
Journal of Machine Learning Research 24 (2023) 1-20 Submitted 4/22; Revised 11/22; Published 5/23

Selective inference for k-means clustering

Yiqun T. Chen yiqunc@stanford.edu
Data Science Institute and Department of Biomedical Data Science
Stanford University
Stanford, CA 94305, USA

Daniela M. Witten dwitten@uw.edu

Departments of Statistics and Biostatistics

University of Washington

Seattle, WA 98195-4322, USA

Editor: Ji Zhu

Abstract

We consider the problem of testing for a difference in means between clusters of observations
identified via k-means clustering. In this setting, classical hypothesis tests lead to an
inflated Type I error rate. In recent work, Gao et al. (2022) considered a related problem
in the context of hierarchical clustering. Unfortunately, their solution is highly-tailored to
the context of hierarchical clustering, and thus cannot be applied in the setting of k-means
clustering. In this paper, we propose a p-value that conditions on all of the intermediate
clustering assignments in the k-means algorithm. We show that the p-value controls the
selective Type I error for a test of the difference in means between a pair of clusters obtained
using k-means clustering in finite samples, and can be efficiently computed. We apply our
proposal on hand-written digits data and on single-cell RNA-sequencing data.

Keywords: Post-selection inference, Unsupervised learning, Hypothesis testing, Type I
error, RNA-sequencing

1. Introduction

Testing for a difference in means between two groups is one of the most fundamental tasks
in statistics, with numerous applications. If the groups under investigation are pre-specified,
i.e., not a function of the observed data, then classical hypothesis tests will control the Type
I error rate. However, it is increasingly common to want to test for a difference in means be-
tween groups that are defined through the observed data, e.g., via the output of a clustering
algorithm. For instance, in single-cell RNA-sequencing analysis, researchers often first clus-
ter the cells, and then test for a difference in the expected gene expression levels between the
clusters to quantify up- or down-regulation of genes, annotate known cell types, and iden-
tify new cell types (Grün et al., 2015; Aizarani et al., 2019; Lähnemann et al., 2020; Zhang
et al., 2019; Doughty and Kerkhoven, 2020). In fact, the inferential challenges resulting from
testing data-guided hypotheses have been described as a “grand challenge” in the field of
genomics (Lähnemann et al., 2020), and papers in the field continue to overlook this issue:
as an example, seurat (Stuart et al., 2019), the state-of-the-art single-cell RNA sequencing
analysis tool, tests for differential gene expression between groups obtained via clustering,
with a note that “p-values [from these hypotheses] should be interpreted cautiously, as the
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genes used for clustering are the same genes tested for differential expression.” Testing data-
guided hypothesis also arises in the field of neuroscience (Kriegeskorte et al., 2009; Button,
2019), social psychology (Hung and Fithian, 2020), and physical sciences (Friederich et al.,
2020; Pollice et al., 2021). When the null hypothesis is a function of the data, classical tests
that do not account for this will fail to control the Type I error.

In this paper, we develop a test for a difference in means between two clusters estimated
from applying k-means clustering (Lloyd, 1982; MacQueen et al., 1967), an extremely pop-
ular clustering algorithm with numerous applications (Xu and Wunsch, 2008). In recent
work, Gao et al. (2022) tackled a similar problem for hierarchical clustering. While the two
papers share similar notation and setup, our solutions and algorithms are tailored to the
iterative and centroid-based nature of k-means clustering, leading to fundamentally differ-
ent solutions and algorithms than those proposed in Gao et al. (2022). We consider the
following simple and well-studied model (Gao et al., 2022; Löffler et al., 2021; Lu and Zhou,
2016) for n observations and q features:

X ∼MN n×q
(
µ, In, σ

2Iq
)
, (1)

whereMN denotes the matrix normal distribution (Bilodeau and Brenner, 1999), µ ∈ Rn×q
has unknown rows µi, and σ2 > 0 is known. Given a realization x ∈ Rn×q of X, we first
apply the k-means clustering algorithm to obtain C(x), a partition of the samples {1, . . . , n}.
We might then consider testing the null hypothesis that the mean is the same across two
estimated clusters, i.e.,

H0 :
∑
i∈Ĉ1

µi/|Ĉ1| =
∑
i∈Ĉ2

µi/|Ĉ2| versus H1 :
∑
i∈Ĉ1

µi/|Ĉ1| 6=
∑
i∈Ĉ2

µi/|Ĉ2|, (2)

where Ĉ1, Ĉ2 ∈ C(x) are estimated clusters with cardinality |Ĉ1| and |Ĉ2|. This is equivalent
to testing H0 : µ>ν = 0q versus H1 : µ>ν 6= 0q, where

νi = 1
{
i ∈ Ĉ1

}
/|Ĉ1| − 1

{
i ∈ Ĉ2

}
/|Ĉ2|, i = 1, . . . , n, (3)

and 1{A} equals 1 if the event A holds, and 0 otherwise. Gao et al. (2022) demonstrates
that the p-value given by

pNaive = prH0

(
‖X>ν‖2 ≥ ‖x>ν‖2

)
, (4)

where ‖X>ν‖2 ∼ (σ‖ν‖2)χq under H0, leads to an extremely anti-conservative test. In
particular, we constructed the contrast vector in (3) because Ĉ1 and Ĉ2 were obtained by
clustering. Therefore, we will observe substantial differences between the cluster centroids∑

i∈Ĉ1 xi/|Ĉ1| and
∑

i∈Ĉ2 xi/|Ĉ2|, even in the absence of true differences in their population
means (left panel Figure 1).

Notably, the problem of testing for a difference in means between two groups obtained
via clustering cannot be easily overcome by sample splitting, as pointed out in Gao et al.
(2022) and Zhang et al. (2019). To see why, we divide the observations into a training and a
test set. We apply k-means clustering on only the training set (left panel of Figure 1), and
then assign the test set observations to those clusters (to obtain the center panel of Figure 1,
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Figure 1: We simulated one dataset from (1) with µ = 0100×2 and σ = 1. We split the data
into training (left) and test sets (middle). Left: We apply k-means clustering
on the training set to obtain three clusters. Center: We apply the training set
clusters to the test set using a 3-nearest neighbors classifier. Right: Quantile-
quantile plot of the naive p-values (4) applied to the training set (green) and
the test set (orange), aggregated over 2,000 simulated datasets; as well as our
proposed p-values (in (9); displayed in purple) applied to the training set.

we applied a 3-nearest neighbor classifier). Finally, we compute the naive p-values (4) only
on the test set. Unfortunately, this approach does not work: while we clustered only the
training data, we still used the test data to label the test observations, and consequently to
construct the contrast vector ν in (3). Therefore, the Wald test based on sample-splitting
remains extremely anti-conservative, as shown in the right panel of Figure 1, and does not
lead to a valid test of H0 in (2). We refer the readers to Gao et al. (2022) for further
discussion of this point.

In this paper, we develop a test of H0 that controls the selective Type I error. That is,
we wish to ensure that the probability of rejecting H0 at level α, given that H0 holds and
we decided to test it, is no greater than α:

prH0
(reject H0 at level α | H0 is tested) ≤ α, ∀α ∈ (0, 1). (5)

To develop the test, we leverage the selective inference framework, which has been applied
extensively in high-dimensional linear modeling (Lee et al., 2016; Tibshirani et al., 2016;
Fithian et al., 2014; Rügamer et al., 2022; Schultheiss et al., 2021; Taylor and Tibshirani,
2018; Charkhi and Claeskens, 2018; Yang et al., 2016; Loftus and Taylor, 2015), changepoint
detection (Jewell et al., 2022; Hyun et al., 2021, 2018; Chen et al., 2021; Le Duy and
Takeuchi, 2021; Duy et al., 2020; Benjamini et al., 2019), and clustering (Zhang et al.,
2019; Gao et al., 2022; Watanabe and Suzuki, 2021). The key insight behind selective
inference is as follows: naive p-values such as (4) lead to anti-conservative tests because
the hypothesis H0 is generated by the same data used for testing. Therefore, to obtain a
valid test of H0, we need to condition on the aspect of the data that led us to test H0. In
our case, we chose to test the null hypothesis in (2) because Ĉ1 and Ĉ2 were obtained via
k-means clustering. Therefore, we compute a p-value conditional on the event that k-means
clustering yields Ĉ1 and Ĉ2. This results in selective Type I error control (5), as seen in the
right panel of Figure 1.
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There is a rich literature on estimating and quantifying the uncertainty in the number of
clusters (Li and Chen, 2010; Chen and Li, 2009; Chen et al., 2004; McLachlan et al., 2019;
Dobriban, 2020), as well as assessing cluster stability and heterogeneity (Suzuki and Shi-
modaira, 2006; Kerr and Churchill, 2001; Kimes et al., 2017; Chung, 2020; Jin and Wang,
2016; Aw et al., 2021; Chung and Storey, 2015). Others have examined the asymptotic
properties of clustering models from a Bayesian perspective (Guha et al., 2019; Nobile,
2004; Cai et al., 2020). In addition, k-means clustering is a special case of the expectation-
maximization algorithm, which allows us to tap into an active line of research on the statis-
tical guarantees of the expectation-maximization algorithm (Zhang and Zhang, 2014; Wang
et al., 2015; Cai et al., 2019; Yi and Caramanis, 2015; Balakrishnan et al., 2017). However,
most prior work focused the setting with one or more “true” clusters. By contrast, we are
interested in a correctly-sized test for the null hypothesis (2), even when Ĉ1, Ĉ2 do not corre-
spond to “true” clusters, and even in the absence of “true” clusters in the data. In addition,
existing work often relies on asymptotic approximations and bootstrap resampling. Two
recent exceptions include Zhang et al. (2019) and Gao et al. (2022), who took a selective
inference approach and computed finite-sample p-values for testing the difference in means
between estimated clusters obtained via linear classification rules and hierarchical cluster-
ing, respectively. Our work is closest to Gao et al. (2022), and extends their framework
to k-means clustering. We provide an exact, finite-sample test of the difference in means
between a pair of clusters estimated via k-means clustering under model (1), without the
need for sample splitting.

