
Journal of Machine Learning Research 24 (2023) 1-50 Submitted 3/22; Published 5/23

Augmented Sparsifiers for Generalized Hypergraph Cuts∗

Nate Veldt nveldt@tamu.edu
Department of Computer Science and Engineering
Texas A&M University
College Station, TX, USA

Austin R. Benson arb@cs.cornell.edu
Department of Computer Science
Cornell University
Ithaca, NY, USA

Jon Kleinberg kleinberg@cornell.edu

Department of Computer Science

Cornell University

Ithaca, NY, USA

Editor: Tina Eliassi-Rad

Abstract

Hypergraph generalizations of many graph cut problems and algorithms have recently been
introduced to better model data and systems characterized by multiway relationships. Re-
cent work in machine learning and theoretical computer science uses a generalized cut
function for a hypergraph H = (V, E) that associates each hyperedge e ∈ E with a splitting
function we, which assigns a penalty to each way of separating the nodes of e. When
each we satisfies we(S) = g(|S|) for some concave function g, previous work has shown
how to reduce the generalized hypergraph cut problem to a directed graph cut problem,
although the resulting graph may be very dense. We introduce a framework for sparsifying
hypergraph-to-graph reductions, where the hypergraph cut function is (1+ε)-approximated
by a cut on a directed graph. For ε > 0 we need at most O(ε−1|e| log |e|) edges to reduce
any hyperedge e, while only O(|e|ε−1/2 log log 1

ε ) edges are needed to approximate the clique
expansion, a widely used heuristic in hypergraph clustering. Our framework leads to im-
proved results for solving cut problems in co-occurrence graphs, decomposable submodular
function minimization problems, and localized hypergraph clustering problems.

Keywords: hypergraphs; sparsification; decomposable submodular function minimiza-
tion; piecewise linear functions; concave function approximation; co-occurrence graphs

1. Introduction

Hypergraphs are a generalization of graphs in which nodes are organized into multiway
relationships called hyperedges. Given a hypergraph H = (V, E) and a set of nodes S ⊆ V ,
a hyperedge e ∈ E is said to be cut by S if both S and S̄ = V \S contain at least one
node from e. Developing efficient algorithms for cut problems in hypergraphs is an active
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area of research in machine learning and theoretical computer science (Chekuri and Xu,
2017, 2018; Kogan and Krauthgamer, 2015; Chandrasekaran et al., 2018), and has been
applied to problems in VLSI layout (Alpert and Kahng, 1995; Hadley, 1995; Karypis et al.,
1999), sparse matrix partitioning (Akbudak et al., 2013; Ballard et al., 2016), and various
clustering and classification tasks (Li and Milenkovic, 2017, 2018b; Veldt et al., 2020a).

Here, we consider recently introduced generalized hypergraph cut functions (Li and
Milenkovic, 2017, 2018b; Veldt et al., 2022; Yoshida, 2019), which assign different penalties
to cut hyperedges based on how the nodes of a hyperedge are split into different sides
of the bipartition induced by S. To define a generalized hypergraph cut function, each
hyperedge e ∈ E is first associated with a splitting function we : A ⊆ e → R+ that maps
each node configuration of e (defined by the subset A = e ∩ S) to a nonnegative penalty.
In order to mirror edge cut penalties in graphs, splitting functions are typically assumed to
be symmetric (we(A) = we(e\A)) and only penalize cut hyperedges (i.e., we(∅) = 0). The
generalized hypergraph cut function for a set S ⊆ V is then given by

cutH(S) =
∑
e∈E

we(S ∩ e) . (1)

The standard hypergraph cut function is all-or-nothing, meaning it assigns the same
penalty to a cut hyperedge regardless of how its nodes are separated. Using the split-
ting function terminology, this means that we(A) = 0 if A ∈ {e, ∅}, and we(A) = we
otherwise, where we is a scalar hyperedge weight. One particularly relevant class of split-
ting functions are submodular functions, which for all A,B ⊆ e satisfy we(A) + we(B) ≥
we(A ∩ B) + we(A ∪ B). When all hyperedge splitting functions are submodular, solv-
ing generalized hypergraph cut problems is closely related to minimizing a decomposable
submodular function (Kolmogorov, 2012; Nishihara et al., 2014; Li and Milenkovic, 2018a;
Stobbe and Krause, 2010; Ene et al., 2017; Ene and Nguyen, 2015), which in turn is closely
related to energy minimization problems often encountered in computer vision (Kohli et al.,
2009; Kolmogorov and Zabin, 2004; Freedman and Drineas, 2005). The standard graph cut
function is another well-known submodular special case of the cut function given by (1).

One of the most common techniques for solving hypergraph cut problems is to reduce the
hypergraph to a graph sharing similar (or in some cases identical) cut properties. Arguably
the most widely used reduction technique is clique expansion, which replaces each hyperedge
with a (possibly weighted) clique (Benson et al., 2016; Hadley, 1995; Li and Milenkovic,
2017; Zien et al., 1999; Zhou et al., 2006). In the unweighted case this corresponds to
applying a splitting function of the form: we(A) = |A| · |e\A|. Previous work has also
explored other classes of submodular hypergraph cut functions that can be modeled as a
graph cut problem on a potentially augmented node set (Freedman and Drineas, 2005; Kohli
et al., 2009; Kolmogorov and Zabin, 2004; Lawler, 1973; Veldt et al., 2022). This previous
research primarily focuses on proving when such a reduction is possible, regardless of the
number of edges and auxiliary nodes needed to realize the reduction. However, because
hyperedges can be very large and splitting functions may be very general and intricate,
many of these techniques lead to large and dense graphs. Therefore, the reduction strategy
significantly affects the runtime and practicality of algorithms that run on the reduced
graph. This leads to several natural questions. Are the graph sizes resulting from existing
techniques inherently necessary for modeling hypergraph cuts? Given a class of functions
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that are known to be graph reducible, can one determine more efficient or even the most
efficient reduction techniques? Finally, is it possible to obtain more efficient reductions and
faster algorithms if it is sufficient to just approximately model cut penalties?

To answer these questions, we present a novel framework for sparsifying hypergraph-
to-graph reductions with provable guarantees on preserving cut properties. Our framework
brings together concepts and techniques from several different theoretical domains, includ-
ing algorithms for solving generalized hypergraph cut problems (Veldt et al., 2022; Li and
Milenkovic, 2018b, 2017; Yoshida, 2019), standard graph sparsification techniques (Soma
and Yoshida, 2019; Spielman and Teng, 2014; Batson et al., 2014), and tools for approx-
imating functions with piecewise linear curves (Magnanti and Stratila, 2012, 2004). We
present sparsification techniques for a large and natural class of submodular splitting func-
tions that are cardinality-based, meaning that we(A) = we(B) whenever |A| = |B|. These
are known to always be graph reducible, and are particularly natural for several down-
stream applications (Veldt et al., 2022). Our approach leads to graph reductions that are
significantly more sparse than previous approaches, and we show that our method is in fact
optimally sparse under a certain type of reduction strategy. Our sparsification framework
can be directly used to develop faster algorithms for approximately solving hypergraph s-t
cut problems (Veldt et al., 2022), and improve runtimes for a large class of cardinality-based
decomposable submodular minimization problems (Kohli et al., 2009; Kolmogorov, 2012;
Jegelka et al., 2013; Stobbe and Krause, 2010). We also show how our techniques enable us
to develop efficient sparsifiers for graphs constructed from co-occurrence data.

1.1 Graph and Hypergraph Sparsification

Our framework and results share numerous connections with existing work on graph spar-
sification, which we review here. Let G = (V,E) be a graph with a cut function cutG,
which can be viewed as a very restricted case of the generalized hypergraph cut function
in Eq. (1). An ε-cut sparsifier for G is a sparse weighted and undirected graph H = (V, F )
with cut function cutH , such that

cutG(S) ≤ cutH(S) ≤ (1 + ε)cutG(S), (2)

for every subset S ⊆ V . This definition was introduced by Benczúr and Karger (1996), who
showed how to obtain a sparsifier with O(n log n/ε2) edges for any graph in O(m log3 n)
time for an n-node, m-edge graph. The more general notion of spectral sparsification,
which approximately preserves the Laplacian quadratic form of a graph rather than just
the cut function, was later introduced by Spielman and Teng (2011). The best cut and
spectral sparsifiers have O(n/ε2) edges, which is known to be asymptotically optimal for
both spectral and cut sparsifiers (Andoni et al., 2016; Batson et al., 2014). Although
studied much less extensively, analogous definitions of cut (Chekuri and Xu, 2018; Kogan
and Krauthgamer, 2015) and spectral (Soma and Yoshida, 2019) sparsifiers for hypergraphs
have also been developed. However, these apply exclusively to the all-or-nothing cut penalty,
and do not preserve generalized cut functions of the form shown in (1). Bansal et al. (2019)
also considered a weaker notion of graph and hypergraph sparsification, involving additive
approximation terms, but we only consider multiplicative approximations.
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1.2 The Present Work: Augmented Sparsifiers for Hypergraph Reductions

In this paper, we introduce an alternative notion of an augmented cut sparsifier. We present
our results in the context of hypergraph-to-graph reductions, though our framework also
provides a new notion of augmented sparsifiers for graphs. Let H = (V, E) be a hypergraph
with a generalized cut function cutH, and let Ĝ = (V ∪ A, Ê) be a directed graph on an
augmented node set V ∪A. The graph is equipped with an augmented cut function defined
for every S ⊆ V by

cutĜ(S) = min
T⊆A

dircutĜ(S ∪ T ), (3)

where dircutĜ is the standard directed cut function on Ĝ. We say that Ĝ is an ε-augmented
cut sparsifier for H if it is sparse and satisfies

cutH(S) ≤ cutĜ(S) ≤ (1 + ε)cutH(S). (4)

The minimization involved in (3) is especially natural when the goal is to approximate a
minimum cut or minimum s-t cut in H. If we solve the corresponding cut problem in Ĝ,
nodes from the auxiliary node set A will be automatically arranged in a way that yields
the minimum directed cut penalty, as required in (3). If Ŝ∗ is the minimum cut in Ĝ,
S∗ = V ∩ Ŝ∗ will be a (1 + ε)-approximate minimum cut in H. Even when solving a
minimum cut problem is not the goal, our sparsifiers will be designed in such a way that
the augmented cut function in (3) will be easy to evaluate.

Unlike the standard graph sparsification problem, in some cases it may in fact be im-
possible to find any directed graph Ĝ satisfying the property in (4), independent of the
graph’s density. In recent work we showed that hypergraphs with non-submodular split-
ting functions are never graph reducible (Veldt et al., 2022). Although they used different
notation and terminology, the work of Živný et al. (2009) implies that even in the case of
four-node hyperedges, there exist submodular splitting functions (albeit asymmetric split-
ting functions) that are not representable by graph cuts. Nevertheless, there are several
special cases in which graph reduction is possible (Kolmogorov and Zabin, 2004; Freedman
and Drineas, 2005; Kohli et al., 2009).

Augmented sparsifiers for cardinality-based hypergraph cuts. We specifically consider
the class of submodular splitting functions that are cardinality-based, meaning they satisfy
we(A) = we(B) whenever A,B ⊆ e satisfy |A| = |B|. These are known to be graph
reducible (Kohli et al., 2009; Veldt et al., 2022), though existing techniques will reduce a
hypergraph H = (V, E) to a graph with O(|V | +∑e∈E |e|) nodes and O(

∑
e∈E |e|2) edges.

We prove the following sparse reduction result.

Theorem 1 Let H = (V, E) be a hypergraph where each e ∈ E is associated with a cardinality-
based submodular splitting function. There exists an augmented cut sparsifier Ĝ for H with
O(|V |+ 1

ε

∑
e∈E log |e|) nodes and O(1ε

∑
e∈E |e| log |e|) edges.

For certain types of splitting functions (e.g., the one corresponding to a clique expansion),
we show that our reductions are even sparser.
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Figure 1: Three gadgets, each modeling a different hyperedge splitting function.

Augmented sparsifiers for graphs. Another relevant class of augmented sparsifiers to
consider is the setting where H is simply a graph. In this case, if A is empty and all edges
are undirected, condition (4) reduces to the standard definition of a cut sparsifier. A natu-
ral question is whether there exist cases where allowing auxiliary nodes and directed edges
leads to improved sparsifiers. We show that the answer is yes in the case of dense graphs
constructed from co-occurrence data.

Augmented spectral sparsifiers. Just as spectral sparsifiers generalize cut sparsifiers in
the standard graph setting, one can define an analogous notion of an augmented spectral
sparsifier for hypergraph reductions. This can be accomplished using existing hypergraph
generalizations of the Laplacian operator (Li and Milenkovic, 2018b; Yoshida, 2019; Chan
and Liang, 2018; Louis, 2015). However, although developing augmented spectral sparsi-
fiers constitutes an interesting open direction for future research, it is unclear whether the
techniques we develop here can be used or adapted to spectrally approximate generalized
hypergraph cut functions. We include further discussion on hypergraph Laplacians and
spectral sparsifiers in Section 8, and pose questions for future work. Our primary focus in
this manuscript is to develop techniques for augmented cut sparsifiers.

1.3 Our Approach: Cut Gadgets and Piecewise Linear Functions

Graph reduction techniques work by replacing a hyperedge with a small graph gadget mod-
eling the same cut properties as the hyperedge splitting function. The simplest example of
a graph-reducible function is the quadratic splitting function, which we also refer to as the
clique splitting function:

we(S) = |A| · |e\A|, for A ⊆ e. (5)

This function can be modeled by replacing a hyperedge with a clique (Figure 1b). Another
function that can be modeled by a gadget is the linear penalty, which can be modeled by a
star gadget (Zien et al., 1999):

we(S) = min{|A|, |e\A|}, for A ⊆ e. (6)

A star gadget (Figure 1a) contains an auxiliary node ve for each e ∈ E , which is attached
to each v ∈ e with an undirected edge. In order to model the broader class of submodular
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Figure 2: (a) The linear splitting function in (6) can be modeled by a sparse gadget (d).
(b) The quadratic splitting function in (5) is modeled by a denser gadget (e).
(c) A piecewise linear approximation for the quadratic splitting penalties can be
modeled by a sparse gadget (f).

cardinality-based splitting functions, we previously introduced the cardinality-based gadget
(CB-gadget, Figure 1c) (Veldt et al., 2022). This gadget is parameterized by positive scalars
a and b, and includes two auxiliary nodes e′ and e′′. For each node v ∈ e, there is a directed
edge from v to e′ and a directed edge from e′′ to v, both of weight a. Lastly, there is a
directed edge from e′ to e′′ of weight a · b. This CB-gadget corresponds to the following
splitting function:

we(A) = a ·min{|A|, |e\A|, b}. (7)

Every submodular, cardinality-based (SCB) splitting function can be modeled by a combi-
nation of CB-gadgets with different edge weights (Veldt et al., 2022). A different reduction
strategy for minimizing submodular energy functions with cardinality-based penalties was
also previously developed by Kohli et al. (2009). Both techniques require up to O(k2) di-
rected edges for a k-node hyperedge.

