0(d`) is

∫
b0 dτ0 <∞ by assumption. Therefore,
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the same inequality holds when reversing the order of integration in the previous display.
We get that the expression in (103) is non-negative, which concludes the proof.

The following lemma is used to illustrate (C1).

Lemma 9 Consider an ELM family satisfying (C1). Then, for all ϑ ∈ T̃, τ ∈ M and τ -a.e.
`, ` ◦Υ(T̃) is an open subset included in IntE0.

Proof In (C1), the linear operator ` ∈ Z being full rank implies that the image of an open
set is an open subset of E. Indeed, take F ′ ⊂ F a linear supplementary space of the kernel
of `. Then `|F ′ is a bijective linear mapping from F ′ to E and thus, for any open set O
included in F , `(O) = `(O∩F ′) = `|F ′(O∩F ′) is an open subset of E since O∩F ′ is an open
subset of F ′ and `|F ′ is bicontinuous. Hence (C1) implies that ` ◦Υ(T̃) is an open subset of
E for all τ ∈ M and τ -almost all ` ∈ Z, which, by Assumption (ii) from Definition 2, must
be included in IntE0.

We conclude with the following lemma, which relates Assumption (C4) to a kind of identifia-
bility property.

Lemma 10 Consider an ELM family and let Pϑ,τ denote the probability of (Y, L) defined
on Y × Z as above. Then (C4) is equivalent to have that for all (ϑ, τ), (ϑ′, τ ′) ∈ T̃ ×M,
Pϑ,τ = Pϑ′,τ ′ if and only if Υ(ϑ) = Υ(ϑ′) and τ = τ ′.

Proof Let (ϑ, τ), (ϑ′, τ ′) ∈ T̃×M. Note that Υ(ϑ) = Υ(ϑ′) and τ = τ ′ is always sufficient
to have Pϑ,τ = Pϑ′,τ ′ . Also, since τ is the marginal over Z of Pϑ,τ and k(o)(` ◦ Υ(ϑ), ·) is
the conditional density of Y given L = ` with respect to ν, it is clear that Pϑ,τ = Pϑ′,τ ′ is
equivalent to have τ = τ ′ and

k(o)(` ◦Υ(ϑ), y) = k(o)(` ◦Υ(ϑ′), y) for ν-a.e. y and τ -a.e. ` . (104)

By (B1), which is assumed for an ELM family in Definition 2, for all ζ, ζ ′ ∈ E0, we have
k(o)(ζ, y) = k(o)(ζ ′, y) for ν-a.e. y if and only if ζ = ζ ′. By (ii) in Definition 2, we have
` ◦Υ(ϑ) ∈ E0 for all ϑ ∈ T̃, τ ∈ M and τ -a.e. `. Thus, for all (ϑ, ϑ′, τ) ∈ T̃2 ×M, Eq. (104)
is equivalent to have

` ◦Υ(ϑ) = ` ◦Υ(ϑ′) for τ -a.e. ` . (105)

Hence, to prove the result, we only need to show that (C4) is equivalent to have that, for all
(ϑ, ϑ′, τ) ∈ T̃2 ×M, Eq. (105) implies Υ(ϑ) = Υ(ϑ′). In fact (C4) exactly says that for all
ϑ, ϑ′ ∈ T̃, Υ(ϑ) 6= Υ(ϑ′) implies the opposite of (105).

C.4.2 Proof of Theorem 5

The proof of Theorem 5 relies on a general proposition (Proposition 7) and two technical
lemmas (Lemmas 11 and 12). The following definition will be useful to state the proposition.

Definition 4 (Directional continuity) Let g be defined on an open subset O of the Eu-
clidean space F and valued in a topological space. Let ξ ∈ O and x ∈ F such that ‖x‖F = 1.
We say that g is continuous at ξ in direction x if lim

t↓0
g(ξ + tx) = g(ξ).
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Proposition 7 Consider an ELM family as in Definition 2 and Υ satisfying (C1). Let ϕ̌
be a probability density function w.r.t. ν. Let τ0 ∈ M and ϕ : Z × Y → R+ be measurable
function such that ∫

Y×Z
ϕ(`, y) ‖`‖op ‖S(y)‖E ν(dy)τ0(d`) <∞ (106)∫

Z
ϕ̃(`)

∥∥∥`∇(ξ)
∥∥∥
F
τ0(d`) <∞ for all ξ ∈ Υ(T̃) , (107)

where we set ϕ(`, y) and ϕ̃(`) as in (52) and (59). Define w∇τ0 : Υ(T̃)→ F as in (60). Let
b ∈ R+ and ξ0 in Υ(T̃) and set w∗ as in (63). Then the reciprocal set

Ξ∗ =
{
ξ ∈ Υ(T̃) : w∇τ0(ξ) = w∗

}
is included in the set of solutions of the argmax problem

argmax
ξ∈Υ(T̃)

∫
Y

(∫
Z

[
ϕ(`, y) + b ϕ̃(`) k(o)(`(ξ0), y)

]
log

(
k(o)(`(ξ), y)
k(o)(`(ξ0), y)

)
τ0(d`)

)
ν(dy) . (108)

Moreover the two following assertions hold.

(i) If w∇τ0 is continuous on Υ(T̃) in every direction, the opposite inclusion is true, namely,
the solution set of the argmax problem (108) is included in Ξ∗.

(ii) If we have, for all ξ 6= ξ′ ∈ Υ(T̃),∫
{`∈Z : `(ξ−ξ′)6=0}

ϕ̃(`) τ0(d`) > 0 , (109)

then ξ 7→ w∇τ0(ξ) is one-to-one on Υ(T̃) and thus Ξ∗ is either a singleton or empty.

Proof In this proof, we take b > 0 and ξ0 ∈ Υ(T̃), and we denote the integral defining the
objective function in the argmax problem (108) by C(ξ).