The rest of this paper is organized as follows. In Section 2, we briefly review the work
of Gao et al. (2022), and outline our proposed test of a difference in means after k-means
clustering. It is worth highlighting that while our proposal is inspired by the work of Gao
et al. (2022), our solution is not simply a minor modification: computing the conditioning
set for the p-value in (9) is the key technical challenge of this paper, and the computational
insights in Gao et al. (2022) are only applicable to hierarchical clustering. In Section 3, we
provide a computationally-efficient approach to compute the p-values corresponding to our
proposed test, for a difference in means after k-means clustering. Section 4 outlines some
extensions, and we evaluate our proposal in a simulation study in Section 5. We apply our
proposal to three real datasets in Section 6, and discuss future work in Section 7. Proofs
and additional results are relegated to the Appendix.

Throughout this paper, we will use the following notational conventions. For a matrix
A, Ai denotes the ith row and Aij denotes the (i, j)th entry. For a vector ν ∈ Rn, ‖ν‖2
denotes its `2 norm, and Π⊥ν is the projection matrix onto the orthogonal complement of
ν, i.e., Π⊥ν = In − νν>/‖ν‖22, where In is the n-dimensional identity matrix. Moreover,
dir(ν) = ν/‖ν‖2 if ν 6= 0n and 0n otherwise, where 0n is the n-vector of zeros. We let 〈·, ·〉
and 1{·} denote the inner product of two vectors and the indicator function, respectively.

2. Selective inference for k-means clustering

2.1 A brief review of k-means clustering

In this section, we review the k-means clustering algorithm. Given samples x1, . . . , xn ∈ Rq
and a positive integer K, k-means clustering partitions the n samples into disjoint subsets
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Ĉ1, . . . , ĈK by solving the following optimization problem:

minimize
C1,...,CK


K∑
k=1

∑
i∈Ck

∥∥∥∥xi −∑
i∈Ck

xi/|Ck|
∥∥∥∥2

2


subject to

K⋃
k=1

Ck = {1, . . . , n}, Ck ∩ Ck′ = ∅, ∀k 6= k′.

(6)

It is not typically possible to solve for the global optimum in (6) (Aloise et al., 2009). A
number of algorithms are available to find a local optimum (Hartigan and Wong, 1979; Zha
et al., 2002; Arthur and Vassilvitskii, 2007); one such approach is Lloyd’s algorithm (Lloyd,
1982), given in Algorithm 1. We first sample K out of n observations as initial centroids
(step 1 in Algorithm 1). We then assign each observation to the closest centroid (step 2).
Next, we iterate between re-computing the centroids and updating the cluster assignments
(steps 3a. and 3b.) until the cluster assignments stop changing. The algorithm is guaranteed
to converge to a local optimum (Hastie et al., 2001).

In what follows, we will sometimes use c
(t)
i (x) and m

(t)
k (x) rather than c

(t)
i and m

(t)
k to

emphasize the dependence of the cluster labels and centroids on the data x.

Algorithm 1: Lloyd’s algorithm for k-means clustering (Lloyd, 1982)

Input: Data x1, . . . , xn ∈ Rq, number of output clusters K, maximum iteration T ,
random seed s.

Output: Cluster assignments
(
c

(t)
1 , . . . , c

(t)
n

)
.

1. Initialize the centroids
(
m

(0)
1 , . . . ,m

(0)
K

)
by sampling K observations from

x1, . . . , xn without replacement, using the random seed s.

2. Compute assignments c
(0)
i ← argmin

1≤k≤K

∥∥∥xi −m(0)
k

∥∥∥2

2
, i = 1, . . . , n.

3. Initialize t = 0.
while t ≤ T do

a. Update centroids: m
(t+1)
k ←

(∑
i:c

(t)
i =k

xi

)
/
∑n

i=1 1
{
c

(t)
i = k

}
, k = 1, . . . ,K.

b. Update assignment: c
(t+1)
i ← argmin

1≤k≤K

∥∥∥xi −m(t+1)
k

∥∥∥2

2
, i = 1, . . . , n.

c. if c
(t+1)
i = c

(t)
i for all 1 ≤ i ≤ n

break
else

t← t+ 1.

end

return
(
c

(t)
1 , . . . , c

(t)
n

)
.

2.2 A test of (2) for clusters obtained via k-means clustering

Here, we briefly review the proposal of Gao et al. (2022) for selective inference for hierar-
chical clustering, and outline a selective test for (2) for k-means clustering.
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Gao et al. (2022) proposed a selective inference framework for testing hypotheses based
on the output of a clustering algorithm. Let C(·) denote the clustering operator, i.e., a
partition of the observations resulting from a clustering algorithm. Since H0 in (2) is chosen

because
{
Ĉ1, Ĉ2 ∈ C(x)

}
, where Ĉ1, Ĉ2 are the two estimated clusters under consideration in

(2), Gao et al. (2022) proposed to reject H0 if

prH0

{
‖X>ν‖2 ≥ ‖x>ν‖2

∣∣∣ Ĉ1, Ĉ2 ∈ C(X),Π⊥ν X = Π⊥ν x, dir(X>ν) = dir(x>ν)
}

(7)

is small. In (7), conditioning on
{

Π⊥ν X = Π⊥ν x,dir(X>ν) = dir(x>ν)
}

eliminates the nui-
sance parameters Π⊥ν µ and dir(µ>ν), where Π⊥ν = In−νν>/‖ν‖2 and dir(µ>ν) = µ>ν/‖µ>ν‖2
(see, e.g., Section 3.1 of Fithian et al. (2014)). Gao et al. (2022) showed that the test that
rejects H0 when (7) is below α controls the selective Type I error at level α, in the sense
of (5). Furthermore, under (1), the conditional distribution of ‖X>ν‖2 in (7) is (σ‖ν‖2)χq,
truncated to a set. When the operator C(·) denotes hierarchical clustering, this set can
be analytically characterized and efficiently computed, leading to an efficient algorithm for
computing (7).

We now extend these ideas to k-means clustering (6). Since the k-means algorithm
partitions all n observations, it is natural to condition on the cluster assignments of all

observations rather than just on
{
Ĉ1, Ĉ2 ∈ C(X)

}
. This leads to the p-value

prH0

[
‖X>ν‖2 ≥ ‖x>ν‖2

∣∣∣∣ n⋂
i=1

{
c
(T )
i (X) = c

(T )
i (x)

}
, Π⊥ν X = Π⊥ν x, dir(X>ν) = dir(x>ν)

]
, (8)

where c
(T )
i (X) is the cluster assigned to the ith observation at the final iteration of Algo-

rithm 1. However, computing (8) requires characterizing
⋂n
i=1

{
c

(T )
i (X) = c

(T )
i (x)

}
, which

is not straightforward, and may necessitate enumerating over possibly an exponential num-

ber of intermediate cluster assignments c
(t)
i (·) for t = 1, . . . , T −1. Hence, we also condition

on all of the intermediate clustering assignments in Algorithm 1:

pselective = prH0

[
‖X>ν‖2 ≥ ‖x>ν‖2

∣∣∣∣ T⋂
t=0

n⋂
i=1

{
c

(t)
i (X) = c

(t)
i (x)

}
, Π⊥ν X = Π⊥ν x,

dir(X>ν) = dir(x>ν)

]
.

(9)

In (9), c
(t)
i (X) is the cluster assigned to the ith observation at the tth iteration of

Algorithm 1. Roughly speaking, this p-value answers the question:

Assuming that there is no difference between the population means of Ĉ1 and
Ĉ2, what is the probability of observing such a large difference between their
centroids, among all the realizations of X that yield identical results in every
iteration of the k-means algorithm?

The p-value in (9) is the focus of this paper. We establish its key properties below.
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Proposition 1 Suppose that x is a realization from (1), and let φ ∼ (σ‖ν‖2)χq. Then,
under H0 : µ>ν = 0 with ν defined in (3),

pselective = pr

[
φ ≥ ‖x>ν‖2

∣∣∣∣∣
T⋂
t=0

n⋂
i=1

{
c

(t)
i

(
x′(φ)

)
= c

(t)
i (x)

}]
, (10)

where pselective is defined in (9), and

x′(φ) = x+
(
φ− ‖x>ν‖2

)(
ν/‖ν‖22

){
dir(x>ν)

}>
. (11)

Moreover, the test that rejects H0 : µ>ν = 0 when pselective ≤ α controls the selective Type I
error at level α, in the sense of (5).

Proposition 1 states that pselective can be recast as the survival function of a scaled χq
random variable, truncated to the set

ST =

{
φ ∈ R :

T⋂
t=0

n⋂
i=1

{
c

(t)
i

(
x′(φ)

)
= c

(t)
i (x)

}}
, (12)

where x′(φ) is defined in (11). Therefore, to compute pselective, it suffices to characterize the
set ST . In (11), x′(φ) results from applying a perturbation to the observed data x, along

Figure 2: One simulated dataset generated from model (1) with µi = 1{1 ≤ i ≤
10}[2.5, 0]> + 1{11 ≤ i ≤ 20}[0,−2.5]> + 1{21 ≤ i ≤ 30}[

√
18.75, 0]> and σ = 1.

Left: The original data x corresponds to φ = ‖x>ν‖2 = 4.37. Applying k-means
clustering with K = 3 yields three clusters, displayed in rosy brown, blue, and or-
ange. Here, ν is chosen to test for a difference in means between Ĉ1 (rosy brown)
and Ĉ2 (blue). Center: The perturbed data x′(φ) with φ = 0. Applying k-means
clustering with K = 3 does not yield the same set of clusters as in the left panel.
Right: The perturbed data x′(φ) with φ = 6. Applying k-means clustering with
K = 3 yields the same set of clusters as in the left panel.

the direction of x>ν, the difference between the two cluster centroids of interest. Figure 2
illustrates a realization of (1) for k-means clustering with K = 3. The left panel displays the
observed data x, which corresponds to x′(φ) with φ = ‖x>ν‖2 = 4.37. Here, ν defined in (3)
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was chosen to test the difference between Ĉ1 (shown in rosy brown) and Ĉ2 (shown in blue).
The center and right panels of Figure 2 display x′(φ) with φ = 0 and φ = 6, respectively.
In the center panel, with φ = 0, the blue and rosy brown clusters are “pushed together”,
resulting in ‖x′(φ)>ν‖2 = 0; that is, there is no difference in empirical means between the
two clusters under consideration. Applying k-means clustering no longer results in these
clusters. By contrast, in the right panel, with φ = 6, the blue and rosy brown clusters are
“pulled apart” along the direction of x>ν, which results in an increased distance between
the centroids of the blue and rosy brown clusters, and k-means clustering does yield the
same clusters as on the original data. In this example, ST = (3.59,∞).