Sparse combinations of CB-gadgets. Our work introduces a new framework for approx-
imately modeling submodular cardinality-based (SCB) splitting functions using a small
combinations of CB-gadgets. Figure 2 illustrates our sparsification strategy. We first asso-
ciate an SCB splitting function with a set of points {(i, wi)}, where i represents the number
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of nodes on the “small side” of a cut hyperedge, and wi is the penalty for such a split. We
show that when many of these points are collinear, they can be modeled with a smaller num-
ber of CB-gadgets. As an example, the star expansion penalties in (6) can be modeled with
a single CB-gadget (Figures 2a and 2d), whereas modeling the quadratic penalty in (5) with
previous techniques (Veldt et al., 2022) requires many more (Figures 2b and 2e). Given this
observation, we design new techniques for ε-approximating the set of points {(i, wi)} with
a piecewise linear curve using a small number linear pieces. We then show how to translate
the resulting piecewise linear curve back into a smaller combination of CB-gadgets that
ε-approximates the original splitting function. Our piecewise linear approximation strategy
allows us to find the optimal (i.e., minimum-sized) graph reduction in terms of CB-gadgets.
When ε = 0, our approach finds the best way to exactly model an SCB splitting function,
and requires roughly half the number of gadgets needed by our previous technique (Veldt
et al., 2022).1 More importantly, for larger ε, we prove a sparse approximation result, which
says that any submodular cardinality-based splitting function on a k-node hyperedge can
be ε-modeled by combining O(min{1ε log k, k}) CB-gadgets (Theorem 15). This directly im-
plies the result of Theorem 1. We show that a nearly matching lower bound of O( 1√

ε
log k)

CB-gadgets is required for modeling a square root splitting function (Theorem 17). Despite
worst case bounds, we prove that only O(ε−1/2 log log 1

ε ) CB-gadgets are needed to approxi-
mate the quadratic splitting function, independent of hyperedge size (Theorem 19). This is
particularly relevant for approximating the widely used clique expansion technique, as well
as for modeling certain types of dense co-occurrence graphs. All of our sparse reduction
techniques are combinatorial, deterministic, and very simple to use in practice.

1.4 Augmented Sparsifiers for Co-occurrence Graphs

When H is just a graph, augmented sparsifiers correspond to a generalization of standard
cut sparsifiers that allow directed edges and auxiliary nodes. The auxiliary nodes in this
case play a role analogous to Steiner nodes in finding minimum spanning trees. Just as
adding Steiner nodes makes it possible to find a smaller weight spanning tree, it is natural
to ask whether including an auxiliary node set might lead to better cut sparsifiers for a
graph G. We show that the answer is yes for certain classes of dense co-occurrence graphs,
which are graphs constructed by inducing a clique on a set of nodes that share a certain
property or participate in a certain type of group interaction (equivalently, clique expansions
of hypergraphs). Steiner nodes have in fact been previously used in constructing certain
types of sparsifiers called vertex and flow sparsifiers (Chuzhoy, 2012). However, these are
concerned with preserving certain routing properties between distinguished terminal nodes
in a graph, and are therefore distinct from our goal of obtaining ε-cut sparsifiers.

Sparsifying the complete graph. Our ability to sparsify the clique splitting function
in (5) implies a new approach for sparsifying a complete graph. Cut sparsifiers for the com-

1. Our previous technique used a set of CB-gadgets that correspond to a piecewise linear function which,
in the worst case, has a breakpoint at each of the points (i, wi), as in Figures 2b. This leads to a simple
proof of graph reducibility, but an exact gadget reduction with around half the edges can be obtained
by choosing every other linear piece from that function. For example, for the function in Figure 2b,
we could select the first and third linear piece and we would still have a piecewise linear function that
crosses through (i, wi) for i ∈ {0, 1, 2, 3}, but has one breakpoint somewhere between i = 1 and i = 2.
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plete graph provide a simple case study for understanding the differences in sparsification
guarantees that can be obtained when we allow auxiliary nodes and directed edges. Fur-
thermore, better sparsifiers for the complete graph can be used to design useful sparsifiers
for co-occurrence graphs. We have the following result.

Theorem 2 Let G = (V,E) be the complete graph on n = |V | nodes. There exists an
ε-augmented sparsifier for G with O(n) nodes and O(nε−1/2 log log 1

ε ) edges.

By comparison, the best standard cut and spectral sparsifiers for the complete graph have
exactly n nodes and O(n/ε2) edges. This is tight for spectral sparsifiers (Batson et al.,
2014), as well as for degree-regular cut sparsifiers with uniform edge weights (Alon, 1997).
Thus, by adding a small number of auxiliary nodes, our sparsifiers enable us to obtain a
significantly better dependence on ε when cut-sparsifying a complete graph. Our sparsifier
is easily constructed deterministically in O(nε−1/2 log log 1

ε ) time.
Standard undirected sparsifiers for the complete graph have received significant atten-

tion as they correspond to expander graphs (Lubotzky, 1988; Alon, 1997; Batson et al.,
2014). We remark that the directed augmented cut sparsifiers we produce are very differ-
ent in nature and should not be viewed as expanders. In particular, unlike for expander
graphs, random walks on our complete graph sparsifiers will converge to a very non-uniform
distribution. We are interested in augmented sparsifiers for the complete graph simply for
their ability to model cut properties in a different way, and the implications this has for
sparsifying hypergraph clique expansions and co-occurrence graphs.

Sparsifying co-occurrence graphs. Co-occurrence relationships are inherent in the con-
struction of many types of graphs. Formally, consider a set of n = |V | nodes that are
organized into a set of co-occurrence interactions C ⊆ 2V . Interaction c ∈ C is associ-
ated with a weight wc > 0, and an edge between nodes i and j is created with weight
wij =

∑
c∈C:i,j∈cwc. When wc = 1 for every c ∈ C, wij equals the number of interactions

that i and j share. We use davg to denote the average number of co-occurrence interactions
in which nodes in V participate. The cut value in the resulting graph G = (V,E) for a set
S ⊆ V is given by the following co-occurrence cut function:

cutG(S) =
∑
c∈C

wc · |S ∩ c| · |S̄ ∩ c|. (8)

Graphs with this co-occurrence cut function arise frequently as clique expansions of a hy-
pergraph (Zhou et al., 2006; Benson et al., 2016; Zien et al., 1999; Hadley, 1995), or as
projections of a bipartite graph (Li et al., 2007; Neal, 2014; Newman et al., 2001; Ramasco
and Morris, 2006; Zhou et al., 2007; Stefano et al., 2013; Watts and Strogatz, 1998). Even
when the underlying data set is not first explicitly modeled as a hypergraph or bipartite
graph, many approaches implicitly use this approach to generate a graph from data. When
enough group interaction sizes are large, G becomes dense, even if |C| is small. We can
significantly sparsify G by applying an efficient sparsifier to each clique induced by a co-
occurrence relationship. Importantly, we can do this without ever explicitly forming G. By
applying Theorem 2 as a black-box for clique sparsification, we obtain the following result.

Theorem 3 Let G = (V,E) be the co-occurrence graph for some C ⊆ 2V and let n =
|V |. For ε > 0, there exists an augmented sparsifier Ĝ with O(n + |C| · f(ε)) nodes and
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Method Runtime

Kolmogorov SF (Kolmogorov, 2012) Õ(µ2)
IBFS Strong (Fix et al., 2013) O(n2θmaxµ2)

IBFS Weak (Fix et al., 2013) Õ(n2θmax + n
∑

e |e|4)
AP (Nishihara et al., 2014) Õ(nRθavgµ)

RCDM (Ene and Nguyen, 2015) Õ(n2Rθavg)

ACDM (Ene and Nguyen, 2015) Õ(nRθavg)

Axiotis et al. (Axiotis et al., 2021) Õ(maxe |e|2 ·
(∑

e |e|2θe + Tmf (n, n+ µ2)
)

This paper (exact solutions) Õ(Tmf (µ, µ2)) = Õ
(
µ2 + µ3/2

)
This paper (approximate solutions) Õ

(
Tmf (n+ R

ε ,
1
εµ)
)

= Õ
(µ
ε + (n+ R

ε )3/2
)

Table 1: Runtimes for Card-DFSM for various methods, where µ =
∑

e |e|, and µ2 =∑
e |e|2, and where θmax and θavg denote certain oracle runtimes. These satisfy

θmax = Ω(max |e|), and θavg = Ω( 1
R

∑
e |e|). Tmf (N,M) is the time to solve a

max-flow problem with N nodes and M edges. Listed is the original reference
for each method. The runtimes listed for IBFS, RCDM, and ACDM are due to
updated analysis by Ene et al. (2017). The best runtime analysis for AP is due to
Li and Milenkovic (2018a).

O(n ·davg ·f(ε)) edges, where f(ε) = ε−1/2 log log 1
ε . In particular, if davg is constant and for

some δ > 0 we have
∑

c∈C |c|2 = Ω(n1+δ), then forming G explicitly takes Ω(n1+δ) time, but
an augmented sparsifier for G with O(nf(ε)) nodes and O(nf(ε)) edges can be constructed
in O(nf(ε)) time.

Importantly, the average co-occurrence degree davg is not the same as the average node
degree in G, which will typically be much larger. Theorem 3 highlights that in regimes
where davg is a constant, our augmented sparsifiers will have fewer edges than the number
needed by standard ε-cut sparsifiers. In Section 5, we consider simple graph models that
satisfy these assumptions. We also consider tradeoffs between our augmented sparsifiers and
standard sparsification techniques for co-occurrence graphs. Independent of the black-box
sparsifier we use, implicitly sparsifying G in this way will often lead to significant runtime
improvements over forming G explicitly.

1.5 Approximate Cardinality-based DSFM

Typically in hypergraph cut problems it is natural to assume that splitting functions are
symmetric and satisfy we(∅) = we(e) = 0. However, we show that our sparse reduction
techniques apply even when these assumptions do not hold. This allows us to design fast
algorithms for approximately solving certain decomposable submodular function minimiza-
tion (DSFM) problems. Formally a function f : 2V → R+ is a decomposable submodular
function if it can be written as

f(S) =
∑
e∈E

f e(S ∩ e), (9)
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where each f e is a submodular function defined on a set e ⊆ V . Following our previous
notation and terminology, we say f e is cardinality-based if f e(S) = ge(|S|) for some concave
function ge. This special case, which we refer to as Card-DSFM, has been one of the most
widely studied and applied variants since the earliest work on DSFM (Kolmogorov, 2012;
Stobbe and Krause, 2010). In terms of theory, previous research has addressed specialized
runtimes and solution techniques (Kolmogorov, 2012; Stobbe and Krause, 2010; Kohli et al.,
2009). In practice, cardinality-based decomposable submodular functions frequently arise
as higher-order energy functions in computer vision (Kohli et al., 2009) and set cover func-
tions (Stobbe and Krause, 2010). Even previous research on algorithms for the more general
DSFM problem tends to focus on cardinality-based examples in experimental results (Ene
et al., 2017; Stobbe and Krause, 2010; Jegelka et al., 2013; Li and Milenkovic, 2018a).

Existing approaches for minimizing these functions focus largely on finding exact solu-
tions. Using our sparse reduction techniques, we develop the first approximation algorithms
for the problem. Let n = |V |, R = |E|, and µ =

∑
e∈E |e|. In Appendix B, we show that a

result similar to Theorem 1 also holds for more general cardinality-based splitting functions.
In Section 6, we combine that result with fast recent s-t cut solvers (van den Brand et al.,
2021) to prove the following theorem.

Theorem 4 Let ε > 0. Any cardinality-based decomposable submodular function can be
minimized to within a multiplicative (1 + ε) factor in Õ

(
1
ε

∑
e∈E |e|+ (n+ R

ε )3/2
)

time.

Table 1 compares this runtime against the best previous techniques for Card-DSFM. Our
techniques enable us to highlight regimes of the problem where we can obtain significantly
faster algorithms in cases where it is sufficient to solve the problem approximately. For
example, whenever n = Ω(R), our algorithms for finding approximate solutions provide a
runtime advantage — often a significant one — over approaches for computing an exact
solution. We provide a more extensive theoretical runtime comparison in Section 6. In
Section 7, we show that implementations of our methods lead to significantly faster results
for benchmark image segmentation tasks and localized hypergraph clustering problems.

2. The Sparse Gadget Approximation Problem

A generalized hypergraph cut function is defined as the sum of its splitting functions.
Therefore, if we can design a technique for approximately modeling a single hyperedge with
a sparse graph, this in turn provides a method for constructing an augmented sparsifier
for the entire hypergraph. We now formalize the problem of approximating a submodular
cardinality-based (SCB) splitting function using a combination of cardinality-based (CB)
gadgets. We abstract this as the task of approximating a certain class of functions with
integer inputs (equivalent to SCB splitting functions), using a small number of simpler
functions (equivalent to cut properties of the gadgets). Let [r] = {1, 2, . . . , r}.
Definition 5 An r-SCB integer function is a function w : {0} ∪ [r]→ R+ satisfying

w(0) = 0 (10)

2w(j) ≥ w(j − 1) + w(j + 1) for j = 1, . . . , r − 1 (11)

0 ≤ w(1) ≤ w(2) ≤ . . . ≤ w(r). (12)

We denote the set of r-SCB integer functions by Sr.

10
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The value w(i) represents the splitting penalty for placing i nodes on the small side of a
cut hyperedge. In previous work we showed that the inequalities given in Definition 5 are
necessary and sufficient conditions for a cardinality-based splitting function to be submod-
ular (Veldt et al., 2022). The r-SCB integer function for a CB-gadget with edge parameters
(a, b) (see Equation 7) is

wa,b(i) = a ·min{i, b} . (13)

Combining J CB-gadgets produces a useful notion of a combined r-SCB integer function.

Definition 6 An r-CCB ( Combined Cardinality-Based gadget) function of order J , is an
r-SCB integer function ŵ with the form

ŵ(i) =

J∑
j=1

aj ·min{i, bj} , for i ∈ [r]. (14)

where the J-dimensional vectors a = (aj) and b = (vj) parameterizing ŵ satisfy:

bj > 0, aj > 0 for all j ∈ [J ] (15)

bj < bj+1 for j ∈ [J − 1] (16)

bJ ≤ r. (17)

We denote the set of r-CCB functions of order J by CJr .

The conditions on the vectors a and b come from natural observations about combining
CB-gadgets. Condition (15) ensures that we do not consider CB-gadgets where all edge
weights are zero. The ordering in condition (16) is for convenience; the fact that bj values
are all distinct implies that we cannot collapse two distinct CB-gadgets into a single CB-
gadget with new weights. For condition (17), observe that for any bJ ≥ r, min{i, bJ} = i
for all i ∈ [r]. For a helpful visual, note that the r-SCB function in (13) represents splitting
penalties for the CB-gadget in Figure 1c. An r-CCB function corresponds to a combination
of CB-gadgets, as in Figures 2c and 2f.

In previous work we showed that any combination of CB-gadgets produces a submodular
and cardinality-based splitting function, which is equivalent to stating that CJr ⊆ Sr for all
J ∈ N (Veldt et al., 2022). Furthermore, Crr = Sr, since any r-SCB splitting function
can be modeled by a combination of r CB-gadgets. Our goal here is to determine how to
approximate a function w ∈ Sr with some function ŵ ∈ CJr where J � r. This corresponds
to modeling an SCB splitting function using a small combination of CB-gadgets.

Definition 7 For a fixed w ∈ Sr and an approximation tolerance parameter ε ≥ 0, the
Sparse Gadget Approximation Problem (Spa-GAP) is the following optimization problem:

minimize κ
subject to w ≤ ŵ ≤ (1 + ε)w

ŵ ∈ Cκr .
(18)

Upper bounding approximations. Problem (18) specifically optimizes over functions ŵ
that upper bound w. This simplifies several aspects of our analysis without any practical

11
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consequence. We could instead fix some δ ≥ 1 and optimize over functions w̃ satisfying
1
δw ≤ w̃ ≤ δw. However, this implies that the function ŵ = δw̃ satisfies w ≤ ŵ ≤ (1+ε)w,
with ε = δ2 − 1. Thus, the problems are equivalent for the correct choice of δ and ε.