A first remark is that, by (106),
∫
ϕ(`, y) `T ◦ S(y) ν(dy)τ0(d`) is well-defined in F and

w∇τ0(ξ) in (60) is well-defined in F for all ξ ∈ Υ(T̃) as a consequence of (107). In particular
we get that w∗ in (63) is well-defined in F (but does not necessarily belong to w∇τ0 ◦Υ(T̃)).

Next we show that the objective function C(ξ) is well defined and finite for all ξ ∈ Υ(T̃)
and that Fubini’s theorem applies (so that the double integral in (108) can be computed in
the opposite order or as a single integral over Y × Z w.r.t. the product measure ν ⊗ τ0). To
this end, we show successively that∫

Y×Z
ϕ(`, y)

∣∣∣∣∣log
(
k(o)(`(ξ), y)
k(o)(`(ξ0), y)

)∣∣∣∣∣ ν(dy)τ0(d`) <∞ , (110)

∫
Y×Z

ϕ̃(`) k(o)(`(ξ0), y) log+

(
k(o)(`(ξ), y)
k(o)(`(ξ0), y)

)
ν(dy)τ0(d`) <∞ , (111)

−∞ <

∫
Z
ϕ̃(`)

(∫
Y
k(o)(`(ξ0), y) log

(
k(o)(`(ξ), y)
k(o)(`(ξ0), y)

)
ν(dy)

)
τ0(d`) 6 0 , (112)

∫
Y×Z

ϕ̃(`) k(o)(`(ξ0), y)
∣∣∣∣∣log

(
k(o)(`(ξ), y)
k(o)(`(ξ0), y)

)∣∣∣∣∣ ν(dy)τ0(d`) <∞ . (113)
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Let us now show that (110) holds. Let ` ∈ Z such that ` ◦ Υ(T̃) ⊆ IntE0, which by
Condition (ii) and (C1), is true for τ0-a.e. ` ∈ Z. Applying (93) in Lemma 7 with
(ζ, ζ ′) = (`(ξ0), `(ξ)) as well as (ζ, ζ ′) = (`(ξ), `(ξ0)) and using the definition of `T in (55)
and that of `∇ in (56), we get that〈

`T ◦ S(y)− `∇(ξ), ξ − ξ0
〉
F
6 log

(
k(o)(`(ξ), y)
k(o)(`(ξ0), y)

)
6
〈
`T ◦ S(y)− `∇(ξ0), ξ − ξ0

〉
F
.

It follows that, for all ξ0, ξ ∈ Υ(T̃),∣∣∣∣∣log
(
k(o)(`(ξ), y)
k(o)(`(ξ0), y)

)∣∣∣∣∣ 6 (∥∥∥`T ◦ S(y)
∥∥∥
F

+ max(
∥∥∥`∇(ξ0)

∥∥∥
F
,
∥∥∥`∇(ξ)

∥∥∥
F

)
)
‖ξ − ξ0‖F . (114)

Using
∥∥∥`T ◦ S(y)

∥∥∥
F
6
∥∥∥`T ∥∥∥

op
‖S(y)‖E = ‖`‖op ‖S(y)‖E , (106) and (107), we obtain (110).

To show (111), we use the bound log+(x) 6 x for all x > 0 so that the left-hand side
of (111) is upper-bounded by

∫
Y×Z ϕ̃(`) k(o)(`(ξ), y) ν(dy)τ0(d`) =

∫
Z ϕ̃(`) τ0(d`) = 1.

Next, to show (112), we observe that, as a consequence of (94), (55) and (56), we have

0 >
∫

Y
k(o)(`(ξ), y) log

(
k(o)(`(ξ), y)
k(o)(`(ξ0), y)

)
ν(dy) >

〈
`∇(ξ0)− `∇(ξ), ξ − ξ0

〉
F

> −
∥∥∥`∇(ξ0)− `∇(ξ)

∥∥∥
F
‖ξ − ξ0‖F .

Hence, using (107), we get (112).
Finally, Tonelli’s theorem gives us that the same positive part as in (111) has a finite

integral when integrating in the same order as in (112), so that (111) and (112) imply (113).
We now prove the inclusion of Ξ∗ in the set of argmax solutions. Since Fubini’s theorem

applies in the definition of the objective function, we can write, for all ξ, ξ′ ∈ Υ(T̃),

C(ξ′)− C(ξ) =
∫

Y×Z

[
ϕ(`, y) + b ϕ̃(`) k(o)(`(ξ0), y)

]
log

(
k(o)(`(ξ′), y)
k(o)(`(ξ), y)

)
ν(dy)τ0(d`) .

Using (93) in Lemma 7 this time with ζ = `(ξ) and ζ ′ = `(ξ′), we obtain that

C(ξ′)−C(ξ) >
∫

Y×Z

[
ϕ(`, y) + b ϕ̃(`)k(o)(`(ξ0), y)

] 〈
`T ◦ S(y)− `∇(ξ′), ξ′ − ξ

〉
E
ν(dy)τ0(d`).

Using (106), (107) to integrate in any convenient order, we have∫
Y×Z

ϕ(`, y)
〈
`T ◦ S(y)− `∇(ξ′), ξ′ − ξ

〉
E
ν(dy)τ0(d`)

=
〈∫

Y×Z
ϕ(`, y) `T ◦ S(y) ν(dy)τ0(d`)− w∇τ0(ξ′), ξ′ − ξ

〉
E

,

where we have used the definition of w∇τ0 in (60), and∫
Y×Z

ϕ̃(`) k(o)(`(ξ0), y)
〈
`T ◦ S(y)− `∇(ξ′), ξ′ − ξ

〉
E
ν(dy)τ0(d`)

=
〈

w∇τ0(ξ0)− w∇τ0(ξ′), ξ′ − ξ
〉
E
.
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where we have used once again the definition of w∇τ0 in (60) as well as the expression of ∇A
given in (32). Plugging these two equalities in the previous inequality, we finally get that,
for all ξ, ξ′ ∈ Υ(T̃),