3. Computation of the selective p-value

In Section 2, we have shown that the p-value pselective (9) involves the set ST in (12).
Indeed, a computationally-efficient characterization of ST is the key technical challenge and
contribution of our paper. Here, we start with a high-level summary of our approach to
characterizing ST in (12). First, we rewrite

ST =

{
φ ∈ R :

n⋂
i=1

{
c
(0)
i (x′(φ)) = c

(0)
i (x)

}}
∩

{
φ ∈ R :

T⋂
t=1

n⋂
i=1

{
c
(t)
i (x′(φ)) = c

(t)
i (x)

}}
. (13)

Next, we consider the first term in (13): according to step 2. of Algorithm 1, for i = 1, . . . , n,

c
(0)
i (x′(φ)) = c

(0)
i (x) if and only if for i = 1, . . . , n, the initial randomly-sampled centroid

to which [x′(φ)]i is closest coincides with the initial centroid to which xi is closest. This
condition can be expressed using K − 1 inequalities. Furthermore, the same intuition
holds for the second term in (13), except that the centroids are a function of the cluster
assignments in the previous iteration. We formalize this intuition in Proposition 2, proven
in Appendix A.2.

Proposition 2 Suppose that we apply the k-means clustering algorithm (Algorithm 1) to
a matrix x ∈ Rn×q, to obtain K clusters in at most T steps. Define

w
(t)
i (k) = 1

{
c

(t)
i (x) = k

}
/

n∑
i′=1

1
{
c

(t)
i′ (x) = k

}
. (14)

Then, for the set ST defined in (12), we have that

ST =

(
n⋂
i=1

K⋂
k=1

{
φ :

∥∥∥∥[x′(φ)
]
i
−m(0)

c
(0)
i (x)

(
x′(φ)

)∥∥∥∥2

2

≤
∥∥∥[x′(φ)

]
i
−m(0)

k

(
x′(φ)

)∥∥∥2

2

})
∩ (15)

(
T⋂
t=1

n⋂
i=1

K⋂
k=1

{
φ :

∥∥∥∥∥[x′(φ)
]
i
−

n∑
i′=1

w
(t−1)

i′

(
c
(t)
i (x)

)[
x′(φ)

]
i′

∥∥∥∥∥
2

2

≤

∥∥∥∥∥[x′(φ)
]
i
−

n∑
i′=1

w
(t−1)

i′ (k)
[
x′(φ)

]
i′

∥∥∥∥∥
2

2

})
.

(16)

Recall that c
(t)
i (x) denotes the cluster to which the ith observation is assigned in step 3b.

of Algorithm 1 during the tth iteration, and that m
(0)
k (x) denotes the kth centroid sampled

from the data x during step 1 of Algorithm 1. In words, Proposition 2 says that ST can be
expressed as the intersection of O(nKT ) sets. Therefore, it suffices to characterize the sets
in (15) and (16). We now present two lemmas.
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Lemma 3 (Lemma 2 in Gao et al. (2022)) For ν in (3) and x′(φ) in (11), we have

that
∥∥∥[x′(φ)]i − [x′(φ)]j

∥∥∥2

2
= aφ2+bφ+γ, where a =

{
(νi − νj)/‖ν‖22

}2, b = 2
[
(νi−νj)/‖ν‖22

〈
xi − xj ,dir(x>ν)

〉
−{

(νi − νj)/‖ν‖22
}2‖x>ν‖2

]
, and γ =

∥∥xi − xj − (νi − νj)(x>ν)/||ν||22
∥∥2

2
.

Lemma 4 For ν in (3), x′(φ) in (11), and w
(t)
i (k) in (14), we have that∥∥∥[x′(φ)]i −

∑n
i′=1 w

(t−1)

i′ (k)[x′(φ)]i′

∥∥∥2

2
= ãφ2 + b̃φ+ γ̃, where ã =

(
νi −

∑n
i′=1 w

(t−1)
i′ (k)νi′

)2

/‖ν‖42,

b̃ =
(
2/‖ν‖22

){(
νi −

∑n
i′=1 w

(t−1)
i′ (k)νi′

)〈
xi −

∑n
i′=1 w

(t−1)
i′ (k)xi′ ,dir(x>ν)

〉
−
(
νi −

∑n
i′=1 w

(t−1)
i′ (k)νi′

)2

(‖x>ν‖2)/‖ν‖42
}

, γ̃ =
∥∥∥xi −∑n

i′=1 w
(t−1)
i′ (k)xi′ −

(
νi −

∑n
i′=1 w

(t−1)
i′ (k)νi′

)
(x>ν)/‖ν‖22

∥∥∥2

2
.

It follows from Lemmas 3 and 4 that all of the inequalities in (15) and (16) are in fact
quadratic in φ, with coefficients that can be analytically computed. Therefore, computing
the set ST requires solving O(nKT ) quadratic inequalities of φ.

Proposition 5 Suppose that we apply the k-means clustering algorithm (Algorithm 1) to
a matrix x ∈ Rn×q, to obtain K clusters in at most T steps. Then, the set ST defined in
(12) can be computed in O(KT (n+ q) + nKT log (nKT )) operations.

4. Extensions

4.1 Non-spherical covariance matrix

Thus far, we have assumed that the observed data x is a realization of (1), which implies
that cov(Xi) = σ2Iq. However, this assumption is often violated in practice. For example,
expression levels of genes are highly correlated, and neighbouring pixels in an image tend
to be more similar. For a known positive definite matrix Σ, we now let

X ∼MN n×q (µ, In,Σ) . (17)

Under (17), we can whiten the data by applying the transformation xi → Σ−
1
2xi (Bell

and Sejnowski, 1997), where Σ−
1
2 is the unique symmetric positive definite square root of

Σ−1 (Horn and Johnson, 2012). Note that Σ−
1
2Xi ∼ N (Σ−

1
2µi, Iq). Moreover, as Σ−

1
2 � 0,

testing the null hypothesis in (2) is equivalent to testing

H0 :
∑
i∈Ĉ1

Σ−
1
2µi/|Ĉ1| =

∑
i∈Ĉ2

Σ−
1
2µi/|Ĉ2| versus H1 :

∑
i∈Ĉ1

Σ−
1
2µi/|Ĉ1| 6=

∑
i∈Ĉ2

Σ−
1
2µi/|Ĉ2|. (18)

Therefore, to get a correctly-sized test under model (17), we can simply carry out our

proposal in Section 2 on the transformed data Σ−
1
2xi instead of the original data xi.

Instead of applying the whitening transformation, we can directly accommodate a known
covariance matrix Σ by considering the following extension of pselective in (9):

pΣ,selective = prH0

[
‖Σ−

1
2X>ν‖2 ≥ ‖Σ−

1
2x>ν‖2

∣∣ T⋂
t=0

n⋂
i=1

{
c

(t)
i (X) = c

(t)
i (x)

}
,

Π⊥ν X = Π⊥ν x, dir
(

Σ−
1
2X>ν

)
= dir

(
Σ−

1
2x>ν

)]
.

(19)
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Proposition 6 Suppose that x is a realization from (17), and let φ ∼ (‖ν‖2)χq. Then,

under H0 : µ>ν = 0 with ν defined in (3),

pΣ,selective = pr

[
φ ≥ ‖Σ−

1
2 x>ν‖2

∣∣∣∣∣
T⋂
t=0

n⋂
i=1

{
c
(t)
i

(
Π⊥ν x+

(
φ

ν

‖ν‖22

){
dir
(

Σ−
1
2 x>ν

)}>
Σ

1
2

)
= c

(t)
i (x)

}]
,

(20)

where pΣ,selective is defined in (19). Furthermore, the test that rejects H0 : µ>ν = 0 when
pΣ,selective ≤ α controls the selective Type I error at level α.

In addition, we can adapt the results in Section 3 to compute the set{
φ ∈ R :

⋂T
t=0

⋂n
i=1

{
c
(t)
i

(
Π⊥ν x+

(
φν/‖ν‖22

){
dir
(

Σ−
1
2x>ν

)}>
Σ

1
2

)
= c

(t)
i (x)

}}
by modifying the

results in Lemmas 3 and 4. Details are in Section A.5 of the Appendix.

4.2 Unknown variance

When σ is unknown, we can plug in an estimate σ̂ in (9):

p̂selective(σ̂) = pr

[
φ(σ̂) ≥ ‖x>ν‖2

∣∣∣∣∣
T⋂
t=0

n⋂
i=1

{
c

(t)
i

(
x′(φ(σ̂))

)
= c

(t)
i (x)

}]
, (21)

where φ(σ̂) ∼ (σ̂‖ν‖2)χq. If we use a consistent estimator of σ, then a test based on the
p-value in (21) provides selective Type I error control (5) asymptotically.

Proposition 7 For q = 1, 2, . . . , suppose that X(q) ∼ MN n×q
(
µ(q), In, σ

2Iq
)
. Let x(q) be

a realization from X(q) and let c
(t)
i (·) be the cluster to which the ith observation is assigned

during the tth iteration of step 3b. in Algorithm 1. Consider the sequence of null hypotheses

H
(q)
0 : µ(q)>ν(q) = 0q, where ν(q) defined in (3) is the contrast vector resulting from applying

k-means clustering on x(q). Suppose that (i) σ̂ is a consistent estimator of σ, i.e., for
all ε > 0, limq→∞ pr

(
|σ̂(X(q))− σ| ≥ ε

)
= 0; and (ii) there exists δ ∈ (0, 1) such that

limq→∞ pr
H

(q)
0

[⋂T
t=0

⋂n
i=1

{
c

(t)
i

(
X(q)

)
= c

(t)
i

(
x(q)

)}]
> δ. Then, for all α ∈ (0, 1), we have

that limq→∞ pr
H

(q)
0

[
p̂selective(σ̂) ≤ α

∣∣∣ ⋂T
t=0

⋂n
i=1

{
c

(t)
i

(
X(q)

)
= c

(t)
i

(
x(q)

)}]
= α.

In practice, we propose to use the following estimator of σ (Huber, 1981):

σ̂MED(x) =

{
median

1≤i≤n,1≤j≤q

(
x̃2
ij

)
/Mχ2

1

}1/2

, (22)

where x̃ is obtained from subtracting the median of each column in x, and Mχ2
1

is the

median of the χ2
1 distribution. If µ is sparse, i.e.,

∑n
i=1

∑q
j=1 1{µij 6= 0} is small, then (22)

is consistent with appropriate assumptions; see Appendix A.7.