Motivation for optimizing over CB-gadgets. A natural question to ask is whether it
would be better to search for a sparsest approximating gadget over a broader classes of
gadgets. There are several key reasons why we restrict to combinations of CB-gadgets.
First of all, we already know these can model any SCB splitting function, and thus they
provide a very simple building block with broad modeling capabilities. Furthermore, it is
clear how to define an optimally sparse combination of CB-gadgets: since all CB-gadgets
for a k-node hyperedge have the same number of auxiliary nodes and directed edges, an
optimally sparse reduction is one with a minimum number of CB-gadgets. If we instead wish
to optimize over all possible gadgets, it is likely that the best reduction technique will depend
on the splitting function that we wish to approximate. Furthermore, the optimality of a
gadget may not even be well-defined, since one must take into account both the number of
auxiliary nodes as well as the number of edges that are introduced, and the tradeoff between
the two is not always clear. Finally, as we shall see in the next section, by restricting to
CB-gadgets, we are able to draw a useful connection between finding sparse gadgets and
approximating piecewise linear curves with a smaller number of linear pieces.

3. Sparsification via Piecewise Linear Approximation

We begin by defining the class of piecewise linear functions in which we are interested.

Definition 8 For r ∈ N, Fr is the class of functions f : [0,∞] −→ R+ such that:

1. f(0) = 0

2. f is a constant for all x ≥ r
3. f is increasing: x1 ≤ x2 =⇒ f(x1) ≤ f(x2)

4. f is piecewise linear

5. f is concave (and hence, continuous).

It will be key to keep track of the number of linear pieces that make up a given function
f ∈ Fr. Let L be the set of linear functions with nonnegative slopes and intercept terms:

L = {g(x) = mx+ d |m, d ∈ R+}. (19)

Every f ∈ Fr can be characterized as the lower envelope of some set L ⊂ L:

f(x) = min
g∈L

g(x), where L ⊂ L. (20)

We use |L| to denote the number of linear pieces of f . In order for equation (20) to properly
characterize a function in Fr, it must be constant for all x ≥ r (property 2 in Definition 8),
and thus L must contain exactly one line of slope zero. The continuous extension f̂ of an
r-CCB function ŵ parameterized by (a,b) is defined as

f̂(x) =
J∑
j=1

aj ·min{x, bj} for x ∈ [0,∞]. (21)

12
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We prove that continuously extending any r-CCB function always produces a function in Fr.
Conversely, every f ∈ Fr is the continuous extension of some r-CCB function. Appendix A
provides proofs for these results.

Lemma 9 Let f̂ be the continuous extension for ŵ, shown in (21). This function is in the
class Fr, and has exactly J positive sloped linear pieces, and one linear piece of slope zero.

Lemma 10 Let f be a function in Fr with J + 1 linear pieces. Let bi denote the ith
breakpoint of f , and mi denote the slope of the ith linear piece of f . Define vectors a,b ∈ RJ
where b(i) = bi and a(i) = ai = mi − mi+1 for i ∈ [J ]. If ŵ is the r-CCB function
parameterized by vectors (a,b), then f is the continuous extension of ŵ.

3.1 The Piecewise Linear Approximation Problem

Let w ∈ Sr be an arbitrary SCB integer function. Lemma 10 implies that if we can find a
piecewise linear function f that approximates w and has few linear pieces, we can extract
from it a CCB function ŵ with a small order J that approximates w. Equivalently, we can
find a sparse gadget that approximates an SCB splitting function of interest. Our updated
goal is therefore to solve the following piecewise linear approximation problem, for a given
w ∈ Sr and ε ≥ 0:

minimizeL⊂L |L|
subject to w(i) ≤ f(i) ≤ (1 + ε)w(i) for i ∈ [r]

f ∈ Fr
f(x) = ming∈L g(x)
for each g ∈ L, g(j) = w(j) for some j ∈ {0} ∪ [r].

(22)

The last constraint ensures that each linear piece g ∈ L we consider crosses through at least
one point (j,w(j)). We can add this constraint without loss of generality; if any linear piece
g is strictly greater than w at all integers, we could obtain an improved approximation
by scaling g until it is tangent to w at some point. This constraint, together with the
requirement f ∈ Fr, implies that the constant function g(r)(x) = w(r) is contained in every
set of linear functions L that is feasible for problem (22). Since all feasible solutions contain
this constant linear piece, our focus is on determining the optimal set of positive-sloped
linear pieces needed to approximate w.

Optimal linear covers. Given a fixed ε ≥ 0 and i ∈ {0} ∪ [r − 1], we will say a set
L ⊂ L is a linear cover for a function w ∈ Sr over the range R = {i, i + 1, . . . , r}, if each
g ∈ L upper bounds w at all points, and if for each j ∈ R there exists g ∈ L such that
g(j) ≤ (1 + ε)w(j). The set L is an optimal linear cover if it contains the minimum number
of positive-sloped linear pieces needed to cover R. Thus, an equivalent way of expressing
problem (22) is that we wish to find an optimal linear cover for w over the interval {0}∪ [r].
There may be many functions in Fr solving this problem; our goal is to find any one.

3.2 Properties of Linear Pieces in the Cover

We solve problem (22) by iteratively growing a set of linear functions L ⊂ L one function
at a time, until all of w is covered. Let f be the piecewise linear function we construct from

13



Benson, Kleinberg, and Veldt

Figure 3: We restrict our attention to lines in L that coincide with w at at least one integer
value. Thus, every function we consider is incident to two consecutive values of
w (e.g., the solid line, g(1)), or, it touches w at exactly one point (dashed line,
g).

linear pieces in L. In order for f to upper bound w, every function g ∈ L in problem (22)
must upper bound w at every i ∈ {0} ∪ [r]. One way to obtain such a linear function is to
connect two consecutive points of w. For i ∈ {0}∪ [r− 1], we denote the line joining points
(i,w(i)) and (i+ 1,w(i+ 1)) by

g(i)(x) = Mi(x− i) + w(i), (23)

where the slope of the line is Mi = w(i+ 1)−w(i). In order for a line to upper bound w
but only pass through a single point (i,w(i)) for some i ∈ [r − 1], it must have the form

g(x) = m(x− i) + w(i) , (24)

where the slope m satisfies Mi < m < Mi−1. The existence of such a line g is only possible
when the points (i − 1,w(i − 1)), (i,w(i)), and (i + 1,w(i + 1)) are not collinear. To
understand the strict bounds on m, note that if g passes through (i,w(i)) and has slope
exactly Mi−1, then g is in fact the line g(i−1) and also passes through (i − 1,w(i − 1)).
If g has slope greater than Mi−1, then g(i − 1) < w(i − 1) and does not upper bound w
everywhere. We can similarly argue that the slope of g must be strictly greater than Mi so
that it does not touch or cross below the point (i+ 1,w(i+ 1)).

Figure 3 illustrates both types of functions shown in (23) and in (24). The following
observation will help in comparing approximation properties of different functions in L.

Observation 11 For a fixed w ∈ Sr, let g, h ∈ L both upper bound w at all integers
i ∈ {0} ∪ [r], and assume that for some j ∈ {0} ∪ [r], g(j) = h(j) = w(j). If mg and mh

are the slopes of g and h respectively, and mg ≥ mh ≥ 0, then

• For every integer i ∈ [0, j], w(i) ≤ g(i) ≤ h(i)
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• For every integer i ∈ [j, r], w(i) ≤ h(i) ≤ g(i).

In other words, if g and h are both tangent to w at the same point j, but g has a larger
slope than h, then g provides a better approximation for values smaller than j, while h is
the better approximation for values larger than j.

3.3 Building an Optimal Linear Cover

First linear piece. Every set L solving problem (22) must include a linear piece that goes
through the origin, so that f(0) = 0. We choose g(0)(x) = (w(1)−w(0))x+ w(0) = w(1)x
to be the first linear piece in the set L we construct. Given this first linear piece, we can
then compute the largest integer i ∈ [r] for which g(0) provides a (1 + ε)-approximation:

p = max {i ∈ [r] | g(0)(i) ≤ (1 + ε)w(i)}.

The integer ` = p + 1 therefore is the smallest integer for which we do not have a (1 + ε)-
approximation. If ` ≤ r, our task is then to find the smallest number of additional linear
pieces in order to cover {`, . . . , r} with (1+ε)-approximations. By Observation 11, any other
g ∈ L with g(0) = 0 and g(1) > w(1) will be a worse approximation to w at all integer
values: w(i) ≤ g(0)(i) < g(i) for all i ∈ [r]. Therefore, as long as we can find a minimum
set of additional linear pieces which provides a (1 + ε)-approximation for all {`, . . . , r}, our
set of functions L will optimally solve problem (22).

Iteratively finding the next linear piece. Consider now a generic setting in which we are
given a left integer endpoint ` and we wish to find linear pieces to approximate the function
w from ` to r. We first check whether the constant function g(r)(x) = w(r) provides the
desired approximation:

g(r)(`) ≤ (1 + ε)w(`). (25)

If so, we augment L to include g(r) and we are done, since this implies that g(r) also
provides at least a (1 + ε)-approximation at every i ∈ {`, ` + 1, . . . , r}. If inequality (25)
is not true, we must add another positive-sloped linear function to L in order to get the
desired approximation for all i ∈ [r]. We adopt a greedy approach that chooses the next
line to be the optimizer of the following objective

maxg∈L p′

subject to w(j) ≤ g(j) ≤ (1 + ε)w(j) for j = `, `+ 1, . . . , p′.
(26)

In other words, solving problem (26) means finding a function that provides at least a
(1 + ε)-approximation from ` to as far towards r as possible in order to cover the widest
possible contiguous interval with the same approximation guarantee. (There is always a
feasible point by adding a line g tangent to w(`).) The following Lemma will help us prove
that this greedy scheme produces an optimal cover for w.

Lemma 12 Let p∗ the solution to problem (26) and g∗ be the function that achieves it. If
L̂ ⊂ L is an optimal cover for w over the integer range {p∗+ 1, p∗+ 2, . . . r}, then {g∗} ∪ L̂
is an optimal cover for {`, `+ 1, . . . r}.

Proof Let L̃ be an arbitrary optimal linear cover for w over the range {`, ` + 1, . . . , r}.
This means that |L̂ ∪ {g∗}| ≥ |L̃|. We know L̃ must contain a function g such that g(`) ≤
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(1+ε)w(`). Let pg be the largest integer satisfying g(pg) ≤ (1+ε)w(pg). By the optimality
of p∗ and g∗, we know p∗ ≥ pg. Therefore, the set of functions L̃ − {g} must be a cover
for the set {pg + 1, pg + 2, . . . r} ⊇ {p∗ + 1, p∗ + 2, . . . r}. Since L̂ is an optimal cover for a
subset of the integers covered by L̃− {g},

|L̂| ≤ |L̃− {g}| =⇒ |L̂|+ 1 ≤ |L̃| =⇒ |L̂ ∪ {g∗}| ≤ |L̃|.

Therefore, |L̂ ∪ {g∗}| = |L̃|, so the result follows.

We illustrate a simple procedure for solving problem (26) in Figure 4. The function g
solving this problem must either join two consecutive points of w (the form given in (23)),
or coincide at exactly one point of w (form given in (24)). We first identify the integer j∗

such that

g(j
∗)(`) ≤ (1 + ε)w(`) and g(j

∗+1)(`) > (1 + ε)w(`).

In other words, the linear piece connecting (j∗,w(j∗)) and (j∗ + 1,w(j∗ + 1)) provides the
needed approximation at the left endpoint `, but g(i) for every i > j∗ does not. Therefore,
the solution to problem (26) has a slope m ∈ [Mj∗ ,Mj∗+1), and passes through the point
(j∗,w(j∗)). By Observation 11, the line passing through this point with the smallest slope
is guaranteed to provide the best approximation for all integers p ≥ j∗. To minimize the
slope of the line while still preserving the needed approximation at w(`), we select the line
passing through the points (`, (1 + ε)w(`)) and (j∗,w(j∗)). This is given by

g∗(x) =
w(j∗)− (1 + ε)w(`)

(j∗ − `) (x− `) + (1 + ε)w(`). (27)

After adding g∗ to L, we find the largest integer p ≤ r such that g∗(p) ≤ (1+ε)w(p). If p < r,
we still need to find more linear pieces to approximate w, so we begin another iteration.
If p = r exactly, we do not need any more positive-sloped linear pieces to approximate w.
However, we still add the constant function g(r) to L before terminating. This guarantees
that the function f(x) = ming∈L(x) we return is in Fr. Furthermore, adding g(r) improves
the approximation without affecting the order of the CCB function we obtain from f by
applying Lemma 10. Pseudocode for our procedure for constructing a set of function L is
given in Algorithm 1, which relies on Algorithm 2 for solving problem (26).

Theorem 13 Algorithm 1 runs in O(r) time and returns a function f that solves prob-
lem (22).

Proof The optimality of the algorithm follows by inductively applying Lemma 12 at each
iteration of the algorithm. For the runtime guarantee, note first of all that we can compute
and store all slopes and intercepts for linear pieces g(i) (as given in (23)) in O(r) time and
space. As the algorithm progresses, we visit each integer i ∈ [r] once, either to perform a
comparison of the form g(i)(`) ≤ (1 + ε)w(`) for some left endpoint `, or to check whether
g∗(i) ≤ (1 + ε)w(i) for some linear piece g∗ we added to our linear cover L. Each such g∗

can be computed in constant time, and as a loose bound we know we compute at most O(r)
such linear pieces for any ε.

By combining Algorithm 2 and Lemma 10, we are able to efficiently solve Spa-GAP.
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Figure 4: Given a left endpoint ` for which we do not have an approximating linear piece,
we choose the next linear g∗ to provide the desired approximation at `, while also
providing a good approximation for the largest possible integer p > `.

Algorithm 1 FindBest-PL-Approx(w, ε) (solves problem (22))

Input: w ∈ Sr, ε ≥ 0
Output: f ∈ Fr optimizing problem (22)
L = {g(0)}, where g(0) = w(1)x
p = max {i ∈ [r] | g(0)(i) ≤ (1 + ε)w(i)}
` = p+ 1
while ` ≤ r do

(g∗, p) = FindNext(w, ε, `)
`← p+ 1
L← L ∪ {g∗}
if p = r then

L← L ∪ {g(r)}, where g(r)(x) = w(r)
end if

end while
Return f defined by f(x) = ming∈L g(x)

Theorem 14 Let f be the solution to problem (22), and ŵ be the CCB function obtained
from Lemma 10 based on f . Then ŵ optimally solves Spa-GAP(problem (18)).

Proof Since f and ŵ coincide at integer values, and f approximates w at integer values, we
know w(i) ≤ ŵ(i) ≤ (1+ε)w(i) for i ∈ [r]. Thus, ŵ is feasible for problem (18). If κ∗ is the
number of positive-sloped linear pieces of f , then the order of ŵ is κ∗ by Lemma 10, and this
must be optimal for problem (18). Otherwise, there would exist some upper bounding CCB
function w′ of order κ′ < κ∗ that approximates w to within 1 + ε. But by Lemma 9, this
would imply that the continuous extension of w′ is some f ′ ∈ Fr with exactly κ′ positive-
sloped linear pieces that is feasible for problem (22), contradicting the optimality of f .
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Algorithm 2 FindNext(w, ε, `) (solves problem (26))

Input: w ∈ Sr, ε ≥ 0, ` ∈ [r]
Output: g ∈ L optimizing problem (26)
if w(r) ≤ (1 + ε)w(`) then

Return (g(r), r + 1), where g(r)(x) = w(r)
else

j∗ = `
while g(j

∗+1)(`) ≤ (1 + ε)w(`) do
j∗ = j∗ + 1

end while
g∗(x) = w(j∗)−(1+ε)w(`)

(j∗−`) (x− `) + (1 + ε)w(`)

p = max {i ∈ [r] | g∗(p) ≤ (1 + ε)w(p)}
Return (g∗, p)

end if

4. Bounding the Size of the Optimal Reduction

The previous section showed an efficient strategy for finding the minimum number of linear
pieces needed to approximate an SCB integer function. We now bound the number of linear
pieces needed in different cases, and highlight implications for sparsifying hyperedges with
SCB splitting functions. In the worst case, we need O(1ε log k) gadgets, where k is the
hyperedge size, and this is nearly tight for the square root splitting function. Finally, we
show that O(ε−1/2 log log 1

ε ) gadgets suffice to approximate the clique splitting function,
which is useful for sparsifying co-occurrence graphs and clique expansions of hypergraphs.