C(ξ′)− C(ξ) >
〈∫

Y×Z
ϕ(`, y) `T ◦ S(y) ν(dy)τ0(d`)− (1 + b) w∇τ0(ξ′) + bw∇τ0(ξ0), ξ′ − ξ

〉
E

= (1 + b)
〈
w∗ − w∇τ0(ξ′), ξ′ − ξ

〉
E
, (115)

Hence any ξ′ ∈ Ξ∗ must be a a solution of the argmax (108).
Let us now prove Assertion (i). We use again (115) this time with ξ in the set of the

argmax solutions and ξ′ in the neighborhood of ξ (remember that Υ(T̃) is assumed to be
open) such that ξ′ − ξ = ε

(
w∗ − w∇τ0(ξ)

)
with ε > 0 small enough. We obtain that〈

w∗ − w∇τ0(ξ′),w∗ − w∇τ0(ξ)
〉
E
6 0 .

The assumption that w∇τ0 is continuous at ξ in direction
(
w∗ − w∇τ0(ξ)

)
gives us that w∗ =

w∇τ0(ξ), that is, ξ ∈ Ξ∗ and the opposite inclusion is shown.
We conclude with the proof of Assertion (ii). By (60), for all ξ, ξ′ ∈ Υ(T̃), we can write

w∇τ0(ξ)− w∇τ0(ξ′) =
∫

Z
ϕ̃(`)

(
`∇(ξ)− `∇(ξ′)

)
τ0(d`) .

Since ∇A has a positive definite Jacobian on the convex set IntE0, we have, for all ζ 6= ζ ′ ∈
IntE0, 〈∇A(ζ)−∇A(ζ ′), ζ − ζ ′〉E > 0.

Letting ξ 6= ξ′ ∈ Υ(T̃) and ` ∈ Z be such that `(ξ), `(ξ′) ∈ IntE0 and `(ξ − ξ′) 6= 0, we
can apply the previous inequality with ζ = `(ξ) and ζ ′ = `(ξ′) leading to〈

`∇(ξ)− `∇(ξ′), ξ − ξ′
〉
F
> 0 .

Combining this result with the condition (109) gives us that for all ξ 6= ξ′ ∈ Υ(T̃)〈
w∇τ0(ξ)− w∇τ0(ξ′), ξ − ξ′

〉
F
> 0 .

In particular, w∇τ0 is one-to-one and the proof is concluded.

Let dF denote the dimension of F and let us now introduce and prove two key lemmas.

Lemma 11 Let ξ ∈ Υ(T̃) and let x ∈ F be such that ‖x‖F = 1. Let us denote, for any
ε > 0,

BF (ξ, ε) =
{
ξ′ ∈ F :

∥∥ξ − ξ′∥∥F < ε
}
,

Dx(ξ, ε) = {ξ + t ε x : 0 6 t < 1} .

Let ` ∈ Z be such that ` ◦Υ(T̃) ⊂ IntE0. Then the two following assertions hold.

(i) For any 0 < ε 6 ε′ < ε′′ such that Dx(ξ, ε′′) ⊂ Υ(T̃), we have

sup
ξ′∈Dx(ξ,ε)

∣∣A ◦ `(ξ′)−A ◦ `(ξ)∣∣ 6 ε max
(∥∥∥`∇(ξ)

∥∥∥
F
,
∥∥∥`∇(ξ + ε′x)

∥∥∥
F

)
. (116)
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(ii) For any ε > 0 such that BF
(
ξ, 2

(
1 +
√
dF
)
ε
)
⊂ Υ(T̃), we have, for all ε0 ∈ (0, ε],

∫
Y

eε0‖`
T ◦S(y)‖

F

(
sup

ξ′∈Dx(ξ,ε0)
k(o)(`(ξ′), y)

)
ν(dy) 6 2 dF max

ξ′∈∆x,ε(ξ)

(
eε
′
0‖`∇(ξ′)‖

F

)
, (117)

where ε′0 =
(
1 + 2

√
dF
)
ε0 and ∆x,ε(ξ) is a set of 2(dF + 1) points in Bx(ξ, 2

(
1 +
√
dF
)
ε)

only depending on ξ, x and ε.

Proof We prove Assertions (i) and (ii) successively.
Proof of Assertion (i) Let 0 < ε 6 ε′ < ε′′ be such that Dx(ξ, ε′′) ⊂ Υ(T̃). First note that
t 7→ A ◦ `(ξ + t x) has its first and second derivative on t ∈ [0, ε′] given respectively by

h1 : t 7→ 〈∇A ◦ `(ξ + t x), `(x)〉E =
〈
`∇(ξ + t x), x

〉
F

h2 : t 7→
〈[
∇∇TA ◦ `(ξ + t x)

]
`(x), `(x)

〉
E
.

Since ∇∇TA is positive definite on IntE0, h2 is non-negative, thus h1 is monotonous
on [0, ε′] and its maximal absolute value is obtained at t = 0 or t = ε′, meaning that
|h1(t)| 6 max(|h1(0)|, |h1(ε′)|) for all t ∈ [0, ε′]. Therefore, the bound in (116) follows from
the mean value theorem combined with the fact that: for all t ∈ [0, ε′] and ξ′ ∈ Dx(ξ, ε),

|h1(t)| 6
∥∥∥`∇(ξ + tx)

∥∥∥
F
‖x‖F =

∥∥∥`∇(ξ + tx)
∥∥∥
F∥∥ξ′ − ξ∥∥F 6 ε ‖x‖F 6 ε

since ‖x‖F = 1 by assumption.
Proof of Assertion (ii) Take 0 < ε0 6 ε such that Bx(ξ, 2