5. Simulation study

Throughout this section, we consider testing the null hypothesis H0 : µ>ν = 0q versus H1 :
µ>ν 6= 0q, where, unless otherwise stated, ν defined in (3) is based on a randomly-chosen
pair of clusters Ĉ1 and Ĉ2 from k-means clustering. We consider four p-values: pNaive in (4),

10
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pselective in (9), p̂selective in (21) with σ̂MED defined in (22), and p̂selective in (21) with σ̂Sample ={∑n
i=1

∑q
j=1 (xij − x̄j)2/(nq − q)

}1/2
, where x̄j =

∑n
i=1 xij/n. In the simulations that

follow, we compare the selective Type I error (5) and power of the tests that reject H0 when
these p-values are less than α = 0.05.

5.1 Selective Type I error under the global null

We generate data from (1) with µ = 0n×q; therefore, H0 in (2) holds for any pair of estimated
clusters. We simulate 3,000 datasets with n = 150,σ = 1, and q = 2, 10, 50, 100.

For each simulated dataset, we apply k-means clustering with K = 3, and then compute
pNaive, pselective, p̂selective(σ̂MED), and p̂selective(σ̂Sample) for a randomly-chosen pair of clusters.
Figure 3 displays the observed p-value quantiles versus the Uniform(0,1) quantiles. We
see that for all values of q, (i) the naive p-values in (4) are stochastically smaller than a
Uniform(0,1) random variable, and the test based on pNaive leads to an inflated Type I error
rate; (ii) tests based pselective, p̂selective(σ̂MED), and p̂selective(σ̂Sample) control the selective
Type I error rate in the sense of (5).

Figure 3: Quantile-quantile plots for pNaive (pink), pselective (green), p̂selective(σ̂MED) (or-
ange), and p̂selective(σ̂Sample) (purple) under (1) with µ = 0n×q, stratified by q.

5.2 Conditional power and detection probability

In this section, we show that the tests based on our proposal (pselective, p̂selective(σ̂MED), and
p̂selective(σ̂Sample)) have substantial power to reject H0 when it is not true. We generate data
from (1) with n = 150 and

µ1 = . . . = µn
3

=

[
− δ

2
0q−1

]
, µn

3
+1 = . . . = µ 2n

3
=

[
0q−1√

3δ
2

]
, µ 2n

3
+1 = . . . = µn =

[
δ
2

0q−1

]
. (23)

Here, we can think of C1 = {1, . . . , n/3}, C2 = {(n/3) + 1, . . . , (2n/3)}, C3 = {(2n/3) +
1, . . . , n} as the “true clusters”. Moreover, these clusters are equidistant in the sense that
the pairwise distance between each pair of population means is |δ|. Recall that we test H0

in (2) for a pair of estimated clusters Ĉ1 and Ĉ2, which may not be true clusters. Hence,
we will separately consider the conditional power and detection probability of our proposed
tests (Gao et al., 2022; Jewell et al., 2022; Hyun et al., 2021). The conditional power is the

11



Chen and Witten

probability of rejecting H0 in (2), given that Ĉ1 and Ĉ2 are true clusters. Given M simulated
datasets with true clusters {C1, . . . , CL}, we estimate it as

Conditional power =

∑M
m=1 1

{{
Ĉ(m)

1 , Ĉ(m)
2

}
⊆ {C1, . . . , CL}, p(m) ≤ α

}
∑M

m=1 1
{{
Ĉ(m)

1 , Ĉ(m)
2

}
⊆ {C1, . . . , CL}

} , (24)

where , and p(m) and Ĉ(m)
1 , Ĉ(m)

2 correspond to the p-value and clusters under consideration
for the mth simulated dataset. Because the quantity in (24) conditions on the event that
Ĉ1 and Ĉ2 are true clusters, we also estimate how often that event occurs:

Detection probability =

M∑
m=1

1
{
{Ĉ(m)

1 , Ĉ(m)
2 } ⊆ {C1, . . . , CL}

}
/M. (25)

Figure 4: Left: The detection probability (25) for k-means clustering with K = 3 under
model (1) with µ defined in (23), and σ = 0.25 (solid lines), 0.5 (dashed lines), and
1 (long-dashed lines). Right: The conditional power (24) at α = 0.05 for the
tests based on pselective (green), p̂selective(σ̂MED) (orange), and p̂selective(σ̂Sample)
(purple), under model (1) with µ defined in (23) and σ = 0.25, 0.5, 1. The con-
ditional power is not displayed for δ = 2, 3, σ = 1 because the true clusters were
never recovered in simulation.

We generate M = 200, 000 datasets from (23) with q = 10, σ = 0.25, 0.5, 1, and δ =
2, 3, . . . , 10. For each simulated dataset, we apply k-means clustering with K = 3 and
reject H0 : µ>ν = 0q if pselective, p̂selective(σ̂MED), or p̂selective(σ̂Sample) is less than α = 0.05.
In Figure 4, the left panel displays the detection probability (25) of k-means clustering
as a function of δ in (23), and the right panel displays the conditional power (24) for
the tests based on pselective, p̂selective(σ̂MED), and p̂selective(σ̂Sample). Under model (1), the
detection probability and conditional power increase as a function of δ in (23) for all values
of σ. For a given value of δ, a larger value of σ leads to lower detection probability and
conditional power. The conditional power is not displayed for δ = 2, 3, σ = 1 because the
true clusters were never recovered in simulation. Moreover, for a given value of δ and σ,
the test based on pselective has the highest conditional power, followed closely by the test
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based on p̂selective(σ̂MED). Using σ̂Sample in p̂selective leads to a less powerful test, especially
for large values of δ. This is because σ̂Sample is a conservative estimator of σ in (1), and its
bias is an increasing function of δ, the distance between true clusters. By contrast, σ̂MED

is a consistent estimator under model (23) (see Appendix A.7).
As an alternative to the conditional power in (24), in Appendix A.8, we consider a

notion of power that does not condition on having correctly estimated the true clusters.

6. Real data applications

6.1 MNIST Dataset (Lecun et al., 1998)

Here, we apply our method to the MNIST dataset (Lecun et al., 1998), which consists of
60,000 gray-scale images of handwritten digits. Each image has an accompanying label
in {0, 1, . . . , 9}, and is stored as a 28 × 28 matrix that takes on values in [0, 255]. We first
divide the entries of all the images by 255. Next, since there is no variation in the peripheral
pixels of the images (Gallaugher and McNicholas, 2018), which violates model (1), we add
an independent perturbation N (0, 0.01) to each element of the image. Finally, we vectorize
each image to obtain a vector xi ∈ R784.

H0 pNaive p̂selective(σ̂MED)
“No cluster”

µ̄1 = µ̄2 < 10−10 < 10−10

µ̄1 = µ̄3 < 10−10 0.01
µ̄1 = µ̄4 < 10−10 0.22
µ̄1 = µ̄5 < 10−10 < 10−10

µ̄1 = µ̄6 < 10−10 0.53
µ̄2 = µ̄3 < 10−10 < 10−10

µ̄2 = µ̄4 < 10−10 1.4× 10−8

µ̄2 = µ̄5 < 10−10 < 10−10

µ̄2 = µ̄6 < 10−10 0.49
µ̄3 = µ̄4 < 10−10 0.14
µ̄3 = µ̄5 < 10−10 1.1× 10−6

µ̄3 = µ̄6 < 10−10 0.45
µ̄4 = µ̄5 < 10−10 2.0× 10−8

µ̄4 = µ̄6 < 10−10 0.77
µ̄5 = µ̄6 < 10−10 0.48

“Cluster”
µ̄1 = µ̄2 < 10−10 < 10−10

µ̄1 = µ̄3 < 10−10 8.0× 10−6

µ̄1 = µ̄4 < 10−10 6.2× 10−7

µ̄2 = µ̄3 < 10−10 6× 10−3

µ̄2 = µ̄4 < 10−10 10−3

µ̄3 = µ̄4 < 10−10 4× 10−4

Figure 5: Top left: Centroids of six clusters from the “no cluster” dataset (Ĉ1 to Ĉ6 from
left to right, top to bottom). Bottom left: Same as top left, but for the “cluster”
dataset. Right: We test the null hypothesis of no difference between each pair
of cluster centroids using pNaive and p̂selective(σ̂MED). Here, µ̄i =

∑
j∈Ĉi µj/|Ĉi|.

We first construct a “no cluster” dataset by randomly sampling 1,500 images of the 0s;
thus, n = 1, 500 and q = 784. To de-correlate the pixels in each image, we whitened the

data (see Section 4.1) using Σ̂−
1
2 = U(Λ + 0.01In)−

1
2U> as in prior work (Coates and Ng,

2012), where UΛU> is the eigenvalue decomposition of the sample covariance matrix.
We apply k-means clustering with K = 6. The centroids are displayed in the top left

panel of Figure 5. For each pair of estimated clusters, we compute the p-values pNaive
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and p̂selective(σ̂MED) (see Figure 5). The naive p-values are extremely small for all pairs of
clusters under consideration, despite the resemblance of the centroids. By contrast, our
approach yields modest p-values, congruent with the visual resemblance of the centroids.
In addition, for the most part, the pairs for which p̂selective(σ̂MED) is small are visually quite
different (e.g., clusters 1 and 2, clusters 1 and 5, and clusters 4 and 5).

To demonstrate the power of the test based on p̂selective(σ̂MED), we also generated a
“cluster” dataset by sampling 500 images each from digits 0, 1, 3, and 8; thus, n = 2, 000
and q = 784. We again whitened the data to obtain uncorrelated features. After applying
k-means clustering with K = 4, we obtain four clusters that roughly correspond to four
digits: cluster 1, 94.0% digit 1; cluster 2, 72.4% digit 3; cluster 3, 83.6% digit 0; cluster 4,
62.4% digit 8 (see the bottom left panel of Figure 5). Results from testing for a difference
in means for each pair of clusters using pNaive and p̂selective(σ̂MED) are in Figure 5. Both
sets of p-values are small on this “cluster” dataset.