4.1 The O(1ε log k) Upper Bound

We begin by showing that a logarithmic number of CB-gadgets is sufficient to approximate
any SCB splitting function.

Theorem 15 Let ε ≥ 0 and we be an SCB splitting function on a k-node hyperedge. There
exists a set of O(log1+ε k) CB-gadgets, which can be constructed in O(k log1+ε k) time,
whose splitting function ŵe satisfies we(A) ≤ ŵe(A) ≤ (1 + ε)we(A) for all A ⊆ e.

Proof Let r = bk/2c, and let w ∈ Sr be the SCB integer function corresponding to we,
i.e., w(i) = we(A) for A ⊆ e such that |A| ∈ {i, k − i}. If we join all points of the form
(i,w(i)) for i ∈ [r] by a line, this results in a piecewise linear function f ∈ Fr that is concave
and increasing on the interval [0, r]. We first show that there exists a set of O(log1+ε r)
linear pieces that approximates f on the entire interval [1, r] to within a factor (1 + ε).
Our argument follows similar previous results for approximating a concave function with a
logarithmic number of linear pieces (Magnanti and Stratila, 2012; Gan et al., 2020).

For any value y ∈ [1, r], not necessarily an integer, f(y) lies on a linear piece of f which we
will denote by g(y)(x) = My ·x+By, where My ≥ 0 is the slope and By ≥ 0 is the intercept.
When y = i is an integer, it may be the breakpoint between two distinct linear pieces, in
which case we use the rightmost line so that g(y) = g(i) as in (23), so g(i)(x) = Mi · x+ Bi
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where Mi = w(i+1)−w(i) and Bi = w(i)−Mi · i. For any z ∈ (y, r), the line g(y) provides
a z/y approximation to f(z) = g(z)(z), since

g(y)(z) = My · z +By ≤
z

y
(My · y +By) =

z

y
f(y) ≤ z

y
f(z).

Equivalently, the line g(y) provides a (1+ε)-approximation for every z ∈ [y, (1+ε)y]. Thus,
it takes J linear pieces to cover the set of intervals [1, (1 + ε)], [(1 + ε), (1 + ε)2], . . . , [(1 +
ε)J−1, (1 + ε)J ], and overall at most 1 + dlog1+ε re linear pieces to cover all of [0, r].

Since Algorithm 1 finds the smallest set of linear pieces to (1 + ε)-cover the splitting
penalties, this smallest set must also have at most O(log1+ε r) linear pieces. Given this
piecewise linear approximation, we can use Lemma 10 to extract a CCB function ŵ of
order J = O(log1+ε r) satisfying w(i) ≤ ŵ(i) ≤ (1 + ε)w(i) for i ∈ {0} ∪ [r]. This ŵ in
turn corresponds to a set of J CB-gadgets that (1 + ε)-approximates the splitting function
we. Computing edge weights for the CB-gadgets using Algorithm 1 and Lemma 10 takes
only O(r) time, so the total runtime for constructing the combined gadgets is equal to the
number of individual edges that must be placed, which is O(k log1+ε k).

Theorem 1 on augmented sparsifiers follows as a corollary of Theorem 15. Given a hy-
pergraph H = (V, E) where each hyperedge has an SCB splitting function, we can use
Theorem 15 to expand each e ∈ E into a gadget that has O(log1+ε |e|) auxiliary nodes and
O(|e| log1+ε |e|) edges. Since log1+ε n behaves as 1

ε log n as ε→ 0, Theorem 1 follows.
In Appendix B, we show that using a slightly different reduction, we can prove that

Theorem 15 holds even when we do not require splitting functions to be symmetric or satisfy
we(∅) = we(e) = 0. In Section 6 we use this fact to develop approximation algorithms for
cardinality-based decomposable submodular function minimization.

4.2 Near Tightness on the Square Root Function

Our upper bound is nearly tight for the square root r-SCB integer function,

w(i) =
√
i for i ∈ {0} ∪ [r]. (28)

To prove this, we rely on a result of Magnanti and Stratila (2012) on the number of linear
pieces needed to approximate the square root function over a continuous interval.

Lemma 16 (Lemma 3 in (Magnanti and Stratila, 2012)) Let ε > 0 and φ(x) =
√
x. Let

ψ be a piecewise linear function whose linear pieces are all tangent lines to φ, satisfying
ψ(x) ≤ (1 + ε)φ(x) for all x ∈ [l, u] for 0 < l < u. Then ψ contains at least dlogγ(ε)

u
l e

linear pieces, where γ(ε) = (1 + 2ε(2 + ε) + 2(1 + ε)
√
ε(2 + ε))2. There exists a piecewise

linear function ψ∗ of this form with exactly dlogγ(ε)
u
l e linear pieces.2 As ε→ 0, this values

behaves as 1√
32ε

log u
l .

Lemma 16 is concerned with approximating the square root function for all values on a
continuous interval. Therefore, it does not immediately imply any bounds on approximating

2. This additional statement is not included explicitly in the statement of Lemma 3 in the work of Magnanti
and Stratila (2012), but it follows directly from the proof of the lemma, which shows how to construct
such an optimal function ψ∗.
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a discrete set of splitting penalties. In fact, we know that when lower bounding the number
of linear pieces needed to approximate any w ∈ Sr, there is no lower bound of the form
q(ε)f(r) that holds for all ε > 0, if q is a function such that q(ε) → ∞ as ε → 0. This
is simply because we can approximate w by piecewise linear interpolation, leading to an
upper bound of O(r) linear pieces even when ε = 0. Therefore, the best we can expect is a
lower bound that holds for ε values that may still go to zero as r →∞, but are bounded in
such a way that we do not contradict the O(r) upper bound that holds for all SCB integer
functions. We prove such a result for the square root splitting function, using Lemma 16 as
a black box. When ε falls below the bound we assume in the following theorem statement,
forming O(r) linear pieces will be nearly optimal.

Theorem 17 Let ε > 0 and w(i) =
√
i. If ε ≥ r−δ for some constant δ ∈ (0, 2), then

any piecewise linear function providing a (1 + ε)-approximation for w contains Ω(logγ(ε) r)

linear pieces. This behaves as Ω(ε−1/2 log r) as ε→ 0.

Proof Let L∗ be the optimal set of linear pieces returned by running Algorithm 1. In
order to show |L∗| = Ω(logγ(ε) r), we will construct a new set of linear pieces L that
has asymptotically the same number of linear pieces as L∗, but also provides a (1 + ε)-
approximation for all x in an interval [rβ, r] for some constant β < 1. Invoking Lemma 16
will then guarantee the final result.

Recall that L∗ includes only two types of linear pieces: either linear pieces g satisfying
g(j) =

√
j for exactly one integer j (see Equation 24), or linear pieces formed by joining

two points of w (see Equation 23). For the square root splitting function, the latter type
of linear piece is of the form

g(t)(i) = (
√
t+ 1−

√
t)(i− t) +

√
t, (29)

for some positive integer t less than r. This is the linear interpolation of the points (t,
√
t)

and (t+ 1,
√
t+ 1). Both types of linear pieces bound φ(x) =

√
x above at integer points,

but they may cross below φ at non-integer values of x. To apply Lemma 16, we would
like to obtain a set of linear pieces that are all tangent lines to φ. We accomplish this by
replacing each linear piece in L∗ with two or three linear pieces that are tangent to φ at
some point. For a positive integer j, let gj denote the line tangent to φ(x) =

√
x at x = j,

which is given by

gj(x) =
1

2
√
j

(x− j) +
√
j. (30)

We form a new set of linear pieces L made up of lines tangent to φ using the following
replacements:

• If L∗ contains a linear piece g that satisfies g(j) =
√
j for exactly one integer j, add

lines gj−1, gj , and gj+1 to L.

• If for an integer t, L∗ contains g(t) (see Equation 29), add lines gt and gt+1 to L.

By Observation 11, this replacement can only improve the approximation guarantee at
integer points. Thus, L provides a (1 + ε)-approximation at integer values, is made up of
lines that are tangent to φ, and contains at most three times the number of lines in L∗.
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Due to the concavity of φ, if a single line g ∈ L provides a (1 + ε)-approximation at
consecutive integers i and i+ 1, then g provides the same approximation guarantee for all
x ∈ [i, i + 1]. However, if two integers i and i + 1 are not both covered by the same line
in L, then L does not necessarily provide a (1 + ε)-approximation for every x ∈ [i, i + 1].
There can be at most |L| intervals of this form, since each interval defines an “intersection”
at which one line g ∈ L ceases to be a (1+ε)-approximation, and another line g′ ∈ L “takes
over” as the line providing the approximation.

By Lemma 16, we can cover an entire interval [i, i + 1] for any integer i using a set of
dlogγ(ε)

(
1+ 1

i

)
e linear pieces that are tangent to φ somewhere in [i, i+1]. Since 1+

√
ε ≤ γ(ε),

it in fact takes only one linear piece to cover [i, i+ 1] as long as 1 + 1/i ≤ 1 +
√
ε =⇒ i ≥

1/
√
ε. Since ε ≥ r−δ, interval [i, i + 1] can be covered by a single linear piece if i ≥ rδ/2.

Therefore, for each interval [i, i + 1], with i ≥ rδ/2, that is not already covered by a single
linear piece in L, we add one more linear piece to L to cover this interval. This at most
doubles the size of L.

The resulting set L will have at most 6 times as many linear pieces as L∗, and is
guaranteed to provide a (1+ε)-approximation for all integers, as well as the entire continuous
interval [rδ/2, r]. Since δ is a fixed constant strictly less than 2, applying Lemma 16 shows
that L has at least ⌈

logγ(ε)
r

rδ/2

⌉
= Ω(logγ(ε) r

1−δ/2) = Ω(logγ(ε) r)

linear pieces. Therefore, |L∗| = Ω(logγ(ε) r) as well.

4.3 Improved Bound for the Clique Function

When approximating the clique expansion splitting function, Algorithm 1 finds a piecewise
linear curve with at most O(ε−1/2 log log 1

ε ) linear pieces. We prove this by highlighting a
different approach for constructing a piecewise linear curve with this many linear pieces,
which upper bounds the number of linear pieces in the optimal curve found by Algorithm 1.

Clique splitting penalties for a k-node hyperedge correspond to nonnegative integer
values of the continuous function ζ(x) = x·(k−x). As we did in Section 3.3, we want to build
a set of linear pieces L that provides and upper bounding (1+ε)-cover of ζ at integer values
in [0, r], where r = bk/2c. We start by adding the line g(0)(x) = (w(1)−w(0))x+ w(0) =
(k − 1) · x to L, which perfectly covers the first two splitting penalties w(0) = 0 and
w(1) = k − 1. In the remainder of our new procedure we will find a set of linear pieces to
(1 + ε)-cover ζ at every value of x ∈ [1, k/2], even non-integer x.

We apply a greedy procedure similar to Algorithm 1. At each iteration we consider
a leftmost endpoint zi which is the largest value in [1, k/2] for which we already have a
(1 + ε)-approximation. In the first iteration, we have z1 = 1. We then would like to find a
new linear piece that provides a (1 + ε)-approximation for all values from zi to some zi+1,
where the value of zi+1 is maximized. We restrict to linear pieces that are tangent to ζ.
The line tangent to ζ at t ∈ [1, k/2] is given by

gt(x) = kx− 2tx+ t2 . (31)

We find zi+1 in two steps:
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1. Step 1: Find the maximum value t such that gt(zi) = (1 + ε)ζ(zi).

2. Step 2: Given t, find the maximum zi+1 such that gt(zi+1) = (1 + ε)ζ(zi+1).

After completing these two steps, we add the linear piece gt to L, knowing that it covers all
values in [zi, zi+1] with a (1 + ε)-approximation. At this point, we will have a cover for all
values in [0, zi+1], and we begin a new iteration with zi+1 being the largest value covered.
We continue until we have covered all values up until zi+1 ≥ k/2. If t > k/2 in Step 1 of the
last iteration, we adjust the last linear piece to instead be the line tangent to ζ at x = k/2,
so that we only include lines that have a nonnegative slope.

Lemma 18 For any zi ∈ [1, k/2], the values of t and zi+1 in steps 1 and 2 are given by

t = zi +
√
zi(k − zi)ε (32)

zi+1 =
t

1 + ε
+

kε

2(1 + ε)
+

1

2(1 + ε)

(
k2ε2 + 4εt(k − t)

)1/2
(33)

Proof The proof simply requires solving two different quadratic equations. For Step 1:

gt(zi) = (1 + ε)ζ(zi) ⇐⇒ kzi − 2tzi + t2 = (1 + ε)(zik − z2i )

⇐⇒ t2 − 2zit− εzik + (1 + ε)z2i = 0

Taking the larger solution to maximize t:

t =
1

2

(
2zi +

√
4z2i − 4(1 + ε)z2i + 4εkzi

)
= zi +

√
zi(k − zi)ε.

For Step 2:

gt(zi+1) = (1 + ε)ζ(zi+1) ⇐⇒ kzi+1 − 2tzi+1 + t2 = (1 + ε)(zi+1k − z2i+1)

⇐⇒ (1 + ε)z2i+1 + zi+1(−εk − 2t) + t2 = 0.

We again take the larger solution since we want to maximize zi+1:

zi+1 =
1

2(1 + ε)

(
εk + 2t+

√
ε2k2 + 4tεk + 4t2 − 4(1 + ε)t2

)
=

1

2(1 + ε)

(
εk + 2t+

√
ε2k2 + 4tε(k − t)

)
.

Algorithm 3 summarizes the new procedure for covering the clique splitting function. Since
z1 = 1, if ε ≥ 1, then

z2 ≥
1

2(1 + ε)
(2kε) =

kε

1 + ε
≥ k

2
,

so after one step we have covered [1, k/2]. We can therefore focus on ε < 1.

Theorem 19 For ε < 1, if L is the output from Algorithm 3, then |L| = O(ε−1/2 log log 1
ε ).
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Algorithm 3 Find a (1 + ε)-cover L for the clique splitting function.