(
1 +
√
dF
)
ε) ⊂ Υ(T̃), let ε′0 be

as stated and set ε′ =
(
1 + 2

√
dF
)
ε. Let x1, . . . , xdF be an orthonormal basis of F so that,

for any w ∈ E, we have

∥∥∥`T (w)
∥∥∥
F

=

 dF∑
k=1

∣∣∣〈`T (w), xk
〉
F

∣∣∣2
1/2

6
√
dF max

k,s

(
s
〈
`T (w), xk

〉
F

)
= max

k,s

〈
w, `(s

√
dF xk)

〉
E
, (118)

where, here and in the following, maxk,s is the maximum over s ∈ {±1} and k = 1 . . . dF .
By definition of k(o) in Definition 1, we also have: for all ξ′ ∈ Dx(ξ, ε0),

eε0‖`
T ◦S(y)‖

F k(o)(`(ξ′), y) = h(y) eε0‖`
T ◦S(y)‖

F
+〈S(y),`(ξ′)〉E−A◦`(ξ′)

= h(y) eε0‖`
T ◦S(y)‖

F
+〈S(y),`(ξ′−ξ)〉E+〈S(y),`(ξ)〉E−A◦`(ξ′)

Now using that

|
〈
S(y), `(ξ′ − ξ)

〉
E | = |

〈
`T ◦ S(y), ξ′ − ξ

〉
F
| 6 ε0

∥∥∥`T ◦ S(y)
∥∥∥
F
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(since ‖x‖F = 1 and ξ′ ∈ Dx(ξ, ε0)) paired up with (118), we can deduce that

eε0‖`
T ◦S(y)‖

F k(o)(`(ξ′), y) 6 h(y) e2ε0‖`T ◦S(y)‖
F

+〈S(y),`(ξ)〉E−A◦`(ξ′)

6 max
k,s

h(y) exp
(〈
S(y), `(ξ + 2 s

√
dF ε0 xk)

〉
E
−A ◦ `(ξ′)

)
6 max

k,s
k(o)(`(ξ′′s,k), y) e

∣∣A◦`(ξ′′s,k)−A◦`(ξ′)∣∣ , (119)

where ξ′′s,k = ξ + 2 s
√
dF ε0 xk. Note that we took ε small enough so that for all s, k,

Dx(ξ, ε′ + ε) ∪Ds xk

(
ξ, ε′ + ε

)
⊂ BF

(
ξ, 2

(
1 +

√
dF
)
ε
)
⊂ Υ(T̃) .

ξ′ and ξ′′s,k are in Dx(ξ, ε0) and Ds xk

(
ξ, 2
√
dF ε0

)
, respectively. Using (116) of Assertion (i)

twice with ε 6 ε′ < ε′′ successively replaced by 2
√
dF ε0 6 ε′ 6 2

(
1 +
√
dF
)
ε and ε0 6 ε′ 6

2
(
1 +
√
dF
)
ε, we get that∣∣∣A ◦ ` (ξ′′s,k)−A ◦ `(ξ′)∣∣∣ 6 ∣∣∣A ◦ ` (ξ′′s,k)−A ◦ `(ξ)∣∣∣+ ∣∣A ◦ ` (ξ)−A ◦ `(ξ′)

∣∣
6 2

√
dF ε0 max

(∥∥∥`∇(ξ)
∥∥∥
F
,
∥∥∥`∇(ξ + ε′ s xk)

∥∥∥
F

)
+ ε0 max

(∥∥∥`∇(ξ)
∥∥∥
F
,
∥∥∥`∇(ξ + ε′ x)

∥∥∥
F

)
6 ε′0Cξ,x(`) ,

where the last line follows by setting

Cξ,x(`) = max
{∥∥∥`∇(ξ + ε′ x′)

∥∥∥
F

: x′ ∈ {0, x , s xk} , with s ∈ {±1} , k = 1 . . . dF
}
.

Combining this inequality with (119) then yields : for all ξ′ ∈ Dx(ξ, ε0),

eε0‖`
T ◦S(y)‖

F k(o)(`(ξ′), y) 6 eε′0 Cξ,x(`) max
k,s

k(o)(`(ξ′′s,k), y)

6 eε′0 Cξ,x(`) ∑
k,s

k(o)(`(ξ′′s,k), y) .

Observe that the right-hand side of the previous display does not depend on ξ′ and that the
summands in the sum (which has 2dF terms) all have integrals equal w.r.t. ν equal to 1.
The bound (117) follows and Assertion (ii) is proved.

Lemma 12 Consider an ELM family as in Definition 2. Assume (C1) and (C3). Let ϑ0 ∈ T̃,
τ0 ∈ M and ϕ̌ : Y → R+ be a density function such that∫

Y
ϕ̌(y) es̃ϑ0,τ0 (y) ν(dy) <∞ . (120)

Define ϕ(`, y), ϕ̃(`) and w∇τ0 as in (52), (59) and (60). Then for all ξ ∈ Υ(T̃) and x ∈ F
such that ‖x‖F = 1, there exists ε0 > 0 such that∫

Y×Z

∥∥∥`T ◦ S(y)
∥∥∥
F

sup
ξ′∈Dx(ξ,ε0)

(
k(o)(`(ξ′), y)

)
ϕ̃(`) ν(dy)τ0(d`) <∞ . (121)
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Moreover, w∇τ0 is continuous on Υ(T̃) in every direction, and, for all ϑ ∈ T̃, it holds that

w∇τ0 ◦Υ(ϑ) = Eϑ,τ0
[
LT ◦ S(Y ) ϕ̃(L)

]
. (122)

Proof Let ` ∈ Z is such that ` ◦Υ(T̃) ⊂ IntE0, ξ ∈ Υ(T̃) and x ∈ F such that ‖x‖F = 1.
Then for ε > 0 small enough, we have Bx(ξ, 2

(
1 +
√
dF
)
ε) ⊂ Υ(T̃), and for all ε0 ∈ (0, ε],∫

Y
eε0‖`

T ◦S(y)‖
F sup
ξ′∈Dx(ξ,ε0)