6.2 Single-cell RNA-sequencing data (Zheng et al., 2017)

In this section, we apply our proposal to single-cell RNA-sequencing data collected by Zheng
et al. (2017). Single-cell RNA-sequencing quantifies gene expression abundance at the
resolution of single cells, thereby revealing cell-to-cell heterogeneity in transcription and
allowing for the identification of cell types and marker genes. In practice, biologists often
cluster the cells to identify putative cell types, and then perform a differential expression
analysis, i.e., they test for a difference in gene expression between two clusters (Stuart et al.,
2019; Lähnemann et al., 2020; Grün et al., 2015). Because this approach ignores the fact
that the clusters were estimated from the same data used for testing, it does not control
the selective Type I error.

Zheng et al. (2017) profiled 68,000 peripheral blood mononuclear cells, and classified
them based on their match to the expression profiles of 11 reference transcriptomes from
known cell types. We consider the classified cell types to be the “ground truth”, and use
this information to demonstrate that our proposal in Section 2 yields reasonable results.

As in prior work (Gao et al., 2022; Duò et al., 2018), we first excluded cells with low
numbers of expressed genes or total counts, as well as cells in which a large percentage of
the expressed genes are mitochondrial. We then divided the counts for each cell by the total
sum of counts in that cell. Finally, we applied a log2 transformation with a pseudo-count
of 1 to the expression data, and considered only the subset of 500 genes with the largest
average expression levels pre-normalization. We applied the aforementioned pre-processing
pipeline separately to memory T cells (N = 10, 224) and a mixture of five types of cells
(memory T cells, B cells, naive T cells, natural killer cells, and monocytes; N = 43, 259).

To investigate the selective Type I error in the absence of true clusters, we first con-
structed a “no cluster” dataset by randomly sampling 1,000 out of 10,224 memory T cells
after pre-processing (thus, n = 1, 000 and q = 500). Since the gene expression levels are
highly correlated, we first whitened the data as described in Section 4.1 by plugging in

Σ̂−
1
2 = U(Λ + 0.01In)−

1
2U> (Coates and Ng, 2012), where UΛU> is the eigenvalue decom-

position of the sample covariance matrix.

We applied k-means clustering to the transformed data with K = 5, and obtained five
clusters consisting of 97, 223, 172, 165, and 343 cells, respectively (see Figure 8 left panel
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in Appendix A.9). For each pair of estimated clusters, we computed the p-values pNaive and
p̂selective(σ̂MED). The results are displayed in the top panel of Table 1. On this dataset, the
naive p-values are extremely small for all pairs of estimated clusters, while our proposed
p-values are quite large. In particular, at α = 0.05, the test based on pNaive concludes
that all five estimated clusters correspond to distinct cell types (even after multiplicity
correction). By contrast, our approach does not reject most of the null hypotheses; i.e.,
it finds no difference between expression levels of the estimated clusters. Because this
“no cluster” dataset consists only of memory T cells, we believe that conclusion based on
p̂selective(σ̂MED) aligns better with the underlying biology.

Table 1: P-values pNaive in (4) and p̂selective in (21) with σ̂MED defined in (22) corresponding
to the null hypothesis that the means of two estimated clusters are equal, for each
pair of estimated clusters in the “no cluster” (top) and the “cluster” datasets
(bottom).

H0 µ̄1 = µ̄2 µ̄1 = µ̄3 µ̄1 = µ̄4 µ̄1 = µ̄5 µ̄2 = µ̄3 µ̄2 = µ̄4 µ̄2 = µ̄5 µ̄3 = µ̄4 µ̄3 = µ̄5 µ̄4 = µ̄5

pNaive < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10

p̂selective(σ̂MED) 0.30 0.31 0.43 0.12 0.12 0.002 0.10 0.005 0.04 0.05

H0 µ̄1 = µ̄2 µ̄1 = µ̄3 µ̄1 = µ̄4 µ̄1 = µ̄5 µ̄2 = µ̄3 µ̄2 = µ̄4 µ̄2 = µ̄5 µ̄3 = µ̄4 µ̄3 = µ̄5 µ̄4 = µ̄5

pNaive < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10

p̂selective(σ̂MED) 4.0× 10−4 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 5.0× 10−8 < 10−10

Next, we construct a “cluster” dataset by randomly sampling 400 each of memory T
cells, B cells, naive T cells, natural killer cells, and monocytes from the 43, 259 cells; thus,
n = 2, 000 and q = 500. After whitening the data, we applied k-means clustering to obtain
five clusters. We see that these clusters approximately correspond to the five different cell
types (cluster 1: 82.5% naive T cells; cluster 2: 95.3% memory T cells; cluster 3: 99.2% B
cells; cluster 4: 91.5% nature killer cells; cluster 5: 83.3% monocytes); estimated clusters are
visualized in the right panel of Figure 8 in Appendix A.9. We evaluate the p-values pNaive

and p̂selective(σ̂MED) for all pairs of estimated clusters, and display results in the bottom
panel of Table 1. Both sets of p-values are extremely small on this dataset, which suggests
that the test based on our p-value has substantial power to reject the null hypothesis when
it does not hold.

7. Discussion

We have proposed a test for a difference in means between two clusters estimated from
k-means clustering, under (1). Methods developed in this paper are implemented in the R

package KmeansInference, available at https://github.com/yiqunchen/KmeansInference.
Data and code for reproducing the results in this paper can be found at
https://github.com/yiqunchen/KmeansInference-experiments. Next, we outline a few
directions for future research.

While the p-value in (9) leads to selective Type I error control, it conditions on more
information than is used to construct the hypothesis in (2). In practice, data analysts likely
only make use of the final cluster assignments (leading to the p-value in (8)), as opposed to
all the intermediate assignments (leading to the p-value in (9)). Empirically, conditioning
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on too much information results in a loss of power (Fithian et al., 2014; Jewell et al., 2022;
Liu et al., 2018). In future work, we will investigate the possibility of leveraging recent
developments in selective inference (Chen et al., 2022; Le Duy and Takeuchi, 2021; Jewell
et al., 2022) to compute the “ideal” p-value (8). Another line of future work is to extend
our test for a pairwise difference in means to a difference among multiple groups (Kimes
et al., 2017; Suzuki and Shimodaira, 2006). This might further provide a way to determine
the number of clusters in k-means clustering.

We could also consider extending our proposal to other data generating models. The
normality assumption in (1) is critical to the proof of Proposition 1, because it guarantees
that under H0 in (2), ‖X>ν‖2, dir(X>ν), and Π⊥ν X are pairwise independent. However,
this normality assumption is often violated in practice; for instance, in single-cell genomics,
the data are count-valued and the variance of gene expression levels varies drastically with
the mean expression levels of that gene (Stuart et al., 2019; Eling et al., 2018). This
has motivated some authors to work with alternative models for gene expression including
Poisson (Witten, 2011), negative binomial (Risso et al., 2018), and curved normal (Lin
et al., 2021). To extend our framework to other exponential family distributions, we may
be able to leverage recent proposals to decompose X into f(X) and g(X) such that both
f(X) and g(X)|f(X) have a known, computationally-tractable distribution (Rasines and
Alastair Young, 2021; Leiner et al., 2021).
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Appendix A. Appendix

A.1 Proof of Proposition 1

The proof of Proposition 1 is similar to the proof of Theorem 1 in Gao et al. (2022), the
proof of Theorem 3.1 in Loftus and Taylor (2015), the proof of Lemma 1 in Yang et al.
(2016), and the proof of Theorem 3.1 in Chen and Bien (2020).

For any non-zero ν ∈ Rn and X ∈ Rn×q, we have that

X = Π⊥ν X + (In −Π⊥ν )X = Π⊥ν X +
νν>X

‖ν‖22
= Π⊥ν X +

(
‖X>ν‖2
‖ν‖22

)
ν
{

dir
(
X>ν

)}>
.

(A.26)

Lemma 8 Under (1) and H0 : µ>ν = 0q, we have that ‖X>ν‖2, Π⊥ν X, and dir(X>ν) are
pairwise independent.

Proof We first prove that X>ν is independent of Π⊥ν X. The definition of Π⊥ν implies that
Π⊥ν ν = 0n, and it follows from the properties of the matrix normal distribution that Π⊥ν X
and X>ν are independent. Therefore, ‖X>ν‖2 and dir(X>ν) are independent of Π⊥ν X as
well, since both are functions of X>ν.

Next, we will show that ‖X>ν‖2 and dir(X>ν) are independent. Under (1) and H0 :
µ>ν = 0q, we have that X>ν ∼ N (0q, σ

2‖ν‖22Iq). It follows that X>ν is rotationally in-
variant, and therefore ‖X>ν‖2 is independent of dir(X>ν) (see, e.g., Proposition 4.1 and
Corollary 4.3 of Bilodeau and Brenner (1999)).

We now proceed to prove the statement in (10). Recalling the definition of pselective in
(9), under H0 : µ>ν = 0q with ν defined in (3), we have that

pselective = prH0

[
‖X>ν‖2 ≥ ‖x>ν‖2

∣∣∣∣∣
T⋂
t=0

n⋂
i=1

{
c
(t)
i (X) = c

(t)
i (x)

}
, Π⊥ν X = Π⊥ν x, dir(X>ν) = dir(x>ν)

]
a.
= prH0

[
‖X>ν‖2 ≥ ‖x>ν‖2

∣∣∣∣∣
T⋂
t=0

n⋂
i=1

{
c
(t)
i

(
Π⊥ν X +

(
‖X>ν‖2
‖ν‖22

)
ν
{

dir
(
X>ν

)}>)
= c

(t)
i (x)

}
,

Π⊥ν X = Π⊥ν x, dir(X>ν) = dir(x>ν)

]
b.
= prH0
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‖X>ν‖2 ≥ ‖x>ν‖2
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n⋂
i=1
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ν
{

dir
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)}>)
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(t)
i (x)

}
,

Π⊥ν X = Π⊥ν x, dir(X>ν) = dir(x>ν)

]
c.
= prH0
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‖X>ν‖2 ≥ ‖x>ν‖2
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n⋂
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d.
= prH0
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= c

(t)
i (x)

}]
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(A.27)
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Here, step a. follows from substituting X with the expression in (A.26), and step b. follows
from replacing Π⊥ν X and dir(X>ν) with Π⊥ν x and dir(x>ν), respectively. Next, in step c.,
we used Lemma 8. Finally, step d. follows from the definition of x′(φ) in (11).

Note that under (1) and H0 : µ>ν = 0q, we have that ‖X>ν‖2 ∼ σ‖ν‖2χq, which
concludes the proof of (10).