Input: Hyperedge size k, ε ≥ 0
Output: (1 + ε) cover for clique splitting function.
L = {g(0)}, where g(0)(x) = (k − 1)x
z = 1
do

t← z +
√
z(k − z)ε

z ← t
1+ε + kε

2(1+ε) + 1
2(1+ε)

(
k2ε2 + 4εt(k − t)

)1/2
if t > k/2 then

L← L ∪ {gk/2}, where gk/2(x) = k/2
else

L← L ∪ {gt}, where gt(x) = kx− 2tx+ t2

end if
while zi+1 < k/2
Return f defined by f(x) = ming∈L g(x)

Proof We get a loose bound for the value of t in Lemma 18 by noting that (k − zi) ≥
k/2 ≥ zi:

t = zi +
√
ziε(k − zi) ≥ zi +

√
z2i ε = zi(1 +

√
ε). (34)

Since we assumed ε < 1, we know that

t

1 + ε
≥ zi(1 +

√
ε)

1 + ε
> zi. (35)

Therefore, from (33) we see that

zi+1 > zi +
kε

2(1 + ε)
+

1

2(1 + ε)

(
k2ε2 + 4εt(k − t)

)1/2
(36)

> zi +
kε

2(1 + ε)
+

1

2(1 + ε)

(
k2ε2

)1/2
= zi +

kε

1 + ε
. (37)

From this we see that at each iteration, we cover an additional interval of length zi+1−zi >
kε
1+ε , and therefore we know it will take at most O(1/ε) iterations to cover all of [1, k/2].
This upper bound is loose, however. The value of zi+1−zi in fact increases significantly with
each iteration, allowing the algorithm to cover larger and larger intervals as it progresses.

Since z1 = 1 and zi+1 − zi ≥ kε
1+ε , we see that zj ≥ kε for all j ≥ 3. For the remainder

of the proof, we focus on bounding the number of iterations it takes to cover the interval
[kε, k/2]. We separate the progress made by Algorithm 3 into different rounds. Round j
refers to the set of iterations that the algorithm spends to cover the interval

Rj =
[
kε(

1
2)

j−1

, kε(
1
2)

j]
. (38)

For example, Round 1 starts with the iteration i such that zi ≥ kε, and terminates when
the algorithm reaches an iteration i′ where zi′ ≥ kε1/2. A key observation is that it takes
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less than 4/
√
ε iterations for the algorithm to finish Round j for any value of j. To see why,

observe that from the bound in (36) we have

zi+1 − zi >
kε

2(1 + ε)
+

1

2(1 + ε)

(
k2ε2 + 4εt(k − t)

)1/2
>

1

2(1 + ε)
(4εt(k − t))1/2 ≥ 1

2(1 + ε)

(
4εzi

k

2

)1/2

>

√
2

2

√
kε

(1 + ε)

√
zi.

For each iteration i in Round j, we know that zi ≥ kε(
1
2)

j−1

, so that

zi+1 − zi >
√

2

2

√
kε

(1 + ε)

√
kε(

1
2)

j−1

≥
√

2

2

kε
1
2
+( 1

2)
j

1 + ε
= C · k · ε 1

2
+( 1

2)
j

, (39)

where C =
√

2/(2(1 + ε)) is a constant larger than 1/4. Since each iteration of Round j

covers an interval of length at least C · k · ε 1
2
+( 1

2)
j

, and the right endpoint for Round j is

kε(
1
2)

j

, the maximum number of iterations needed to complete Round j is

kε(
1
2)

j

C · k · ε 1
2
+( 1

2)
j =

1

C
√
ε
. (40)

Therefore, after p rounds, the algorithm will have performed O(p · ε−1/2) iterations, to

cover the interval [1, kε(
1
2)

p

]. Since we set out to cover the interval [1, k/2], this will be

accomplished as soon as p satisfies ε(
1
2)

p

≥ 1/2, which holds as long as p ≥ log2 log2
1
ε :

ε(
1
2)

p

≥ 1/2 ⇐⇒
(

1

2

)p
log2 ε ≥ −1 ⇐⇒ log2 ε ≥ −2p ⇐⇒ log2 log2

1

ε
≤ p.

This means that the number of iteration of Algorithm 3, and therefore the number of linear
pieces in L, is bounded above by O(ε−1/2 log log 1

ε ).

We obtain a proof of Theorem 2 on sparsifying the complete graph as a corollary.

Proof of Theorem 2. A complete graph on n nodes can be viewed as a hypergraph
with a single n-node hyperedge with a clique expansion splitting function. Theorem 2
says that the clique expansion integer function w(i) = i · (n − i) can be covered with
O(ε−1/2 log log ε−1) linear pieces, which is equivalent to saying the clique expansion splitting
function can be modeled using this many CB-gadgets. Each CB-gadget has two auxiliary
nodes and (2n+ 1) directed edges. This results in an augmented sparsifier for the complete
graph with O(nε−1/2 log log 1

ε ) edges. This is only meaningful if ε is small enough so that

O(ε−1/2 log log 1
ε ) is asymptotically less than n, so our sparsifier has O(n+ε−1/2 log log 1

ε ) =
O(n) nodes.

�

5. Sparsifying Co-occurrence Graphs

Recall from the introduction that a co-occurrence graph is formally defined by a set of nodes
V and a set of subsets C ⊆ 2V . In practice, each c ∈ C could represent some type of group

24



Augmented Sparsifiers for Generalized Hypergraph Cuts

interaction involving nodes in c or a set of nodes sharing the same attribute. We define the
co-occurrence graph G = (V,E) on C to be the graph where nodes i and j share an edge with
weight wij =

∑
c∈C wc, where wc ≥ 0 is a weight associated with co-occurrence set c ∈ C.

The case when wc = 1 is standard and is an example of a common practice of “one-mode
projections” of bipartite graphs or affiliation networks (Lattanzi and Sivakumar, 2009; Li
et al., 2007; Neal, 2014; Newman et al., 2001; Ramasco and Morris, 2006; Zhou et al., 2007;
Benson et al., 2020) — a graph is formed on the nodes from one side of a bipartite graph
by connecting two nodes whenever they share a common neighbor on the other side, where
edges are weighted based on the number of shared neighbors.

A co-occurrence graph G has the following co-occurrence cut function:

cutG(S) =
∑
c∈C

wc · |S ∩ c| · |S̄ ∩ c|. (41)

In this sense, the co-occurrence graph is naturally interpreted as a weighted clique expan-
sion of a hypergraph H = (V, C), which itself is a special case of reducing a submodular,
cardinality-based hypergraph to a graph. However, this type of graph construction is by
no means restricted to literature on hypergraph clustering. In many applications, the first
step in a larger experimental pipeline is to construct a graph of this type from a large data
set. The resulting graph is often quite dense, as numerous domains involve large hyper-
edges (Veldt et al., 2020a; Purkait et al., 2016). This makes it expensive to form, store, and
compute over co-occurrence graphs in practice.

Solving cut problems on these dense co-occurrence graphs arises naturally in many set-
tings. For example, any hypergraph clustering application that relies on a clique expansion
involves a graph with a co-occurrence cut function (Agarwal et al., 2006; Hadley, 1995; Hein
et al., 2013; Huang et al., 2015; Zhou et al., 2006; Li and Milenkovic, 2017; Vannelli and
Hadley, 1990; Zien et al., 1999; Rodŕıguez, 2009; Veldt et al., 2020b,a). Clustering social
networks is another use case, as online platforms have many ways to create groups of users
(e.g., events, special interest groups, businesses, organizations, etc.), that can be large in
practice. Furthermore, cuts in co-occurrence graphs of students on a university campus
(based on, e.g., common classes, living arrangements, or physical proximity) are relevant to
preventing the spread of infectious diseases such as COVID-19.

In these cases, it would be more efficient to sparsify the graph without ever forming
it explicitly, by sparsifying large cliques induced by co-occurrence relationships. Although
this strategy seems intuitive, it is often ignored in practice. We therefore present several
theoretical results that highlight the benefits of this implicit approach to sparsification.
Our focus is on results that can be achieved using augmented sparsifiers for cliques, though
many of the same benefits could also be achieved with standard sparsification techniques.

5.1 Proof of Theorem 3

Let C be a set of nonempty co-occurrence groups on a set of n nodes, V , and let G = (V,E)
be the corresponding co-occurrence graph on C. For c ∈ C, let kc = |c| be the number
of nodes in c. For v ∈ V , let dv be the co-occurrence degree of v: the number of sets c
containing v. Let davg = 1

n

∑
v∈V dv be the average co-occurrence degree. We re-state and

prove Theorem 3, first presented in the introduction. The proof holds independent of the
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weight wc we associate with each c ∈ C, since we can always scale our graph reduction
techniques by an arbitrary positive weight.

Restatement of Theorem 3. Let ε > 0 and f(ε) = ε−1/2 log log 1
ε . There exists an augmented

sparsifier for G with O(n + |C| · f(ε)) nodes and O(n · davg · f(ε)) edges. In particular, if
davg is constant and for some δ > 0 we have

∑
c∈C |c|2 = Ω(n1+δ), then forming G explicitly

takes Ω(n1+δ) time, but an augmented sparsifier for G with O(nf(ε)) nodes and O(nf(ε))
edges can be constructed in O(nf(ε)) time.
Proof The set c induces a clique in the co-occurrence graph with O(k2c ) edges. Therefore,
the runtime for explicitly forming G = (V,E) by expanding cliques and placing all edges
equals O(

∑
c∈C k

2
c ) = Ω(n1+δ). By Theorem 2, for each c ∈ C we can produce an augmented

sparsifier with O(kcf(ε)) directed edges and O(f(ε)) new auxiliary nodes. Sparsifying each
clique in this way will produce an augmented sparsifier Ĝ = (V̂ , Ê) where

|Ê| =
∑
c∈C

O(kcf(ε)) = O(f(ε) · n · davg) (42)

|V̂ | = n+
∑
c∈C

O(f(ε)) = O(n+ |C|f(ε)). (43)

Observe that n·davg =
∑

v∈V dv =
∑

c∈C kc. If davg is a constant, this implies that
∑

c∈C kc =

O(n), and furthermore that |C| = O(n), since each kc ≥ 1. Therefore |Ê| and |V̂ | are both
O(nf(ε)). Only O(f(ε)) edge weights need to be computed for the clique, so the overall
runtime is just the time it takes to explicitly place the O(nf(ε)) edges.

The above theorem includes the case where |C| = o(n), meaning that C is made up of a
sublinear number of large co-occurrence interactions. In this case, our augmented sparsifier
will have fewer than O(nf(ε)) nodes. When |C| = ω(n), the average degree will no longer be
a constant and therefore it becomes theoretically beneficial to sparsify each clique in C using
standard undirected sparsifiers. For each c ∈ C, standard cut sparsification techniques will
produce an ε-cut sparsifier of c with O(kcε

−2) undirected edges and exactly kc nodes. If two
nodes appear in multiple co-occurrence relationships, the resulting edges can be collapsed
into a weighted edge between the nodes, meaning that the number of edges in the resulting
sparsifier does not depend on davg . We discuss tradeoffs between different sparsification
techniques in depth in a later subsection. Regardless of the sparsification technique we
apply, implicitly sparsifying a co-occurrence graph will often lead to a significant decrease
in runtime compared to forming the entire graph prior to sparsifying it.

5.2 A Simple Co-occurrence Model

We now consider a simple model for co-occurrence graphs with a power-law group size
distribution, that produces graphs satisfying the conditions of Theorem 3 in a range of
different parameter settings. Such distributions have been observed for many types of co-
occurrence graphs constructed from real-world data (Clauset et al., 2009; Benson et al.,
2020). More formally, let V be a set of n nodes, and assume a co-occurrence set c is
randomly generated by sampling a set of size K from a discrete power-law distribution
where for k ∈ [1, n]:

P[K = k] = Ck−γ .
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Here, C is a normalizing constant for the distribution, and γ is a parameter of the model.
Once K is drawn from this model, a co-occurrence set c is generated with a set of K nodes
from V chosen uniformly at random. This procedure can be repeated an arbitrary number
of times (drawing all sizes K independently) to produce a set of co-occurrence sets C. This
C can then be used to generate a co-occurrence graph G = (V,E). (The end result of this
procedure is a type of random intersection graph (Bloznelis et al., 2013).) We first consider
a parameter regime where set sizes are constant on average but large enough to produce a
dense co-occurrence graph that is inefficient to explicitly form in practice. The regime has
an exponent γ ∈ (2, 3), which is common in real-world data (Clauset et al., 2009).

Theorem 20 Let C be a set of O(n) co-occurrence sets from the power-law model with
γ ∈ (2, 3). The expected degree of each node is constant and E

[∑
c∈C |c|2

]
= O(n4−γ).

Proof Let K be the size of a randomly generated co-occurrence set. We compute:

E[K2] =

n∑
k=1

k2·P[K = k] = C·
n∑
k=1

k2−γ ≤ C·
[
1 +

∫ n

1
x2−γdx

]
= C+

Cn3−γ

3− γ −
C

3− γ = O(n3−γ).

Therefore,

E

[∑
c∈C
|c|2
]

=
∑
c∈C

E[K2] = O(n4−γ).

For a node v ∈ V and a randomly generated set c, the probability that v will be selected
to be in c is

P[v ∈ c] =

n∑
k=1

P[|c| = k] ·
(
n−1
k−1
)(

n
k

) = C ·
n∑
k=1

k−γ · k
n

=
C

n
·
[
1 +

∫ n

1
x1−γdx

]
= O(n−1).

Since there are O(n) co-occurrence sets in C and they each are generated independently, in
expectation, v will have a constant degree.

We similarly consider another regime of co-occurrence graphs where the number of co-
occurrence sets is o(n), but the co-occurrence sets are larger on average.

Theorem 21 Let C be a set of O(nβ) co-occurrence sets, where β ∈ (0, 1), obtained from
the power-law co-occurrence model with γ = 1 + β. Then the expected degree of each node
will be a constant and E

[∑
c∈C |c|2

]
= O(n3).

Proof Again let K be a random variable representing the co-occurrence set size. We have

E[K2] = C ·
n∑
k=1

k2−γ = O(n3−γ) =⇒ E

[∑
c∈C
|c|2
]

= O(nβ+4−γ) = O(n3).

For a node v ∈ V and a randomly generated set c, the probability that v will be in c is

P[v ∈ c] =
n∑
k=1

P[|c| = k] ·
(
n−1
k−1
)(

n
k

) =
C

n

n∑
k=1

k1−γ = O(n2−γ−1) = O(n−β)
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Since there are O(nβ) co-occurrence sets in C, the expected degree of v is a constant.

In Theorem 21, the exponent of the power-law distribution is assumed to be directly re-
lated to the number of co-occurrence sets in C. This assumption is included simply to ensure
that we are in fact considering co-occurrence graphs with O(n) nodes. We could alterna-
tively consider a power-law distribution with exponent γ ∈ (1, 2) and generate O(nβ) co-
occurrence sets for any β < 1−γ. We simply note that in this regime, the expected average
degree will be o(1). Assuming we exclude isolated nodes, this will produce a co-occurrence
graph with o(n) nodes in expectation. Our techniques still apply in this setting, and we can
produce augmented sparsifiers with O(|C| · f(ε)) nodes and O(n · davg · f(ε)) = o(n · f(ε))
edges. When |C| = Ω(n), then davg = Ω(1) and the number of edges in our augmented
sparsifiers will have worse than linear dependence on n. However, in this regime we can still
quickly obtain sparsifiers with O(nε−2) edges via implicit sparsification by using standard
undirected sparsifiers.

More sophisticated models for generating co-occurrence graphs can be derived from
existing models for projections of bipartite graphs (Benson et al., 2020; Bloznelis et al.,
2013; Bloznelis and Petuchovas, 2017). These make it possible to set different distributions
for node degrees in V and highlight other classes of co-occurrence graphs satisfying the
assumptions of Theorem 3. We have focused on the simplest model for illustrating classes
of power-law co-occurrence graphs that satisfy the assumptions of the theorem.

5.3 Tradeoffs in sparsification techniques

There are several tradeoffs to consider when using different black-box sparsifiers for implicit
co-occurrence sparsification. Standard sparsification techniques involve no auxiliary nodes,
and have undirected edges, which is beneficial in numerous applications. Also, the number
of edges they require is independent of davg . Therefore, in cases where the average co-
occurrence degree is larger than a constant, we obtain better theoretical improvements
using standard sparsifiers.