(
k(o)(`(ξ′), y)

)
ν(dy) 6 2 dF

∑
ξ′∈∆

eε
′
0‖`∇(ξ′)‖

F ,

where we used Assertion (ii) of Lemma 11 with ε′ =
(
1 + 2

√
dF
)
ε, ε′0 =

(
1 + 2

√
dF
)
ε0 and

∆ is a set of 2(dF + 1) points in Bx(ξ, 2
(
1 +
√
dF
)
ε) only depending on ξ, x and ε. Since∥∥∥`T ◦ S(y)

∥∥∥
F
6 1

ε0
eε0‖`

T ◦S(y)‖
F , we get that:

Gξ,ε0(`) :=
∫

Y

∥∥∥`T ◦ S(y)
∥∥∥
F

sup
ξ′∈Dx(ξ,ε0)

(
k(o)(`(ξ′), y)

)
ν(dy)

6
2 dF
ε0

∑
ξ′∈∆

eε
′
0‖`∇(ξ′)‖

F .

In particular by (C1), with Lemma 9, this bounds hold for τ0-almost all ` ∈ Z. By (C3), since
∆ is a finite set only depending on ξ, x and ε and satisfying ∆ ⊂ Bx(ξ, 2

(
1 +
√
dF
)
ε) ⊂ Υ(T̃),

there exist ε∆, C∆ > 0 only depending on ξ, x and ε such that, for all ξ′ ∈ ∆,

Eϑ0,τ0

[
eε∆‖L

∇(ξ′)‖
F

∣∣∣ Y ] 6 C∆ es̃ϑ0,τ0 (Y ) Pϑ0,τ0 − a.s.

Since ∆ has cardinal 2(dF + 1), taking ε0 ∈ (0, ε] small enough to have ε′0 6 ε∆, this gives us
that

gξ,ε0(Y ) := Eϑ0,τ0 [Gξ,ε0(L) | Y ] 6 4C∆ dF (dF + 1)
ε0

es̃ϑ0,τ0 (Y ) Pϑ0,τ0 − a.s.

Now observing that the ratio in (52) is the conditional density of L applied to ` given Y = y
under Pϑ0,τ0 and that the marginal distribution of Pϑ0,τ0 on Y is equivalent to ν, we obtain
that ∫

Z
Gξ,ε0(`) ϕ̃(`) τ0(d`) =

∫
Z×Y

Gξ,ε0(`)ϕ(`, y) τ0(d`)ν(dy)

=
∫

Y
gξ,ε0(y) ϕ̌(y) ν(dy)

6
4C∆ dF (dF + 1)

ε0

∫
Y

es̃ϑ0,τ0 (y) ϕ̌(y) ν(dy) ,

Hence, using condition (120), we deduce that∫
Z
Gξ,ε0(`) ϕ̃(`) τ0(d`) <∞ ,
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which is exactly the claimed bound (121). This bound gives in particular that

ξ′ 7→
∫

Y×Z
`T ◦ S(y) k(o)(`(ξ′), y) ϕ̃(`) ν(dy)τ0(d`)

is well-defined in F for ξ′ ∈ Dx(ξ, ε0), and continuous at ξ in direction x. Moreover, the Fubini
theorem applies so that (i) integrating first with respect to y and (ii) using the expression of
∇A given in (32), we obtain that this mapping is in fact ξ′ 7→ w∇τ0(ξ′). This being true for all
ξ ∈ Υ(T̃) and x ∈ F such that ‖x‖F = 1, we get the last claim by observing that, by (57), the
expectation in (122) is another way to express the same integral in the case where ξ = Υ(ϑ).

We can now prove Theorem 5.

Proof of Theorem 5 We use Proposition 7 with ϕ(`, y) given by (52). We first prove
that Conditions (106) and (107) hold in this setting, under the assumptions of Theorem 5.

We use again that the ratio in (52) is the conditional density of L applied to ` given
Y = y under Pϑ0,τ0 , and that the marginal Pϑ0,τ0 on Y is equivalent to the dominating
measure ν. Hence we can write the integral in (106) as∫

Y
ϕ̌(y) ‖S(y)‖E g(y) ν(dy) with g(Y ) = Eϑ0,τ0

[
‖L‖op

∣∣∣ Y ] .
By (C2) and (58), we obtain Condition (106). Similarly the integral in (107) reads, for all
ξ ∈ Υ(T̃), ∫

Y
ϕ̌(y)g(y) ν(dy) with g(Y ) = Eϑ0,τ0

[∥∥∥L∇(ξ)
∥∥∥
F

∣∣∣ Y ] .
Clearly, for this g, (C3) gives that, for some ε, C > 0 g(y) 6 Cε−1 es̃ϑ0,τ0 (y) for ν-a.e. y,
and (58) implies (107).

We can thus apply Proposition 7 and to conclude, we only need to check that the
conditions of Assertions (i) and (ii) of Proposition 7 also applies, that is, we need to show
that w∇τ0 is continuous on Υ(T̃) in every direction and that (109) holds for all ξ 6= ξ′ ∈ Υ(T̃).
The continuity of w∇τ0 follows from Lemma 12 since (120) holds by (58) (and we obtain in
passing (61), which is exactly (122)). Finally, Condition (109) follows from (C4), since in
the setting of Theorem 5, ϕ̃(`) > 0 for all ` ∈ Z.

C.4.3 Proof of Corollary 10

The proof of Corollary 10 relies on some preliminary results. We first show in Proposition 8
below that Theorem 5 applies to a general mixture of Gaussian distributions (which notably
includes the Student’s t distribution family considered in Example 5).