It remains to show that the test that rejects H0 : µ>ν = 0 when pselective ≤ α controls
the selective Type I error at level α, in the sense of (5). First of all, recall that we decided
to test the null hypothesis in (2) based on the output of Algorithm 1. Therefore, pselective

controls the selective Type I error at level α if, for any c
(T )
i (x), i = 1, . . . , n,

prH0

[
reject H0 at level α

∣∣∣∣∣
n⋂
i=1

{
c

(T )
i (X) = c

(T )
i (x)

}]
≤ α, ∀α ∈ (0, 1). (A.28)

To prove (A.28), we first note that the following holds for any α ∈ (0, 1):

prH0

[
pselective(‖X>ν‖2) ≤ α

∣∣∣∣∣
T⋂
t=0

n⋂
i=1

{
c
(t)
i (X) = c

(t)
i (x)

}
, Π⊥ν X = Π⊥ν x, dir(X>ν) = dir(x>ν)

]
a.
= prH0

[
pselective(‖X>ν‖2) ≤ α
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(
Π⊥ν X +

(
‖X>ν‖2
‖ν‖22
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{

dir
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}
,

Π⊥ν X = Π⊥ν x, dir(X>ν) = dir(x>ν)
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b.
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,
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f.
= α.

(A.29)

Here, steps a. through d. follow from the same line of argument in (A.27). Moreover, (10)

implies that, for a given sequence of cluster assignments c
(T )
i (x), i = 1, . . . , n, pselective is the

survival function of a χq random variable, truncated to the set ST defined in (12). Letting
FSTq (·) denote the cumulative distribution function of this truncated χq random variable, we
arrive at step e. Finally, to prove f., we first note that under H0, the conditional cumulative

distribution function of ‖X>ν‖2 given
⋂T
t=0

⋂n
i=1

{
c

(t)
i

(
x′
(
‖X>ν‖2

))
= c

(t)
i (x)

}
is exactly

3



Chen and Witten

FSTq . The equality, therefore, follows from the probability integral transform, which states
that for a continuous random variable Z, FZ(Z) follows the Uniform(0,1) distribution.

Finally, we have that

prH0

[
pselective(‖X>ν‖2) ≤ α

∣∣∣∣∣
n⋂
i=1

{
c

(T )
i (X) = c

(T )
i (x)

}]

= EH0

[
1
{
pselective(‖X>ν‖2) ≤ α

} ∣∣∣∣∣
n⋂
i=1

{
c

(T )
i (X) = c

(T )
i (x)

}]
a.
= EH0

(
EH0

[
1
{
pselective(‖X>ν‖2) ≤ α

} ∣∣∣∣∣
T⋂
t=0

n⋂
i=1

{
c

(t)
i (X) = c

(t)
i (x)

}
,

Π⊥ν X = Π⊥ν x, dir(X>ν) = dir(x>ν)

] ∣∣∣∣∣
n⋂
i=1

{
c

(T )
i (X) = c

(T )
i (x)

})
b.
= EH0

[
α

∣∣∣∣∣
n⋂
i=1

{
c

(T )
i (X) = c

(T )
i (x)

}]
= α.

In the proof above, a. follows from the tower property of conditional expectation, and b. is
a direct consequence of (A.29).

Therefore, we conclude that the test based on pselective controls the selective Type I error
in (5), which completes the proof of Proposition 1.

A.2 Proof of Proposition 2

We will derive the expression for ST in Proposition 2 using an induction argument. For a
positive integer K, we let [K] denote the set {1, . . . ,K}.

The following two claims (Lemmas 9 and 10) serve as the “base cases” for the proof.

Lemma 9 Recall that c
(t)
i (x) denotes the cluster to which the ith observation is assigned

during the tth iteration of step 3b. of Algorithm 1 applied to data x, and that m
(0)
k (x)

denotes the kth centroid sampled from x during step 1 of Algorithm 1. For S0 defined as

S0 =

{
φ ∈ R :

n⋂
i=1

{
c

(0)
i

(
x′(φ)

)
= c

(0)
i (x)

}}
, (A.30)

we have that

S0 =

n⋂
i=1

K⋂
k=1

{
φ :

∥∥∥∥[x′(φ)
]
i
−m(0)

c
(0)
i (x)

(x′(φ))

∥∥∥∥2

2

≤
∥∥∥[x′(φ)

]
i
−m(0)

k (x′(φ))
∥∥∥2

2

}
. (A.31)

Proof
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We first prove that the set in (A.30) is a subset of the set in (A.31). For an arbitrary
φ0 ∈ (A.30) and 1 ≤ i ≤ n, we have that

c
(0)
i (x′(φ0)) = argmin

1≤k≤K

∥∥∥[x′(φ0)
]
i
−m(0)

k (x′(φ0))
∥∥∥2

2

a.
=⇒

∥∥∥∥[x′(φ0)
]
i
−m(0)

c
(0)
i (x′(φ0))

(x′(φ0))

∥∥∥∥2

2

≤
∥∥∥[x′(φ0)

]
i
−m(0)

k (x′(φ0))
∥∥∥2

2
, ∀k ∈ [K]

b.
=⇒

∥∥∥∥[x′(φ0)
]
i
−m(0)

c
(0)
i (x)

(x′(φ0))

∥∥∥∥2

2

≤
∥∥∥[x′(φ0)

]
i
−m(0)

k (x′(φ0))
∥∥∥2

2
, ∀k ∈ [K].

Here, the first line follows from the definition of c
(0)
i in step 2 of Algorithm 1, and step a.

follows from the definition of the argmin function. Step b. follows from the assumption that

φ0 ∈ (A.30) satisfies c
(0)
i (x′(φ0)) = c

(0)
i (x). Because this holds for an arbitrary 1 ≤ i ≤ n,

we have proven that φ0 ∈ (A.30) =⇒ φ0 ∈ (A.31); or equivalently, (A.30) ⊆ (A.31).
We proceed to prove the other direction. For an arbitrary φ0 ∈ (A.31) and an arbitrary

1 ≤ i ≤ n, we have that∥∥∥∥[x′(φ0)
]
i
−m(0)

c
(0)
i (x)

(x′(φ0))

∥∥∥∥2

2

≤
∥∥∥[x′(φ0)

]
i
−m(0)

k (x′(φ0))
∥∥∥2

2
,∀k ∈ [K]

a.
=⇒ c

(0)
i (x) = argmin

1≤k≤K

∥∥∥[x′(φ0)
]
i
−m(0)

k (x′(φ0))
∥∥∥2

2

b.
=⇒ c

(0)
i (x) = c

(0)
i (x′(φ0)).

Here, step a. follows from the definition of argmin, and step b. follows from combining the

definition of c
(0)
i (x′(φ)) in step 2 of Algorithm 1. We conclude that φ0 ∈ (A.31) =⇒ φ0 ∈

(A.30).
Combining these two directions, we have proven that (A.31) = (A.30).

Lemma 10 Recall that c
(t)
i (x) denotes the cluster to which the ith observation is assigned

in the tth iteration of step 3b. of Algorithm 1 applied to data x, and that m
(0)
k (x) denotes

the kth centroid sampled from x during step 1 of Algorithm 1. For S1 defined as

S1 =

{
φ ∈ R :

1⋂
t=0

n⋂
i=1

{
c

(t)
i

(
x′(φ)

)
= c

(t)
i (x)

}}
, (A.32)

and w
(t)
i (k) defined in (14), we have that

S1 =

n⋂
i=1

K⋂
k=1

{
φ :

∥∥∥∥[x′(φ)]i −m
(0)

c
(0)
i (x)

(x′(φ))

∥∥∥∥2

2

≤
∥∥∥[x′(φ)]i −m

(0)
k (x′(φ))

∥∥∥2

2

}
∩ n⋂

i=1

K⋂
k=1

φ :

∥∥∥∥∥[x′(φ)]i −
n∑

i′=1

w
(0)
i′

(
c
(1)
i (x)

)
[x′(φ)]i′

∥∥∥∥∥
2

2

≤

∥∥∥∥∥[x′(φ)]i −
n∑

i′=1

w
(0)
i′ (k)[x′(φ)]i′

∥∥∥∥∥
2

2


.

(A.33)
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Proof
We first prove that (A.32) ⊆ (A.33). For an arbitrary φ0 ∈ (A.32) and an arbitrary

1 ≤ i ≤ n, we have that

c
(1)
i (x′(φ0)) = argmin

1≤k≤K

∥∥∥[x′(φ0)
]
i
−m(1)

k (x′(φ0))
∥∥∥2

2

a.
=⇒ c

(1)
i (x) = argmin

1≤k≤K

∥∥∥[x′(φ0)
]
i
−m(1)

k (x′(φ0))
∥∥∥2

2

b.
=⇒ c

(1)
i (x) = argmin

1≤k≤K

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(0)

i′ (x′(φ0)) = k
}

[x′(φ0)]i′∑n
i′=1 1

{
c
(0)

i′ (x′(φ0)) = k
}

∥∥∥∥∥∥
2

2

c.
=⇒

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(0)

i′ (x′(φ0)) = c
(1)
i (x)

}
[x′(φ0)]i′∑n

i′=1 1
{
c
(0)

i′ (x′(φ0)) = c
(1)
i (x)

}
∥∥∥∥∥∥

2

2

≤

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(0)

i′ (x′(φ0)) = k
}

[x′(φ0)]i′∑n
i′=1 1

{
c
(0)

i′ (x′(φ0)) = k
}

∥∥∥∥∥∥
2

2

,∀k ∈ [K]

d.
=⇒

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(0)

i′ (x) = c
(1)
i (x)

}
[x′(φ0)]i′∑n

i′=1 1
{
c
(0)

i′ (x) = c
(1)
i (x)

}
∥∥∥∥∥∥

2

2

≤

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(0)

i′ (x) = k
}

[x′(φ0)]i′∑n
i′=1 1

{
c
(0)

i′ (x) = k
}

∥∥∥∥∥∥
2

2

, ∀k ∈ [K]

e.
=⇒

∥∥∥∥∥[x′(φ0)
]
i
−

n∑
i′=1

w
(0)

i′

(
c
(1)
i (x)

)[
x′(φ0)

]
i′

∥∥∥∥∥
2

2

≤

∥∥∥∥∥[x′(φ0)
]
i
−

n∑
i′=1

w
(0)

i′ (k)
[
x′(φ0)

]
i′

∥∥∥∥∥
2

2

, ∀k ∈ [K].