On the other hand, in many settings, it is natural to assume the number of co-occurrences
each node belongs to is a constant, even if some co-occurrences are very large. In these
regimes, our augmented sparsifiers will have fewer edges that traditional sparsifiers due to
a better dependence on ε. Our techniques are also deterministic and our sparsifiers are
very easy to construct in practice. Edge weights for our sparsifiers are easy to determine in
O(f(ε)) time for each co-occurrence group using Algorithm 1 (or Algorithm 3) coupled with
Lemma 10. The bottleneck in our construction is simply visiting each node in a set c to
place edges between it and the auxiliary nodes. Even in cases where there are no asymptotic
reductions in theoretical runtime, our techniques provide a simple and highly practical tool
for solving cut problems on co-occurrence data.

6. Approximate Cardinality-based DSFM

Appendix B shows how our reduction techniques can be adjusted to apply to splitting func-
tions that are asymmetric and do not necessarily satisfy we(∅) = we(e) = 0. Section 3
addresses the special case of symmetric and non-cut ignoring functions, as these are natural
for hypergraph cut problems (Li and Milenkovic, 2017, 2018b; Veldt et al., 2022), and pro-
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vide the clearest exposition of our main techniques and results. Furthermore, the reduction
from Section 3 requires roughly half the number of edges that the generalized reduction
strategy in Appendix B would use for symmetric splitting functions. Nevertheless, the
same asymptotic upper bound of O(1ε log k) edges holds for approximately modeling the
more general splitting function on a k-node hyperedge. Our techniques then lead to the
first approximation algorithms for the more general problem of minimizing cardinality-based
decomposable submodular functions.

6.1 Decomposable Submodular Function Minimization

Any submodular function can be minimized in polynomial time (Orlin, 2009; Iwata et al.,
2001; Iwata and Orlin, 2009), but the runtimes for general submodular functions are im-
practical in most cases. A number of recent papers have developed faster algorithms for
minimizing submodular functions that are sums of simpler submodular functions (Ene et al.,
2017; Kolmogorov, 2012; Stobbe and Krause, 2010; Li and Milenkovic, 2018a; Nishihara
et al., 2014; Ene and Nguyen, 2015; Jegelka et al., 2011, 2013). This is also know as decom-
posable submodular function minimization (DSFM). Many energy minimization problems
from computer vision correspond to DSFM problems (Kohli et al., 2009; Kolmogorov and
Zabin, 2004; Freedman and Drineas, 2005).

Let f : 2V → R+ be a submodular function, such that for S ⊆ V ,

f(S) =
∑
e∈E

f e(S ∩ e), (44)

where for each e ∈ E , f e is a simpler submodular function with support only on a subset
e ⊆ V . We can assume without loss of generality that every f e is a non-negative function.
The goal of DSFM is to find arg minS f(S). The terminology used for problems of this form
differs depending on the context. We will continue referring to E as a hyperedge set, V as
a node set, f e as generalized splitting functions, and f as a hypergraph cut function.

Cardinality-based decomposable submodular function minimization (Card-DSFM) has
received significant special attention in previous work (Kohli et al., 2009; Kolmogorov, 2012;
Jegelka et al., 2011, 2013; Stobbe and Krause, 2010). This variant of the problem assumes
that each function f e satisfies f e(S) = ge(|S|) for some concave function ge Unlike most
existing work on generalized hypergraph cut functions (Li and Milenkovic, 2017, 2018b;
Veldt et al., 2022), research on DSFM does not typically assume that the functions f e are
symmetric, and also do not assume that f e(∅) = f e(e) = 0. In the appendix we demonstrate
that our sparse reduction techniques can also be adapted to apply to this more general
setting as well. This leads to a proof of Theorem 4.

Proof of Theorem 4. Lemma 28 shows that every cardinality-based submodular function
f e can be approximately modeled by a combination of O(1ε log k) asymmetric CB-gadgets.
This implies that any instance of Card-DSFM can be reduced to an s-t cut problem on a
graph with N = O(n+ 1

ε

∑
e∈E log |e|) nodes and M = O(n+ 1

ε

∑
e∈E log |e|) edges. Applying

a recent Õ(M +N1.5)-time algorithm for the maximum s-t flow problem of van den Brand
et al. (2021) yields the overall runtime guarantee of Õ

(
1
ε

∑
e∈E |e|+ (n+ R

ε )3/2
)
. If we wish

to find the optimal solution to an instance of Card-DSFM, we can also set ε = 0 and obtain
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a reduced graph with O(
∑

e∈E |e|) nodes and O(
∑

e∈E |e|2) edges. The resulting runtime

will then be Õ
(∑

e∈E |e|2 +
(∑

e∈E |e|
)3/2)

.

6.2 Runtime Comparison for Cardinality-Based DSFM

We refer to our approximation algorithm for Card-DSFM as SparseCard, since it depends
on sparse reduction techniques. In the remainder of the section, we provide a careful runtime
comparison between SparseCard and competing runtimes for Card-DSFM. We focus on
each runtime’s dependence on n = |V |, R = |E|, and support sizes |e|, and use Õ notation to
hide logarithmic factors of n, R, and 1/ε. To easily compare weakly polynomial runtimes, we
assume that each f e has integer outputs, and assume that log(maxS f(S)) is small enough
that it can also be absorbed by Õ notation. Our primary goal is to highlight the runtime
improvements that are possible when an approximate solution suffices. Among algorithms
for DSFM, SparseCard is unique in its ability to quickly find solutions with a priori
multiplicative approximation guarantees. Previous approaches for DSFM focus on either
obtaining exact solutions, or finding a solution to within an additive approximation error ε >
0 (Axiotis et al., 2021; Ene et al., 2017; Li and Milenkovic, 2018a; Jegelka et al., 2013). In the
latter case, setting ε small enough will guarantee an optimal solution in the case of integer
output functions. However, these results provide no a priori multiplicative approximation
guarantee. Furthermore, using a larger value of ε for these additive approximations only
improves runtimes in logarithmic terms. In constrast, setting ε > 0 will often lead to
substantial runtime decreases for SparseCard.

Competing runtime guarantees. Table 1 lists runtimes for existing methods for DSFM.
We have listed the asymptotic runtime for SparseCard when applying the recent maximum
flow algorithm of van den Brand et al. (2021). While this leads to the best theoretical
guarantees for our method, asymptotic runtime improvements over competing methods can
also be shown using alternative fast algorithms for maximum flow (Gao et al., 2021; Lee and
Sidford, 2014; Goldberg and Rao, 1998). For the submodular flow algorithm of Kolmogorov
(2012), we have reported the runtime guarantee provided specifically for Card-DSFM. While
other approaches have frequently been applied to Card-DSFM (Ene et al., 2017; Stobbe
and Krause, 2010; Li and Milenkovic, 2018a; Jegelka et al., 2013), runtimes guarantees for
this case have not been presented explicitly and are more challenging to exactly pinpoint.
Runtimes for most algorithms depend on certain oracles for solving smaller minimization
problems at functions f e in an inner loop. For e ∈ E, let Oe be a quadratic minimization
oracle, which for an arbitrary vector w solves miny∈B(fe) ‖y + w‖ where B(f e) is the base
polytope of the submodular function f e (see Ene et al. 2017; Bach 2013; Jegelka et al. 2013
for details). Let θe be the time it take to evaluate the oracle at e ∈ E, and define θmax =
maxe∈E θe and θavg = 1

R

∑
e∈E θe. Although these oracles admit faster implementations in

the case of concave cardinality functions, it is not immediately clear from previous work what
is the best possible runtime. When w = 0, solving miny∈B(fe) ‖y + w‖ takes O(|e| log |e|)
time (Jegelka et al., 2013), so this serves as a best case runtime we can expect for the more
general oracle Oe based on previous results. We note also that in the case of the function
function f e(A) = |A||e\A|, Ene et al. (2017) highlight that an O(|e| log |e|+ |e|τe) algorithm
can be used, where τe denotes the time it take to evaluate f e(S ∩ e) for any S ⊆ e. In our
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runtime comparisons will use the bound θe = Ω(|e|), as it is reasonable to expect that any
meaningful submodular function we consider should take a least linear time to minimize.

Fast approximate solutions (ε > 0). Barring the regime where support sizes |e| are all
very small, the accelerated coordinate descent method (ACDM) of Ene and Nguyen (2015)
has the fastest previous runtime. For a simple parameterized runtime analysis, consider a
DSFM problem where the average support size is (1/R)

∑
e |e| = Θ(nα) for α ∈ [0, 1], and

R = Θ(nβ), where β ≥ 1 − α must hold if we assume each v ∈ V is in the support for at
least one function f e. An exact runtime comparison depends on the best runtime for the
oracle Oe for concave cardinality functions. If an O(|e| log |e|) oracle is possible, the overall
runtime guarantee for ACDM would be Ω(n1+α+β). Meanwhile, for a small constant ε > 0,
SparseCard provides a (1 + ε)-approximate solution in time Õ(nα+β + max{n3/2, n3β/2}),
which will faster by at least a factor Õ(

√
n) whenever β ≤ 1. When β > 1, finding

an approximation with SparseCard is guaranteed to be faster whenever R = o(n2+2α).
If the best case oracle Oe for concave cardinality functions is ω(|e| log |e|), the runtime
improvement of our method is even more significant.

Guarantees for exact solutions (ε = 0). As an added bonus, running SparseCard with
ε = 0 leads to the fastest runtime for finding exact solutions in many regimes. In this
case, we can guarantee SparseCard will be faster than ACDM when the average support
size is Θ(nα) and R = o(n2−α). SparseCard can also find exact solutions faster than
other discrete optimization methods (Kolmogorov, 2012; Axiotis et al., 2021; Fix et al.,
2013) in wide parameter regimes. Our method has a faster runtime guarantee than the
submodular flow algorithm of Kolmogorov (2012) in all parameter regimes, and has a better
runtime guarantee than the strongly-polynomial IBFS algorithm (Fix et al., 2013) when∑

e |e| = o(n4), which includes all cases where R = o(n3). Both variants of IBFS as well as
the recent method of Axiotis et al. (2021) become impractical if even a single function f e has
support size |e| = O(n) (even when the average support size is much smaller). In this case,
runtimes for these methods are Ω(n5). Even using the very loose bounds

∑
e |e|2 ≤ Rn2 and∑

e |e| ≤ nR, our method is guaranteed to find exact solutions faster as long as R = o(n7/3),
with significant additional improvements when approximate solutions suffice. In the extreme
case where maxe |e| = O(1), the algorithm of Axiotis et al. (2021) obtains the best theoretical
guarantees, as it has the same asymptotic runtime as a single maximum flow computation
on an n-node, R-edge graph. It is worth noting that in this regime, running SparseCard
with ε = 0 can exactly solve Card-DSFM with the same asymptotic runtime guarantee as
long as R = Θ(n), and has the added practical advantage that it requires only one call to
a maximum flow oracle.

The runtime guarantee for SparseCard when ε = 0 can be matched asymptotically by
combining existing exact reduction techniques (Kohli et al., 2009; Stobbe and Krause, 2010;
Veldt et al., 2022) with fast maximum flow algorithms. However, our method has the practi-
cal advantage of finding the sparsest exact reduction in terms of CB-gadgets. For example,
this results in a reduced graph with roughly half the number of edges required if we were
to apply our previous exact reduction techniques (Veldt et al., 2022). Analogously, Stobbe
and Krause (2010) showed that a concave cardinality function can be decomposed as a sum
of modular functions plus a combination of |e| − 1 threshold potentials, our approximation
technique will find a linear combination with b|e|/2c threshold potentials. This amounts to
the observation that any k + 1 points {i, g(i)} can be joined by bk/2c + 1 lines instead of
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using k. Overall, the most significant advantage of SparseCard over existing reduction
methods is its ability to find fast approximate solutions.

7. Experiments

In addition to its strong theoretical guarantees, SparseCard is very practical and leads to
substantial improvements in benchmark image segmentation problems and localized hyper-
graph clustering tasks. We focus on image segmentation and localized hypergraph clustering
tasks that simultaneously include component functions of large and small support, which are
common in practice (Shanu et al., 2016; Ene et al., 2017; Veldt et al., 2022; Liu et al., 2021;
Purkait et al., 2016). Image segmentation experiments were run on a laptop with a 2.2 GHz
Intel Core i7 processor and 8GB of RAM. For our local hypergraph clustering experiments,
in order to run a larger number of experiments we used a machine with 4 x 18-core, 3.10 GHz
Intel Xeon gold processors with 1.5 TB RAM. We consider public data sets previously made
available for academic research, and use existing open source software for competing meth-
ods. Image data sets are available at http://people.csail.mit.edu/stefje/code.html

and hypergraph clustering data sets are available at www.cs.cornell.edu/~arb/data/.
Our code is available at https://github.com/nveldt/SparseCardDSFM.

7.1 Benchmark Image Segmentation Tasks

SparseCard provides faster approximate solutions for standard image segmentation tasks
previously used as benchmarks for DSFM (Jegelka et al., 2013; Li and Milenkovic, 2018a;
Ene et al., 2017). We consider the smallplant and octopus segmentation tasks from Jegelka
and Bilmes (2011). These amount to minimizing a decomposable submodular function on
a ground set of size |V | = 427 · 640 = 273280, where each v ∈ V is a pixel from a 427× 640
pixel image and there are three types of component functions. The first type are unary
potentials for each pixel/node, i.e., functions of support size 1 representing each node’s bias
to be in the output set. The second type are pairwise potentials from a 4-neighbor grid
graph; pixels i and j share an edge if they are directly adjacent vertically or horizontally.
The third type are region potentials of the form f e(A) = |A||e\A| for A ⊆ e, where e
represents a superpixel region. The problem can be solved via maximum flow even without
sophisticated reduction techniques for cardinality functions, as a region potential function
on e can be modeled by placing a clique of edges on e. We compute an optimal solution
using this reduction.

Comparison against exact reductions. Compared with the exact reduction method,
running SparseCard with ε > 0 leads to much sparser graphs, much faster runtimes, and
a posteriori approximation factors that are significantly better than (1 + ε). For example,
on the smallplant data set, when ε = 1.0, the returned solution is within a factor 1.004 of
optimality, even though the a priori guarantee is a 2-approximation. The sparse reduced
graph has only 0.013 times the number of edges in the exact reduced graph, and solving
the sparse flow problem is over two orders of magnitude faster than solving the problem on
the exact reduced graph (which takes roughly 20 minutes on a laptop). In Table 2 we list
the sparsity, runtime, and a posteriori guarantee obtained for a range of ε values on the
smallplant data set using the superpixel segmentation with 500 regions.
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ε 1.0 0.2336 0.0546 0.0127 0.003 0.0007 0.0002
Approx.−1 4 · 10−3 2 · 10−3 6 · 10−4 6 · 10−5 3 · 10−5 7 · 10−6 7 · 10−7

Sparsity 0.013 0.017 0.02 0.035 0.06 0.108 0.196
Runtime 4.1 5.6 6.7 11.5 24.3 41.4 74.3

Table 2: Results from SparseCard for different ε > 0 on the smallplant instance with 500
superpixels. Sparsity is the fraction of edges in the approximate graph reduction
compared with the exact reduction. Finding the exact solution on the dense exact
reduced graph took roughly 20 minutes.
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Figure 5: Approximation factor minus 1 vs. runtime for solutions returned by SparseCard
and competing methods on four image segmentation tasks. SparseCard obtains
faster approximate solutions on all but the easiest instance, where all methods
obtain good results within a few seconds. We display the average of 5 runs for
competing methods, with lighter colored region showing upper and lower bounds
from these runs. SparseCard is deterministic and was run once for each ε on a
decreasing logarithmic scale. Our method maintains an advantage even against
post-hoc best case parameters for competing approaches: ACDM-best is the best
result obtained by running ACDM for a range of empirical parameters c for each
data set and reporting the best result. The default is c = 10 (blue curve). Best
post-hoc results for the plots from left to right were c = 25, 10, 50, 25. It is unclear
how to determine the best c in advance.