Proposition 8 Let M̌ be a class of probability distributions on (0,∞) and suppose that for
all τ̌0 ∈ M̌, there exists ε0 > 0 such that∫ ∞

0
eε0 z τ̌0(dz) <∞ . (123)
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Let d > 1 and define for any ϑ = (m,Σ) ∈ T̃ = Rd ×M>0(d)

ǩ(ϑ, y) =
∫ ∞

0
N
(
y;m, z−1Σ

)
τ̌0(dz) , (124)

seen as a kernel density with respect to ν being the Lebesgue measure on Rd. Then the
following assertions hold.

(i) Let k(1) be ELM family given by Definition 2 with F = E = Rd × Rd×d, E0 = T̃ =
Rd ×M>0(d), Υ(m,Σ) = (Σ−1m,Σ−1),

k(o)(ξ, y) = N (y;m,Σ) for all ξ = Υ(ϑ) with ϑ = (m,Σ) , (125)

and M the class of all push-forward probabilities τ0 of τ̌0 ∈ M̌ through the mapping
z 7→ zId defined from (0,∞) to L(E), where Id is the identity operator on E. Then, M
is a class of distributions on positive scalar operators on E and, for all ϑ = (m,Σ) ∈ T̃,
we have ǩ(ϑ, y) = k(1)((ϑ, τ0), y).

(ii) Setting, for all y ∈ Rd and ϑ0 = (m0,Σ0) ∈ T̃,

qϑ0(y) = 1
2(y −m0)TΣ−1

0 (y −m0) , (126)

gτ̌0(u, v) =
∫ ∞

0
zue−v z τ̌0(dz) for all u > −1 and v > −ε0 , (127)

this ELM family satisfies (C1)–(C4) with

m̃ϑ0,τ0(y) = gτ̌0(d/2 + 1, qϑ0(y))
gτ̌0(d/2, qϑ0(y)) , (128)

s̃ϑ0,τ0(y) = log
(
gτ̌0(d/2, qϑ0(y)− ε0)
gτ̌0(d/2, qϑ0(y))

)
. (129)

(iii) Theorem 5 applies for any θ0 = (ϑ0, τ0) ∈ T̃×M and any probability density function
ϕ̌ : Rd → R+ satisfying∫

Y
ϕ̌(y)

((
‖y‖+ ‖y‖2

)
m̃ϑ0,τ0(y) + es̃ϑ0,τ0 (y)

)
ν(dy) <∞ , (130)

in which case the argmax problem (62) has a unique solution ξ∗ = Υ(ϑ∗) with ϑ∗ =
(m∗,Σ∗) given by

m∗ =
Eϑ0,τ̃0

[
Z Ỹ

]
Eϑ0,τ̃0 [Z] , (131)

Σ∗ = Eϑ0,τ̃0

[
Z Ỹ Ỹ T

]
−

Eϑ0,τ̃0

[
Z Ỹ

]
Eϑ0,τ̃0

[
Z Ỹ

]T
Eϑ0,τ̃0 [Z] , (132)

where, under Pϑ0,τ̃0, Z has density with respect to τ̌0 given by

ϕ̃(z) =
∫

Y
ϕ̌(y) zd/2e−z qϑ0 (y)

gτ̌0(d/2, qϑ0(y)) dy (133)
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and the conditional distribution of Ỹ given Z = z has density

ψ [y | z] = 1
1 + b

zd/2e−z qϑ0 (y) ϕ̌(y)
gτ̌0(d/2, qϑ0(y)) ϕ̃(z) + b

1 + b
N
(
y;m0, z

−1Σ0
)
. (134)

Proof We prove the claimed assertions successively.

Proof of Assertion (i) The spaces F = E = Rd ×Rd×d are endowed with the usual inner
product 〈

(x,M), (x′,M ′)
〉
E = xTx′ + Tr

(
MTM ′

)
.

We have IntE0 = E0 = T̃ = Rd ×M>0(d), and set, for all y ∈ Rd, S(y) =
(
y,−yyT /2

)
and, for all (x,M) ∈ IntE0, A(x,M) = 1

2

(
xTM−1x− log |M |

)
. In this setting, `T = `,

` = ‖`‖op Id for τ0-almost all ` ∈ Z, and ‖L‖op has distribution τ̌0 for L ∼ τ0. Then, for all
ϑ = (m,Σ) ∈ T̃ and τ0-almost all ` ∈ Z, we have `◦Υ(m,Σ) = Υ(m,Σ/ ‖`‖op). Consequently,
for all ϑ ∈ T̃, y ∈ Rd and τ0-almost all ` ∈ Z, we have

k(o)(` ◦Υ(ϑ), y) =
( 1

2π

∣∣∣‖`‖−1
op Σ

∣∣∣)1/2
e−(y−m)T (‖`‖−1

op Σ)−1(y−m)/2

= N
(
y;m, ‖`‖−1

op Σ
)
. (135)

Thus the obtained ELM family k(1) of Definition 2 satisfies ǩ(ϑ, y) = k(1)((ϑ, τ0), y) for all
ϑ = (m,Σ) ∈ T̃.

Proof of Assertion (ii) Assumption (C1) is obvious in the above setting. We then check
(C4), (C2) and (C3), successively. For all ξ 6= ξ′ ∈ Υ(T̃) and τ0 ∈ M, we easily see that

τ0(
{
` ∈ Z : `(ξ − ξ′) = 0

}
) = τ̌0({0}) = 0 ,

and (C4) follows. To check (C2), we compute, for all ϑ0 = (m0,Σ0) and τ0 ∈ M,

Eϑ0,τ0

[
‖L‖op

∣∣∣ Y ] =
∫ ∞

0
z
N
(
Y ;m0, z

−1Σ0
)

ǩ(ϑ0, Y )
τ̌0(dz)

=
∫
zd/2+1e−z qϑ0 (Y ) τ̌0(dz)∫
zd/2e−z qϑ0 (Y ) τ̌0(dz)

where we successively used (57) with (135) and (126). Hence (C2) follows from (127) and (128).
Let us now check (C3). Straightforward computations yield, for all ξ = (x,M) ∈ Υ(T̃) and
τ0-almost all ` ∈ Z,