In the equations above, the first line follows from step 3b. of Algorithm 1 with t = 0. Next,

step a. follows from the definition of (A.32), which implies that c
(1)
i (x′(φ0)) = c

(1)
i (x). Step

b. is a direct consequence of step 3a. of Algorithm 1 with t = 0. In steps c. and d., we used

the definitions of the argmin function and (A.32). Finally, we apply the definition of w
(t)
i

in (14) to get e. Because this holds for an arbitrary 1 ≤ i ≤ n, φ0 ∈ (A.32) implies that φ0

is an element of the second set in the intersection in (A.33).
Moreover, φ0 ∈ (A.32) implies that φ0 ∈ (A.30), which, according to Lemma 9, further

implies that φ0 is an element of the first set in the intersection in (A.33). To summarize,
we have proven that φ0 ∈ (A.32) =⇒ φ0 ∈ (A.33), and as a result, (A.32) ⊆ (A.33).

Next, we prove that the set in (A.33) is a subset of the set in (A.32). For an arbitrary
φ0 ∈ (A.33) and an arbitrary 1 ≤ i ≤ n, we have that

φ0 ∈ (A.33)
a.

=⇒

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(0)

i′ (x) = c
(1)
i (x)

}
[x′(φ0)]i′∑n

i′=1 1
{
c
(0)

i′ (x) = c
(1)
i (x)

}
∥∥∥∥∥∥

2

2

≤

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(0)

i′ (x) = k
}

[x′(φ0)]i′∑n
i′=1 1

{
c
(0)

i′ (x) = k
}

∥∥∥∥∥∥
2

2

,∀k ∈ [K]

b.
=⇒

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(0)

i′ (x′(φ0)) = c
(1)
i (x)

}
[x′(φ0)]i′∑n

i′=1 1
{
c
(0)

i′ (x′(φ0)) = c
(1)
i (x)

}
∥∥∥∥∥∥

2

2

≤

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(0)

i′ (x′(φ0)) = k
}

[x′(φ0)]i′∑n
i′=1 1

{
c
(0)

i′ (x′(φ0)) = k
}

∥∥∥∥∥∥
2

2

, ∀k ∈ [K]

c.
=⇒ c

(1)
i (x) = argmin

1≤k≤K

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(0)

i′ (x′(φ0)) = k
}

[x′(φ0)]i′∑n
i′=1 1

{
c
(0)

i′ (x′(φ0)) = k
}

∥∥∥∥∥∥
2

2

d.
=⇒ c

(1)
i (x) = argmin

1≤k≤K

∥∥∥[x′(φ0)
]
i
−m(1)

k (x′(φ0))
∥∥∥2

2

e.
=⇒ c

(1)
i (x) = c

(1)
i (x′(φ0)).

Here, step a. follows from the definition of (A.33). In step b., we first apply Lemma 9,

which implies that (A.33) ⊆ (A.31). Therefore, φ0 ∈ (A.33) =⇒ c
(0)
i (x) = c

(0)
i (x′(φ0)), for

all i = 1, . . . , n, k = 1, . . . ,K, yielding the desired equality. Next, step c. follows from the

6
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definition of the argmin function. Finally, steps d. and e. follow directly from the definitions

of m
(t)
k and c

(t)
i in steps 3a. and 3b. of Algorithm 1, respectively.

Because the result above holds for an arbitrary i, we have that φ0 ∈ (A.33) =⇒
c

(1)
i (x) = c

(1)
i (x′(φ)), i = 1, . . . , n. Combining this result with the observation that (A.33) ⊆

(A.31), we have that (A.33) ⊆ (A.32), which concludes the proof.

Next, we will prove the inductive step in the proof of Proposition 2, which relies on the
following claim.

Lemma 11 Recall that c
(t)
i (x) denotes the cluster to which the ith observation is assigned

in the tth iteration of Algorithm 1 applied to the data x, and that m
(0)
k (x) denotes the kth

centroid sampled from x during initialization. For some 1 ≤ T̃ ≤ T − 1, define

ST̃ =

φ ∈ R :
T̃⋂
t=0

n⋂
i=1

{
c

(t)
i

(
x′(φ)

)
= c

(t)
i (x)

} . (A.34)

Suppose that the following holds for T̃ :

ST̃ =

n⋂
i=1

K⋂
k=1

{
φ :

∥∥∥∥[x′(φ)
]
i
−m(0)

c
(0)
i (x)

(x′(φ))

∥∥∥∥2

2

≤
∥∥∥[x′(φ)

]
i
−m(0)

k (x′(φ))
∥∥∥2

2

}

∩

 T̃⋂
t=1

n⋂
i=1

K⋂
k=1

{
φ :

∥∥∥∥∥[x′(φ)
]
i
−

n∑
i′=1

w
(t−1)

i′

(
c
(t)
i (x)

)[
x′(φ)

]
i′

∥∥∥∥∥
2

2

≤

∥∥∥∥∥[x′(φ)
]
i
−

n∑
i′=1

w
(t−1)

i′ (k)
[
x′(φ)

]
i′

∥∥∥∥∥
2

2

}, (A.35)

where w
(t)
i (·) is defined in (14). Then, for ST̃+1 defined as

ST̃+1 =

φ ∈ R :

T̃+1⋂
t=0

n⋂
i=1

{
c

(t)
i

(
x′(φ)

)
= c

(t)
i (x)

} , (A.36)

we have that

ST̃+1 =

n⋂
i=1

K⋂
k=1

{
φ :

∥∥∥∥[x′(φ)
]
i
−m(0)

c
(0)
i (x)

(x′(φ))

∥∥∥∥2

2

≤
∥∥∥[x′(φ)

]
i
−m(0)

k (x′(φ))
∥∥∥2

2

}

∩

T̃+1⋂
t=1

n⋂
i=1

K⋂
k=1

{
φ :

∥∥∥∥∥[x′(φ)
]
i
−

n∑
i′=1

w
(t−1)

i′

(
c
(t)
i (x)

)[
x′(φ)

]
i′

∥∥∥∥∥
2

2

≤

∥∥∥∥∥[x′(φ)
]
i
−

n∑
i′=1

w
(t−1)

i′ (k)
[
x′(φ)

]
i′

∥∥∥∥∥
2

2

}.
(A.37)

Proof Using the definitions in (A.34) and (A.36), we have that

ST̃+1 = ST̃ ∩

(
n⋂
i=1

{
φ ∈ R : c

(T̃+1)
i

(
x′(φ)

)
= c

(T̃+1)
i (x)

})
. (A.38)

Therefore, it suffices to prove that (A.38) = (A.37), under the inductive hypothesis
(A.35).
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We start by proving that (A.38) ⊆ (A.37). For an arbitrary φ0 ∈ (A.38) and an arbitrary
1 ≤ i ≤ n, we have that

c
(T̃+1)
i

(
x′(φ0)

)
= c

(T̃+1)
i (x)

a.
=⇒ c

(T̃+1)
i (x) = argmin

1≤k≤K

∥∥∥[x′(φ0)
]
i
−m(T̃+1)

k (x′(φ0))
∥∥∥2

2

b.
=⇒

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(T̃ )

i′ (x′(φ0)) = c
(T̃+1)
i (x)

}
[x′(φ0)]i′∑n

i′=1 1
{
c
(T̃ )

i′ (x′(φ0)) = c
(T̃+1)
i (x)

}
∥∥∥∥∥∥

2

2

≤

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(T̃ )

i′ (x′(φ0)) = k
}

[x′(φ0)]i′∑n
i′=1 1

{
c
(T̃ )

i′ (x′(φ0)) = k
}

∥∥∥∥∥∥
2

2

, ∀k ∈ [K]

c.
=⇒

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(T̃ )

i′ (x) = c
(T̃+1)
i (x)

}
[x′(φ0)]i′∑n

i′=1 1
{
c
(T̃ )

i′ (x) = c
(T̃+1)
i (x)

}
∥∥∥∥∥∥

2

2

≤

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(T̃ )

i′ (x) = k
}

[x′(φ0)]i′∑n
i′=1 1

{
c
(T̃ )

i′ (x) = k
}

∥∥∥∥∥∥
2

2

, ∀k ∈ [K]

d.
=⇒ φ0 ∈ (A.37).

Here, the first statement follows from the definition of ST̃+1. Next, steps a. and b. follow

from the definitions of c
(T̃+1)
i and m

(T̃+1)
k (x′(φ0)) in steps 3b. and 3a. of Algorithm 1,

respectively. In step c., we used the fact that φ0 ∈ (A.38) =⇒ φ0 ∈ ST̃ =⇒ cT̃i (x′(φ0)) =

cT̃i (x). Finally, d. follows from the definition of w
(t)
i in (14).

We continue with the reverse direction. Applying the inductive hypothesis (A.35), to-

gether with the definition of ST̃+1 in (A.37) and the definition of w
(t)
i in (14), we have

that

(A.37) = ST̃ ∩

 n⋂
i=1

K⋂
k=1

φ :

∥∥∥∥∥∥[x′(φ)
]
i
−

∑n
i′=1 1

{
c
(T̃ )

i′ (x) = c
(T̃+1)
i (x)

}
[x′(φ)]i′∑n

i′=1 1
{
c
(T̃ )

i′ (x) = c
(T̃+1)
i (x)

}
∥∥∥∥∥∥

2

2

≤

∥∥∥∥∥∥[x′(φ)
]
i
−

∑n
i′=1 1

{
c
(T̃ )

i′ (x) = k
}

[x′(φ)]i′∑n
i′=1 1

{
c
(T̃ )

i′ (x) = k
}

∥∥∥∥∥∥
2

2


.

(A.39)

For an arbitrary φ0 ∈ (A.37) and any 1 ≤ i ≤ n, the following holds:∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(T̃ )

i′ (x) = c
(T̃+1)
i (x)

}
[x′(φ0)]i′∑n

i′=1 1
{
c
(T̃ )

i′ (x) = c
(T̃+1)
i (x)

}
∥∥∥∥∥∥

2

2

≤

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(T̃ )

i′ (x) = k
}

[x′(φ0)]i′∑n
i′=1 1

{
c
(T̃ )

i′ (x) = k
}

∥∥∥∥∥∥
2

2

, ∀k ∈ [K]

a.
=⇒

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(T̃ )

i′ (x′(φ0)) = c
(T̃+1)
i (x)

}
[x′(φ0)]i′∑n

i′=1 1
{
c
(T̃ )

i′ (x′(φ0)) = c
(T̃+1)
i (x)

}
∥∥∥∥∥∥

2

2

≤

∥∥∥∥∥∥[x′(φ0)
]
i
−

∑n
i′=1 1

{
c
(T̃ )

i′ (x′(φ0)) = k
}

[x′(φ0)]i′∑n
i′=1 1

{
c
(T̃ )

i′ (x′(φ0)) = k
}

∥∥∥∥∥∥
2

2

,∀k ∈ [K]

b.
=⇒ c

(T̃+1)
i (x) = argmin

1≤k≤K

∥∥∥[x′(φ0)
]
i
−m(T̃+1)

k (x′(φ0))
∥∥∥2

2

c.
=⇒ c

(T̃+1)
i (x) = c

(T̃+1)
i (x′(φ0)).