Comparison against continuous optimization algorithms. We also compare against re-
cent C++ implementations of ACDM, RCDM, and Incidence Relation AP, the last of which
is an improved version of the standard AP method (Nishihara et al., 2014) provided by Li
and Milenkovic (2018a). These use the divide-and-conquer method of Jegelka et al. (2013),
implemented specifically for concave cardinality functions, to solve the quadratic mini-
mization oracle Oe for region potential functions. Although these continuous optimization
methods come with no a priori approximation guarantees, we can compare them against
SparseCard by computing a posteriori approximations obtained using intermediate so-
lutions returned after every few hundred iterations. In more detail, we extract the best
level set Sλ = {i : xi > λ} from the vector of dual variables x = (xi) at various steps, and
compute the approximation ratio argminλ f(Sλ)/f(S∗) where S∗ is the optimal solution
determined via the exact max-flow solution. Figure 5 displays approximation ratio versus

33



Benson, Kleinberg, and Veldt

runtime for four DSFM instances (two data sets × two superpixel segmentations). Spar-
seCard was run for a range of ε values on a decreasing logarithmic scale from 1 to 10−4,
and obtains significantly better results on all but the octopus with 500 superpixels instance.
This is the easiest instance; all methods obtain a solution within a factor 1.001 of optimality
within a few seconds. ACDM depends on a hyperparameter c controlling the number of
iterations in an outer loop. Even when we choose the best post-hoc c value for each data
set, SparseCard maintains its overall advantage. Appendix C provides additional details
regarding the competing algorithms and their parameter settings.

We focus on comparisons with continuous optimization methods rather than other dis-
crete optimization methods, as the former are better equipped for our goal of finding approx-
imate solutions to DSFM problems involving functions of large support. To our knowledge,
no implementations for the methods of Kolmogorov (2012) or Axiotis et al. (2021) exist.
Meanwhile, IBFS (Fix et al., 2013) is designed for finding exact solutions when all support
sizes are small. Recent empirical results (Ene et al., 2017) confirm that this method is not
designed to handle the large region potential functions we consider.

7.2 Hypergraph local clustering

Graph reduction techniques have been frequently and successfully used as subroutines for
hypergraph local clustering and semi-supervised learning methods (Liu et al., 2021; Veldt
et al., 2020a; Li and Milenkovic, 2017; Yin et al., 2017). Replacing exact reductions with our
approximate reductions can lead to significant runtime improvements without sacrificing on
accuracy, and opens the door to running local clustering algorithms on problems where exact
graph reduction would be infeasible. We illustrate this by using SparseCard as a subrou-
tine for a method we previously designed called HyperLocal (Veldt et al., 2020a). This
algorithm finds local clusters in a hypergraph by repeatedly solving hypergraph minimum
s-t cut problems, which could also be viewed as instances of Card-DSFM. HyperLocal
was originally designed to handle only the δ-linear penalty f e(A) = min{|A|, |e\A|, δ}, for
parameter δ ≥ 1, which can already be modeled sparsely with a single CB-gadget. Sparse-
Card makes it possible to sparsely model any concave cardinality penalty. We specifically
use approximate reductions for the weighted clique penalty f e(A) = (|e|−1)−1|A||e\A|, the
square root penalty f e(A) =

√
min{|A|, |e\A|}, and the sublinear power function penalty

f e(A) = (min{|A|, |e\A|})0.9, all of which require O(|e|2) edges to model exactly using
previous reduction techniques. Weighted clique penalties in particular have been used ex-
tensively in hypergraph clustering (Agarwal et al., 2006; Yin et al., 2017; Kumar et al.,
2020; Zien et al., 1999), including by methods specifically designed for local clustering and
semi-supervised learning (Li et al., 2018; Yin et al., 2017; Zhou et al., 2006).

Stackoverflow hypergraph. We consider a hypergraph clustering problem where nodes
are 15.2M questions on stackoverflow.com and each of the 1.1M hyperedges defines a set
of questions answered by the same user. The mean hyperedge size is 23.7, the maximum
size is over 60k, and there are 2165 hyperedges with at least 1000 nodes. Questions with the
same topic tag (e.g., “common-lisp”) constitute small labeled clusters in the data set. We
previously showed that HyperLocal can detect clusters quickly with the δ-linear penalty
by solving localized s-t cut problems near a seed set. Applying exact graph reductions for
other concave cut penalties is infeasible, due to the extremely large hyperedge sizes, and
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Figure 6: Average F1 score obtained for each localized clustering using 4 different hyper-
edge cut penalties. For clique, x0.9, and the square root penalties, we used an
approximate reduction with ε = 1.0. The clique penalty had the highest average
F1 score on 26 clusters, the δ-linear had the highest on 10 clusters, and x0.9 had
the highest average score on the remaining 9 clusters.

we found that using a clique expansion after simply removing large hyperedges performed
poorly (Veldt et al., 2020a). Using SparseCard as a subroutine opens up new possibilities.

Experimental setup and parameter settings. We follow our previously used experimental
setup (Veldt et al., 2020a) for detecting localized clusters in the Stackoverflow hypergraph.
We focus on a set of 45 local clusters, all of which are question topics involving between
2,000 and 10,000 nodes. For each cluster, we generate a random seed set by selecting 5%
of the nodes in the target cluster uniformly at random, and then add neighboring nodes
to the seed set to grow it into a larger input set Z to use for HyperLocal (see Veldt
et al. 2020a for details). We set δ = 5000 for the δ-linear hyperedge cut function and set
a locality parameter for HyperLocal to be 1.0 for all experiments. With this setup, us-
ing HyperLocal with the δ-linear penalty will then reproduce our original experimental
settings (Veldt et al., 2020a). Our goal is to show how using SparseCard leads to fast and
often improved results for alternative penalties that could not previously been used.

Experimental results. In Figure 6 we show the mean F1 score for each cluster (across the
ten random seed sets) obtained by the δ-linear penalty and the three alternative penalties
when ε = 1.0. The clique penalty obtained the highest average F1 score on 26 clusters, the δ-
linear obtained the highest average score on 10 clusters, and the sublinear penalty obtained
the best average score on the remaining 9 clusters. Importantly, cut penalties that previously
could not be used on this data set (clique, x0.9) obtain the best results for most clusters. The
square root penalty does not perform particularly well on this data set, but it is instructive
to consider its runtime (Figure 7f). Theorem 17 shows that asymptotically this function
has a worst-case behavior in terms of the number of CB-gadgets needed to approximate
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it. We nevertheless obtain reasonably fast results for this penalty function, indicating that
our techniques can provide effective sparse reductions for any concave cardinality function
of interest. We also ran experiments with ε = 0.1 and ε = 0.01, which led to noticeable
increases in runtime but only very slight changes in F1 scores (Figure 7). This indicates why
exact reductions are not possible in general, while also showing that our sparse approximate
reductions serve as fast and very good proxies for exact reductions.

8. Conclusion and Discussion

We have introduced the notion of an augmented cut sparsifier, which approximates a gen-
eralized hypergraph cut function with a sparse directed graph on an augmented node set.
Our approach relies on a connection we highlight between graph reduction strategies and
piecewise linear approximations to concave functions. Our framework leads to more effi-
cient techniques for approximating hypergraph s-t cut problems via graph reduction, im-
proved sparsifiers for co-occurrence graphs, and fast algorithms for approximately minimiz-
ing cardinality-based decomposable submodular functions.

A natural question is how to choose an appropriate approximation parameter ε in prac-
tice. Our experimental results first of all indicate that choosing even a fairly large value
(e.g., ε = 1) leads to a significant runtime savings at an extremely small cost to perfor-
mance. The approximation guarantees we observed in practice are far better than the a
priori (1 + ε) approximation guarantee (Table 2). In our clustering experiments, choosing
ε = 1 led to no meaningful difference from choosing ε = 0.01 in terms of detecting ground
truth clusters (Figure 7). More generally, if practitioners do not have a specific requirement
for the approximation factor but have specific constraints on computational resources, our
theoretical results can be used to check how many edges are needed to reduce the hyper-
graph to a graph for a range of different tolerance values ε. Doing so can provide estimates
for runtime and memory costs without having to explicitly form the reduced graph. One
can then choose the smallest ε that ensures a reasonable size for the reduced graph.

As noted in Section 1.2, an interesting open question is to establish and study analogous
notions of augmented spectral sparsification, given that spectral sparsifiers provide a useful
generalization of cut sparsifiers in graphs (Spielman and Teng, 2011). One way to define
such a notion is to apply existing definitions of submodular hypergraph Laplacians (Li
and Milenkovic, 2018b; Yoshida, 2019) to both the original hypergraph and its sparsifier.
This requires viewing our augmented sparsifier as a hypergraph with splitting functions of
the form we(A) = a · min{|A|, |e\A|, b}, corresponding to hyperedges with cut properties
that can be modeled by a cardinality-based gadget. From this perspective, augmented
spectral sparsification means approximating a generalized hypergraph cut function with
another hypergraph cut function involving simplified splitting functions. While this provides
one possible definition for augmented spectral sparsification, it is not clear whether the
techniques we have developed can be used to satisfy this definition. Furthermore, it is not
clear whether obtaining such a sparsifier would imply any immediate runtime benefits for
approximating the spectra of generalized hypergraph Laplacians, or for solving generalized
Laplacian systems (Fujii et al., 2021; Li et al., 2020). We leave these for future work.

While our work provides the optimal reduction strategy in terms of cardinality-based
gadgets, this is more restrictive than optimizing over all possible gadgets for approximately
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(a) Clique Runtime (b) Clique F1 Scores

(c) x0.9 Runtime (d) x0.9 F1 Scores

(e) Square Root Runtime (f) Square Root F1 Scores

Figure 7: We display differences in runtimes and F1 scores when using different ε values
when approximating three hyperedge cut penalties. Using a larger ε provides a
significant runtime savings with virtually no affect on F1 scores. Clusters have
been re-arranged in the horizontal axis for each hyperedge cut penalty for easier
visualization.
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modeling hyperedge cut penalties. Optimizing over a broader space of gadgets poses another
interesting direction for future work, but is more challenging in several ways. First of
all, it is unclear how to even define an optimal reduction when optimizing over arbitrary
gadgets, since it is preferable to avoid both adding new nodes and adding new edges,
but the tradeoff between these two goals is not clear. Another challenge is that the best
reduction may depend heavily on the splitting function we wish to reduce, which makes
developing a general approach difficult. A natural next step would be to at least better
understand lower bounds on the number of edges and auxiliary nodes needed to model
different cardinality-based splitting functions. While we do not have any concrete results,
there are several indications that cardinality-based gadgets may be nearly optimal in many
settings. For example, star expansions and clique expansions provide a more efficient way
to model linear and quadratic splitting functions respectively, but modeling these functions
with cardinality-based gadgets only increases the number of edges by roughly a factor two.

Finally, we find it interesting that using auxiliary nodes and directed edges makes it pos-
sible to sparsify the complete graph using only O(nε−1/2 log log 1

ε ) edges, whereas standard
sparsifiers require O(nε−2). We would like to better understand whether both directed
edges and auxiliary nodes are necessary for making this possible, or whether improved
approximations are possible using only one or the other.
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Appendix A. Proofs of Lemmas in Section 3

A.1 Proof of Lemma 9

Proof Define b0 = 0 for notational convenience. The first three conditions in Definition 8
can be seen by inspection, recalling that 0 < aj and 0 < bj ≤ r for all j ∈ [J ]. Observe that

f̂ is linear over the interval [bi−1, bi) for i ∈ [J ], since for x ∈ [bi−1, bi),

f̂(x) =

J∑
j=1

aj ·min{x, bj} =

i−1∑
j=1

ajbj + x ·
J∑
j=i

aj .

In other words, the ith linear piece of f̂ , defined over x ∈ [bi−1, bi) is given by f̂
(i)

(x) =
Ii+Six, where the intercept and slope terms are given by Ii =

∑i−1
j=1 ajbj and Si =

∑J
j=i aj .

For the first J intervals of the form [bi−1, bi), the slopes are always positive but strictly de-
creasing. Thus, there are exactly J positive-sloped linear pieces. The final linear piece is a
flat line, since f̂(x) =

∑J
j=1 ajbj for all x ≥ bJ . The concavity of f̂ follows directly from the

fact that it is a continuous and piecewise linear function with decreasing slopes.
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A.2 Proof of Lemma 10

Proof Since f is in Fr, it has J positive-sloped linear pieces and one flat linear piece, and
therefore it has exactly J breakpoints: 0 < b1 < b2 < . . . < bJ . Let b = (bj) be the vector
storing these breakpoints. For convenience we define b0 = 0, though b0 is not stored in b.
By definition, f is constant for all x ≥ r, which implies that bJ ≤ r.

Let fi = f(bi). For i ∈ [J ], the positive slope of the ith linear piece of f , which occurs
in the range [bi−1, bi], is given by

mi =
fi − fi−1
bi − bi−1

. (45)

The ith linear piece of f is given by

f (i)(x) = mi(x− bi−1) + fi−1 for x ∈ [bi−1, bi]. (46)

The last linear piece of f is a flat line over the interval x ∈ [bJ ,∞), i.e., mJ+1 = 0. Since
f has positive and strictly decreasing slopes, we can see that ai = mi −mi+1 > 0 for all
i ∈ [J ].

Let ŵ be the order-J CCB function constructed from vectors (a,b), and let f̂ be its
resulting continuous extension:

f̂ =
J∑
j=1

aj ·min{x, bj}. (47)

We must check that f̂ = f . By Lemma 9, we know that f̂ is in Fr and has exactly J + 1
linear pieces. The functions will be the same, therefore, if they share the same values at
breakpoints. Evaluating f̂ at an arbitrary breakpoint bi gives:

f̂(bi) =

 i−1∑
j=1

aj · bj

+ bi ·

 J∑
j=i

aj

 =

 i−1∑
j=1

aj · bj

+ bi ·mi. (48)

We first confirm that the functions coincide at the first breakpoint:

f̂(b1) = b1 ·m1 = b1 ·
f1 − f0
b1 − b0

= b1
f1
b1

= f1.

For any fixed i ∈ {2, 3, . . . , J},

f̂(bi)− f̂(bi−1) =

 i−1∑
j=1

ajbj

+ bimi −

 i−2∑
j=1

ajbj

− bi−1mi−1

= ai−1bi−1 + bimi − bi−1mi−1 = (mi−1 −mi)bi−1 + bimi − bi−1mi−1

= mi(bi − bi−1) = fi − fi−1.

Since f(b1) = f̂(b1) and f(bi) − f(bi−1) = f̂(bi) − f̂(bi−1) for i ∈ {2, 3, . . . , t}, we have
f(bi) = f̂(bi) for i ∈ [J ]. Therefore, f and f̂ are the same piecewise linear function.
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Appendix B. Sparsification for Generalized Splitting Functions

In Sections 2 and 3 we focused on sparsification techniques for representing splitting func-
tions that are symmetric and penalize only cut hyperedges:

we(S) = we(e\S) for all S ⊆ e
we(e) = we(∅) = 0.