∇A ◦ `(ξ) = (M−1x,−(M−1xxTM−1 + ‖`‖−1
op M−1)/2)

`∇(ξ) = (‖`‖op M
−1x,−(‖`‖op M

−1xxTM−1 +M−1)/2)∥∥∥`∇(ξ)
∥∥∥
F
6 (1 + ‖`‖op)

∥∥∥(M−1x,M−1xxTM−1 +M−1)
∥∥∥
F
.
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It follows, that, for all ϑ0 = (m0,Σ0) ∈ T̃, τ0 ∈ M, ξ = (x,M) ∈ Υ(T̃) and ε > 0,

Eϑ0,τ0

[
eε‖L

∇(ξ)‖
F

∣∣∣ Y ] 6 C1 Eϑ0,τ0

[
eC2 ε ‖L‖op

∣∣∣ Y ] Pϑ0,τ0 − a.s.

= C1 log
(
gτ̌0(d/2, qϑ0(y)− C2ε)

gτ̌0(d/2, qϑ0(y))

)
Pϑ0,τ0 − a.s. ,

where C1, C2 > 0 only depend on ξ. Hence, since we assumed (123), the definition of gτ̌0
in (127) holds for all v > −ε0, and (C3) holds with s̃ϑ0,τ0 as in (129) by taking ε < ε0/C2.

Proof of Assertion (iii) From the previous assertion, we can apply Theorem 5 and use
(66) to solve the argmax problem (62) for a density ϕ̌ with respect to the Lebesgue measure
on Rd satisfying (58), which, since S(y) =

(
y,−yyT /2

)
and

‖S(y)‖E =
(
‖y‖2 + 1

4Tr(yyT yyT )
)1/2

= O
(
‖y‖+ ‖y‖2

)
,

is equivalent to (130). Let us compute both sides of the equation (66) which characterizes
the solution ξ∗ = Υ(ϑ∗). The left-hand side of (66) reads

Eϑ∗,τ̃0
[
LT ◦ S(Y )

]
= Eϑ∗,τ̃0 [Z S(Y )] ,

where Z = ‖L‖op has density with respect to τ̌0 given by (133). The right-hand side of (66)
reads

Eϑ0,τ̃0

[
LT ◦ S(Ỹ )

]
= Eϑ0,τ̃0

[
Z S(Ỹ )

]
,

where Z is the same as above and the conditional distribution of Ỹ given Z = z has density
given by (134). Finally, the solution ξ∗ = Υ(ϑ∗) is given by the equation

Eϑ∗,τ̃0 [Z S(Y )] = Eϑ0,τ̃0

[
Z S(Ỹ )

]
(136)

and this equation leads to the solutions (131) and (132). Indeed, note that

Eϑ∗,τ̃0 [Y |Z] = m∗ and Eϑ∗,τ̃0 [Y Y T |Z]−m∗(m∗)T = Σ∗/Z (137)

Applying the first identity in (137), then the tower property and the identity (136) applied
to the first component of S(Y ) = (Y,−Y Y T /2),

m∗ = Eϑ∗,τ̃0 [Zm∗]
Eϑ∗,τ̃0 [Z] = Eϑ∗,τ̃0 [ZY ]

Eϑ∗,τ̃0 [Z] =
Eϑ0,τ̃0

[
ZỸ

]
Eϑ∗,τ̃0 [Z] =

Eϑ0,τ̃0

[
ZỸ

]
Eϑ0,τ̃0 [Z]

where the last equality follows from the fact that under Pϑ∗,τ̃0 or Pϑ0,τ̃0 , Z has the density ϕ̃
with respect to τ̌0. Similarly, using the second equality in (137), then the tower property
and the identity (136) applied to the second component of S(Y ) = (Y,−Y Y T /2)

Σ∗ = Eϑ∗,τ̃0 [Z(Σ∗/Z)] = Eϑ∗,τ̃0 [ZY Y T ]− Eϑ∗,τ̃0 [Z]m∗(m∗)T

= Eϑ0,τ̃0

[
ZỸ Ỹ T

]
− Eϑ∗,τ̃0 [Z]m∗(m∗)T

This proves (131) and (132).
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Remark 5 The probability density function (124) is called an elliptical distribution. In
particular if τ̌0 is the χ2 distribution with a0 degrees of freedom, then it is the density of the
Student’s t distribution with parameter (m,Σ, a0). In this case we have

gτ̌0(u, v) = (a0/2)a0/2Γ(a0/2 + u)
(a0/2 + v)a0/2+u Γ(a0/2)

,

and m̃ϑ0,τ0 and s̃ϑ0,τ0 in (128) and (129) read, for any ε0 ∈ (0, a0/2],

m̃ϑ0,τ0(y) = a0/2 + d/2
a0/2 + qϑ0(y) = O(1) ,

s̃ϑ0,τ0(y) = (a0/2 + d/2) log
(

a0/2 + qϑ0(y)
a0/2− ε0 + qϑ0(y)

)
= O(1) ,

so that Condition (130) boils down to
∫

Y ϕ̌(y) ‖y‖2 ν(dy) <∞.

The following lemma is used in Example 5.

Lemma 13 Define, for all x ∈ (0,∞),

κ(x) = log(x) + Γ′(x)/Γ(x) .

Then κ is increasing and bijective from (0,∞) to R.

Proof This result follows from the fact that the digamma function x 7→ Γ′(x)/Γ(x) is
increasing from (0,∞) to R.

Proof of Corollary 10 We apply Theorem 2 in the setting of Example 5. Condition (18)
holds by Theorem 3 and the update (i) in Example 5.