These assumptions are standard for generalized hypergraph cut problems (Veldt et al.,
2022; Li and Milenkovic, 2017, 2018b), and lead to the clearest exposition of our main
results. In this appendix, we extend our sparse approximation techniques so that they apply
even if we remove these restrictions. This will allow us to obtain improved techniques for
approximately solving a certain class of decomposable submodular functions (see Section 6).
Formally, our goal is to minimize

minimize
S⊆V

f(S) =
∑
e∈E

we(S ∩ e), (49)

where each we is a submodular cardinality-based function, that is not necessarily symmetric
and does not need to equal zero when the hyperedge e is uncut. Our proof strategy for
reducing this more general problem to a graph s-t cut problem closely follows the same
basic set of steps used in Section 3 for the special case.

B.1 Submodularity Constraints for Cardinality-Based Functions

We first provide a convenient characterization of general cardinality-based submodular func-
tions. By general we mean the splitting function does not need to be symmetric nor does
it need to have a zero penalty when the hyperedge is uncut.

Lemma 22 Let we be a general submodular cardinality-based splitting function on a k-
node hyperedge e, and let wi denote the penalty for any A ⊆ e with |A| = i. Then for
i ∈ {1, 2, . . . , k − 1}, we have the inequality 2wi ≥ wi−1 + wi+1.

Proof Let v1, v2, . . . , vk denote the nodes in the hyperedge. Submodularity means that for
all A,B ⊆ e, w(A)+w(B) ≥ w(A∪B)+w(A∩B). In order to show the desired inequality,
simply set A = {v1, v2, . . . , vi} and B = {v2, v2, . . . , vi+1} and the result follows.

To simplify our analysis, as we did for the symmetric case, we will define a set of functions
that is virtually identical to these splitting functions on k-node hyperedges, but are defined
over integers from 0 to k rather than on subsets of a hyperedge.

Definition 23 A k-GSCB (Generalized Submodular Cardinality-Based) integer function is
a function w : {0} ∪ [k]→ R+ satisfying 2w(i) ≥ w(i− 1) + w(i+ 1) for all i ∈ [k − 1].

B.2 Combining Gadgets for Generalized SCB Functions

Our goal is to show how to approximate k-GSCB integer functions using piecewise linear
functions with few linear pieces. This in turn corresponds to approximating a hyperedge
splitting function with a sparse gadget. In order for this to work for our more general class
of splitting functions, we use a slight generalization of an asymmetric gadget we introduced
in previous work (Veldt et al., 2022).
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Definition 24 The asymmetric cardinality-based gadget (ACB-gadget) for a k-node hyper-
edge e is parameterized by scalars a and b and constructed as follows:

• Introduce an auxiliary vertex ve.

• For each v ∈ e, introduce a directed edge from v to ve with weight a · (k − b), and a
directed edge from ve to v with weight a · b.

The ACB-gadget models the following k-GSCB integer function:

wa,b(i) = a ·min{i · (k − b), (k − i) · b}. (50)

To see why, consider where we must place the auxiliary node ve when solving a minimum
s-t cut problem involving the ACB-gadget. If we place i nodes on the s-side, then placing
ve on the s-side has a cut penalty of ab(k − i), whereas placing ve on the t-side gives a
penalty of ai(k − b). To minimize the cut, we choose the smaller of the two options.

Previously we showed that asymmetric splitting functions can be modeled exactly by a
combination of k−1 ACB-gadgets (Veldt et al., 2022). As we did in Section 3 for symmetric
splitting functions, we will show here that a much smaller number of gadgets suffices if we
are content to approximate the cut penalties of an asymmetric splitting function. In our
previous work we enforced the constraint we(∅) = we(0) = 0 even for asymmetric splitting
functions, but we remove this constraint here. In order to model the cut properties of an
arbitrary GSCB splitting function, we define a combined gadget involving multiple ACB-
gadgets, as well as edges from each node v ∈ e to the source and sink nodes of the graph.
The augmented cut function for the resulting directed graph Ĝ = (V ∪ A ∪ {s, t}, Ê) will
then be given by cutĜ(S) = minT⊆A dircutĜ({s} ∪ S ∪ T ) for a set S ⊆ V , where dircut

is the directed cut function on Ĝ. Finding a minimum s-t cut in Ĝ will solve objective (49),
or equivalently, the cardinality-based DSFM problem.

Definition 25 A k-CG function (k-node, combined gadget function) ŵ of order J is a k-
GSCB integer function that is parameterized by scalars z0, zk, and (aj , bj) for j ∈ [J ]. The
function has the form:

ŵ(i) = z0 · (k − i) + zk · i+

J∑
j=1

aj min{i · (k − bj), (k − i) · bj}. (51)

The scalars parameterizing ŵ satisfy

bj > 0, aj > 0 for all j ∈ [J ]

bj < bj+1 for all j ∈ [J − 1]

bJ < k and z0 ≥ 0 and zk ≥ 0.

Conceptually, the function shown in (51) represents a combination of J ACB-gadgets for a
hyperedge e, where additionally for each node v ∈ e we have place a directed edge from a
source node s to v of weight z0, and an edge from v to a sink node t with weight zk.
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The continuous extension of the k-CG function in (51) is defined to be:

f̂(x) = z0 · (k − x) + zk · x+
J∑
j=1

aj min{x · (k − bj), (k − x) · bj} for x ∈ [0, k]. (52)

Lemmas 26 and 27 are analogous to Lemmas 9 and 10 for symmetric splitting functions.

Lemma 26 The continuous extension f̂ of ŵ is nonnegative over the interval [0, k], piece-
wise linear, concave, and has exactly J + 1 linear pieces.

Proof Nonnegativity follows quickly from the positivity of z0, zk, and (ai, bi) for i ∈ [J ],
and bJ < k. For other properties, we begin by re-writing the function as

f̂(x) = z0 · (k − x) + zk · x+
J∑
j=1

aj min{x · (k − bj), (k − x) · bj} (53)

= kz0 + x(zk − z0) + k ·
J∑
j=1

aj min{x, bj} − x ·
J∑
j=1

ajbj (54)

= kz0 + x(zk − z0) + kx ·
∑
j:x<bj

aj + k ·
∑
j:x≥bj

ajbj − x ·
J∑
j=1

ajbj . (55)

Define

β =
J∑
j=1

ajbj , βt =
t∑

j=1

ajbj , αt =
J∑

j=t+1

aj ,

and observe that βt is strictly increasing with t, and αt is strictly decreasing with t. Define
b0 = 0 and bJ+1 = k for notational convenience. For any t ∈ {0}∪ [J ], the function is linear
over the interval [bt, bt+1), since for x ∈ [bt, bt+1), we have

f̂(x) = kz0 + x(zk − z0) + kx ·
∑
j:x<bj

aj + k ·
∑
j:x≥bj

ajbj − x ·
J∑
j=1

ajbj

= kz0 + x(zk − z0) + kx

J∑
j=t+1

aj + k ·
t∑

j=1

ajbj − x
J∑
j=1

ajbj

= kz0 + x(zk − z0) + kxαt + kβt − xβ.

Thus, f̂ is piecewise linear. Furthermore, the slope of the line over the interval [bt, bt+1)
is (zk − z0 − β + kαt), which strictly decreases as t increases. The fact that all slopes are
distinct means that there are exactly J + 1 linear pieces, and the fact that these slopes are
decreasing means that the function is concave over the interval [0, k].

Lemma 27 For every function f that is nonnegative, piecewise linear with J + 1 linear
pieces, and concave over the interval [0, k], there exists some k-CG function ŵ of order J
such that f is the continuous extension of ŵ.
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Proof The function ŵ will be defined by choosing parameters z0, zk, and (aj , bj) for j ∈ [J ].

Let f̂ denote the continuous extension of the function ŵ that we will build. From the proof
of Lemma 26, we know that the parameter bj will correspond to the jth breakpoint of

f̂ . Therefore, given f , we set bj to be the jth breakpoint of the function f , so that the
functions match at breakpoints. For convenience, we also set b0 = 0 and bJ+1 = k. We
then set z0 = f(0)/k and zk = f(k)/k, to guarantee that f̂(0) = f(0) and f̂(k) = f(k). In
order to set the aj values, we first compute the slopes of each line of f . Let fj = f(bj) for
j ∈ {0} ∪ [J + 1]. The jth linear piece of f has the slope:

mi =
fi − fi−1
bi − bi−1

.

Finally, for j ∈ [J ] we set aj = 1
k (mj − mj+1). All of our chosen parameters satisfy

the conditions of Definition 25, so it simply remains to check that f and f̂ coincide at
breakpoints.

Let t ∈ [J ]. Using Equation (55) to evaluate f̂ at breakpoint bt, we get

f̂(bt) = f0 +
bt
k

(fk − f0) + kbt

J∑
j=t+1

aj + k

t∑
j=1

ajbj − bt
J∑
j=1

ajbj . (56)

We can simplify several terms using the fact that aj = 1
k (mj −mj+1). First of all,

k
J∑

j=t+1

aj =
J∑

j=t+1

[mj −mj+1] = mt+1 −mJ+1.

Furthermore,

k
t∑

j=1

ajbj =
t∑

j=1

(mj −mj+1)bj = m1b1 −mt+1bt +
t∑

j=2

mj(bj − bj−1)

= (f1 − f0)−mt+1bt +

t∑
j=2

[fj − fj−1] = (f1 − f0)−mt+1bt + ft − f1

= ft − f0 −mt+1bt.

Similarly, we see that
∑J

j=1 ajbj = 1
k (fJ − f0 −mJ+1bJ). Plugging this into Equation (56):

f̂(bt) = f0 +
bt
k

(fJ+1 − f0) + bt(mt+1 −mJ+1) + ft − f0 −mt+1bt −
bt
k

(fJ − f0 −mJ+1bJ)

=
bt
k
fJ+1 − btmJ+1 + ft −

bt
k

(fJ −mJ+1bJ)

= ft +
bt
k

(fJ+1 − fJ)− btmJ+1

(
1− bJ

k

)
= ft +

bt
k

(fJ+1 − fJ)− bt
(
fJ+1 − fJ
k − bJ

)(
k − bJ
k

)
= ft = f(bt).

So we see that f = f̂ at breakpoints, and therefore these be the same piecewise linear func-
tion.
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B.3 Finding the Best Piecewise Approximation

As we did for symmetric splitting functions, we can quickly find the best piecewise linear
(1 + ε)-approximation to a k-GSCB integer function w using a greedy approach. We omit
proof details, as they exactly mirror arguments provided for the symmetric case. The
submodularity constraint 2w(i) ≥ w(i+ 1) + w(i− 1) for i ∈ {0} ∪ [k] can be viewed as a
discrete version of concavity, and will ensure that the piecewise linear function returned by
such a procedure will also be nonnegative and concave. After obtaining the piecewise linear
approximation, we can apply Lemma 27 to reverse engineer a k-CG function of a small
order that approximates w. We obtain the same asymptotic upper bound on the number
of linear pieces needed to approximate w.

Lemma 28 Let w be a k-GSCB integer function and ε ≥ 0. There exists a k-CG function
ŵ of order J = O(1ε log k) that satisfies w(i) ≤ ŵ(i) ≤ (1 + ε)w(i) for any i ∈ {0} ∪ [k].

B.4 Approximating Cardinality-Based Sum of Submodular Functions

Recall that k-CG functions correspond to combinations of ACB-gadgets for a hyperedge
e as well as directed edges between nodes in e and the source and sink nodes in some
minimum s-t cut problem. Each ACB-gadget involves one new auxiliary node and 2|e|
directed edges, and the number of ACB-gadgets is equal to the order of the k-CG function
(the number of linear pieces minus one). Let H = (V, E) be a hypergraph with n = |V |
nodes, where each splitting function is submodular, cardinality-based, and is not required to
be symmetric or penalize only cut hyperedges. Finding the minimum cut in H corresponds
to solving the sum of submodular splitting functions given in (49). For ε ≥ 0, we can
preserve cuts in H to within a factor (1 + ε) by introducing a source and sink node s and t
and applying our sparse reduction techniques to each hyperedge to obtain a directed graph
Ĝ = (V ∪A∪{s, t}, Ê), where A is the set of auxiliary nodes, with N = O(n+ 1

ε

∑
e∈E log |e|)

nodes and M = O(n+ 1
ε

∑
e∈E log |e|) edges. Even if the size of each e ∈ E is O(n), we have

N = O(n+ ε−1|E| log n) and M = O(ε−1 log n
∑

e∈E |e|).

Appendix C. Parameter Settings for Image Segmentation Experiments

The continuous optimization methods for DSFM that we compare against are implemented
in C++ with a MATLAB front end. The Incidence Relation AP (IAP) method is an
improved version of the AP method (Nishihara et al., 2014). Li and Milenkovic (2018a)
showed that the runtime of the method can be significantly faster if one accounts for so-called
incidence relations, which describe sets of nodes that define the support of a component
function. In our experiments we also ran the standard AP algorithm as implemented by
Li and Milenkovic, but this always performed noticeably worse that IAP in practice, so we
only report results for IAP. Neither of these methods require setting any hyperparameters.

Li and Milenkovic (2018a) also showed that accounting for incidence relations leads
to improved parallel runtimes for ACDM and RCDM, but this does not improve serial
runtimes. To simulate improved parallel runtimes, the implementations ACDM and RCDM
of these authors include a parallelization parameter α = K/R, where K is the number of
projections performed in an inner loop of these methods, and R is the number of component
functions. In theory, the K projections could be performed in parallel, leading to faster
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overall runtimes. The comparative parallel performance between methods can be simulated
by seeing how quickly the methods converge in terms of the number of total projections
performed. Note however that the implementations themselves are serial, and only simulate
what could happen in a parallel setting. Li and Milenkovic (2018a) demonstrated that the
minimum number of total projections needed to achieve convergence to within a small
tolerance is typically achieved when α is quite small. When projections are performed in
parallel, choosing a larger α may still be advantageous. However, since our goal is to obtain
the fast serial runtimes, we chose a small value α = 0.01, based on the results of Li and
Milenkovic. We also tried larger and smaller values of α in post-hoc experiments on all four
instances of DSFM, though this led to little variation in performance.

In addition to α, ACDM relies on an empirical parameter c controlling the number of
iterations in an outer loop. We used the recommended default parameter c = 10. In general
it is unclear how to set this parameter a priori to obtain better than default behavior on
a given DSFM instance. In order to highlight the strength of SparseCard relative to
ACDM, we additionally tried post-hoc tuning of c on each data set to see how much this
could affect results. We ran ACDM on each of the four instances of DSFM (2 image data
sets × 2 superpixel segmentations each) for all c ∈ {10, 25, 50, 100, 200}, three different
times, for 50R projections (i.e., on average we visit and perform a projection step at each
component function 50 times). This took roughly 30-45 seconds for each run. We then
computed the average duality gap for each c and each instance over the three trials, and
re-ran the algorithm for even longer using the best value of c for each instance. The result is
shown as ACDM-best in Figure 5. SparseCard still maintains a clear advantage over this
method on the instances that involve 200 superpixels (i.e., very large region potentials). Our
method also obtains better approximations for the smallplant data set with 500 superpixels
for the first 40 seconds, after which point ACDM-best converges to the optimal solution.
Nevertheless, we would not have seen this improved behavior without post-hoc tuning of
the hyperparameter c for ACDM. Meanwhile, SparseCard only relies on the parameter
ε, and it is very easy to understand how setting this parameter affects the algorithm as it
directly controls the sparsity and a priori approximation guarantee for our method.

We remark finally that Li and Milenkovic (2018a) also considered and implemented an
alternate version of RCDM (RCDM-greedy) with a greedy sampling strategy for visiting
component functions in the method’s inner loop. Despite being advantageous for parallel
implementations, we found that in practice that this method had worse serial runtimes, so
we did not report results for it.
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