The remainder of the proof consists in proving Condition (19) for given n > 1 and j =
1, . . . , J . We apply Proposition 8, whose Assertion (i) with Remark 5 provides an ELM family
k(1) such that, for any ϑ = (m,Σ) ∈ Rd ×M>0(d) and a > 0, ǩ(ϑ, y) in (124) with τ̌0 = τ̌a
given by (73) is k(1)((ϑ, τ0), y) but also k(θ, y) in Example 5 for θ = (m,Σ, a). We will use
Proposition 4 to this ELM family with ϕ̌ = ϕ̌

(α)
j,n , θ = (ϑ, τ) defined with ϑ = (mj,n+1,Σj,n+1)

and τ the measure on obtained by pushing forward τ̌aj,n+1 through the mapping z 7→
zId and θ0 = (ϑ0, τ0) defined similarly but using the parameters (mj,n,Σj,n, aj,n). Then
conclusion (49) of Proposition 4 is exactly Condition (19) with k as in Example 5. Hence, to
conclude the proof we only need to show that Proposition 4 applies in this setting. Namely,
we need to prove (50) and (51), which respectively read∫

Y

(∫ ∞
0

ϕj,n(z, y) log
(

dτ̌aj,n+1

dτ̌aj,n
(z)
)
τ̌aj,n(dz)

)
dy > 0 , (138)

∫
Y

(∫
Z
ϕj,n(‖`‖op , y) log

(
k(o)(` ◦Υ(ϑ), y)
k(o)(` ◦Υ(ϑ0), y)

)
τaj,n(d`)

)
dy > 0 , (139)
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where ϕj,n is defined by (71) and k(o) is the Gaussian canonical kernel defined by (125). We
thus conclude with the proof of these two conditions in the opposite order.
Proof of (139) Assertion (ii) of Proposition 8 with Remark 5 gives that the ELM family
k(1) satisfies (C1)–(C4) with m̃ϑ0,τ0 and s̃ϑ0,τ0 such that Condition (130) boils down to∫
ϕ̌(y) ‖y‖2 dν < ∞. This latter condition is satisfied with ϕ̌ = ϕ̌

(α)
j,n as a consequence

of (67) by using Lemma 8. Therefore Condition (130) holds and Assertion (iii) of Propo-
sition 8 provides the solution of the argmax problem (62). A careful comparison of (131)
and (132) with (68) and (69) tells us that ϑ = (mj,n+1,Σj,n+1) is the unique argmax of (62).
Applying Corollary 9 in this setting finally gives us (139).
Proof of (138) Since the left-hand side of (138) is zero for a = aj,n, it suffices to show that
aj,n+1 in (70) satisfies

aj,n+1 = argmax
a∈(0,∞)

∫
Y

(∫ ∞
0

ϕj,n(z, y) log
(

dτ̌a
dτ̌aj,n

(z)
)
τ̌aj,n(dz)

)
dy . (140)

By (73), we have, for all z > 0,

log
(

dτ̌a
dτ̌aj,n

(z)
)

= a

2 log
(
a

2

)
+ log Γ

(
a

2

)
+
(
a

2 −
aj,n
2

)
(log z − z) + Cj,n ,

where Cj,n is a positive constant not depending on a. The derivative of x 7→ x log (x)+log Γ (x)
is κ as defined in Step (ii) of Example 5 and in Lemma 13. Is is easy to check that∫
ϕj,n(z, y)τ̌aj,n(dz)dy =

∫
ϕ̌(y)dy = 1. Thus (140) follows from (70) with Lemma 13 if we

can show that ∫
Y

(∫ ∞
0

ϕj,n(z, y) (|log z|+ z) τ̌aj,n(dz)
)

dy <∞ .

In fact, we will show that there exists ε > 0 such that for all t ∈ (−ε, 1],∫
Y

(∫ ∞
0

ϕj,n(z, y) zt τ̌aj,n(dz)
)

dy <∞ , (141)

which indeed implies the previous display. By definition of ϕj,n in (71), we find that (141) is
implied by

I(t) :=
∫

Y

∫ ∞
0

ϕ̌
(α)
j,n (y)zt+d/2 e−zqj,n(y)

(
1 + 2

aj,n
qj,n(y)

)(aj,n+d)/2

τ̌aj,n(dz)

dy <∞ ,

where we set qj,n(y) = 1
2(y −mj,n)TΣj,n(y −mj,n). Since, as in Remark 5, for all t > −d/2,

∫ ∞
0

zt+d/2 e−zqj,n(y) τ̌aj,n(dz) = (aj,n/2)aj,n/2Γ(aj,n/2 + t+ d/2)
(aj,n/2 + qj,n(y))aj,n/2+t+d/2 Γ(aj,n/2)

,

we get that for all t > −d/2, there exists C ′j,n(t) > 0 such that

I(t) = C ′j,n(t)
∫

Y
ϕ̌

(α)
j,n (y)

(
1 + 2

aj,n
qj,n(y)

)−t
dy .
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Since qj,n(y) is a quadratic form and we already checked that
∫
ϕ̌

(α)
j,n (y) (1 + ‖y‖2) dν <∞

in the proof of (139), we finally find that I(t) <∞ if t > −d/2 and t > −2, which concludes
the proof of (141).

Appendix D. Additional Numerical Experiments

In this section we provide further plots based on the numerical experiments from Section 8.

J = 10 J = 50
(i)

(ii)

(iii)

Figure 5: Error bounds for the Monte Carlo estimate of the VR Bound in the MG-IS-n
approach (fixed mixture weights) when considering each of the target distributions (i), (ii)
and (iii).
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J = 10 J = 50
(i)

(ii)

(iii)

Figure 6: Error bounds for the Monte Carlo estimate of the VR Bound in the RGD-IS-n
approach (fixed mixture weights) when considering each of the target distributions (i), (ii)
and (iii).
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Figure 7: Monte Carlo estimate of the VR Bound for the RGD and the MG approaches
(η = 0.05) when considering each of the target distributions (i), (ii) and (iii).
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