Here, to derive step a., we first note that by (A.39), any element φ0 of (A.37) is
also an element of ST̃ . Therefore, using the definition of ST̃ in (A.34), we have that⋂T̃
t=1

{
c

(t)
i (x′(φ0)) = c

(t)
i (x)

}
, and step a. follows directly. Next, steps b. and c. follow

directly from steps 3a. and 3b. of Algorithm 1 with t = T̃ . By inspecting the form of
(A.38), we conclude that φ0 ∈ (A.37) =⇒ φ0 ∈ (A.38).

In conclusion, we have proven that (A.37) = (A.38), which completes the proof.
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The inductive proof of Proposition 2 follows from combining Lemmas 9, 10 and 11.

A.3 Proof of Lemmas 3 and 4

We first prove Lemma 3, which is also Lemma 2 in Gao et al. (2022).
Proof We first express the inner product 〈[x′(φ)]i, [x

′(φ)]j〉 as a function of φ. From (11), we

have that [x′(φ)]i = xi+νi

(
φ−‖x>ν‖2
‖ν‖22

)
dir(x>ν) = xi−νi ||x

>ν||2
||ν||22

dir(x>ν)+
(

νi
||ν||22

φ
)

dir(x>ν).

Therefore,〈
[x′(φ)]i, [x

′(φ)]j

〉
=

〈
xi − νi

||x>ν||2
||ν||22

dir(x>ν) +

(
νi
||ν||22

φ

)
dir(x>ν), xj − νj

||x>ν||2
||ν||22

dir(x>ν) +

(
νj
||ν||22

φ

)
dir(x>ν)

〉
=

(
(νiνj)

1/2

||ν||22
φ

)2

+

〈
xi − νi

||x>ν||2
||ν||22

dir(x>ν),

(
νj
||ν||22

)
dir(x>ν)

〉
· φ

+

〈
xj − νj

||x>ν||2
||ν||22

dir(x>ν),

(
νi
||ν||22

)
dir(x>ν)

〉
· φ

+

〈
xi − νi

||x>ν||2
||ν||22

dir(x>ν), xj − νj
||x>ν||2
||ν||22

dir(x>ν)

〉
=

(
(νiνj)

1/2

||ν||22

)2

φ2 +

(
νj
||ν||22

〈
xi,dir(x>ν)

〉
+

νi
||ν||22

〈
xj ,dir(x>ν)

〉
− 2

νiνj ||x>ν||2
||ν||42

)
φ

+

〈
xi − νi

||x>ν||2
||ν||22

dir(x>ν), xj − νj
||x>ν||2
||ν||22

dir(x>ν)

〉
.

Next, using the expression for 〈[x′(φ)]i, [x
′(φ)]j〉 above, we have that∥∥∥[x′(φ)

]
i
−
[
x′(φ)

]
j

∥∥∥2

2
=
〈[
x′(φ)

]
i
−
[
x′(φ)

]
j
,
[
x′(φ)

]
i
−
[
x′(φ)

]
j

〉
=
〈
xi − xj − (νi − νj)

||x>ν||2
||ν||22

dir(x>ν) +

(
(νi − νj)
||ν||22

φ

)
dir(x>ν),

xi − xj − (νi − νj)
||x>ν||2
||ν||22

dir(x>ν) +

(
(νi − νj)
||ν||22

φ

)
dir(x>ν)

〉
=

(
νi − νj
||ν||22

)2

φ2 + 2

(
νi − νj
||ν||22

〈
xi − xj ,dir(x>ν)

〉
−
(
νi − νj
||ν||22

)2

||x>ν||2

)
φ

+

∥∥∥∥xi − xj − (νi − νj)
x>ν

||ν||22

∥∥∥∥2

2

.

This completes the proof of Lemma 3.

We continue with the proof of Lemma 4. Using the definition of w
(t−1)
i (k) in (14), we

have that∥∥∥∥∥∥[x′(φ)
]
i
−

∑n
i′=1 1

{
c

(t−1)
i′ (x) = k

}
[x′(φ)]i′∑n

i′=1 1
{
c

(t−1)
i′ (x) = k

}
∥∥∥∥∥∥

2

2

=

∥∥∥∥∥[x′(φ)
]
i
−

n∑
i′=1

w
(t−1)
i′ (k)

[
x′(φ)

]
i′

∥∥∥∥∥
2

2

,

9



Chen and Witten

where

[
x′(φ)

]
i
−

n∑
i′=1

w
(t−1)
i′ (k)

[
x′(φ)

]
i′

=

(
n∑

i′=1

w
(t−1)
i′ (k)

νi
||ν||22

)
φ+

n∑
i′=1

w
(t−1)
i′ (k)

(
xi − νi

||x>ν||2
||ν||22

dir(x>ν)

)
is a linear function of φ. The rest of the proof follows directly from the same set of

calculations in the proof of Lemma 3.

A.4 Proof of Proposition 5

Recall that n, q,K, T denote the number of samples (see (1)), the number of features (see
(1)), the number of clusters (see Algorithm 1), and the maximum number of iterations for
which Algorithm 1 is run.

According to Proposition 2, to compute the set ST in (12), it suffices to compute the
intersection of the two sets in (15) and (16).

We first make the following observations for our timing complexity analysis:

• Observation 1: according to Lemma 3, the set in (15) is an intersection of nK quadratic
inequalities.

• Observation 2: according to Lemma 4, the set in (16) is an intersection of nKT
quadratic inequalities.

• Observation 3: we can solve a quadratic inequality in O(1) time using the quadratic
formula.

• Observation 4: we can intersect the solution sets of N quadratic inequalities in
O(N logN) time (Bourgon, 2020).

Equipped with these observations, we will analyze the timing complexity of comput-
ing the set (15). Note that the coefficients for each of the nK quadratic inequalities can
be computed in O(nq) operations: first, using the property that x>ν =

∑
i∈Ĉ1 xi/|Ĉ1| −∑

i∈Ĉ2 xi/|Ĉ2|, we can compute ‖x>ν‖2 and dir(x>ν) in O(nq) operations. Then, com-
puting the coefficients a, b, and γ in Lemma 3 takes O(1), O(q), and O(q) operations,
respectively. For each inequality, obtaining the solution set requires O(1) operations (see
Observation 3). Finally, intersecting the solution sets of the n(K−1) quadratic inequalities
incurs another O(nK log(nK)) operations. Thus, the computational cost for (15) totals to
O(nKq + nK log(nK)) operations.

Next, we analyze the cost of computing the set (16). Note that using Observation 2, we
need to solve nKT quadratic inequalities. Here, for each quadratic inequality of the form in
Lemma 4, it takes O(n),O(n+ q), and O(n+ q) operations to compute the coefficients ã, b̃,
and γ̃, respectively. Moreover, for a given iteration t and cluster number k, we only need

to compute
∑n

i′=1w
(t−1)
i′ (k)νi′ once using O(n+ q) operations once, as opposed to n times,

since this formula does not depend on the index i. Therefore, obtaining the nKT solution
sets will take O((n+ q)KT ) time. Finally, intersecting these sets using Observation 4 adds
another O(nKT log(nKT )) operations.

Combining the costs for computing the set in (15) and the set in (16), we conclude that
the cost for computing the set ST in (12) is O((n+ q)KT + nKT log(nKT )) operations.

10
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A.5 Proof of Proposition 6 and computation of pΣ,selective

The proof of Proposition 6 is similar to that of Proposition 1.

First note that for any non-zero ν ∈ Rn and X ∈ Rn×q, we have that

X = Π⊥ν X +
νν>XΣ−

1
2 Σ

1
2

‖ν‖22
= Π⊥ν X +

(
‖Σ−

1
2X>ν‖2
‖ν‖22

)
ν
{

dir
(

Σ−
1
2X>ν

)}>
Σ

1
2 . (A.40)

Lemma 12 Under (17) and H0 : µ>ν = 0q, ‖Σ−
1
2X>ν‖2, Π⊥ν X, and dir

(
Σ−

1
2X>ν

)
are

pairwise independent.

Proof As in the proof of Lemma 8, Π⊥ν ν = 0n, and it follows from the property of the

matrix normal distribution that X>ν is independent of Π⊥ν X. Because both ‖Σ−
1
2X>ν‖2

and dir(Σ−
1
2X>ν) are functions of X>ν, both are independent of Π⊥ν X.

Next, we will show that ‖Σ−
1
2X>ν‖2 and dir(Σ−

1
2X>ν) are independent. Under (17)

and H0 : µ>ν = 0q, we have that Σ−
1
2X>ν ∼ N (0q, ‖ν‖22Iq). It then follows that Σ−

1
2X>ν is

rotationally invariant, and therefore ‖Σ−
1
2X>ν‖2 is independent of dir(Σ−

1
2X>ν) (Bilodeau

and Brenner, 1999).

Then, recalling the definition of pΣ,selective in (19), we have that

pΣ,selective = prH0

[
‖Σ− 1

2X>ν‖2 ≥ ‖Σ−
1
2x>ν‖2

∣∣ T⋂
t=0

n⋂
i=1

{
c
(t)
i (X) = c

(t)
i (x)

}
, Π⊥ν X = Π⊥ν x, dir

(
Σ−

1
2X>ν

)
= dir

(
Σ−

1
2x>ν

)]
a.
= prH0

[
‖Σ− 1

2X>ν‖2 ≥ ‖Σ−
1
2x>ν‖2

∣∣∣∣∣
T⋂
t=0

n⋂
i=1

{
c
(t)
i

(
Π⊥ν X +

‖Σ− 1
2X>ν‖2
‖ν‖22

ν
{

dir
(

Σ−
1
2X>ν

)}>
Σ

1
2

)
= c

(t)
i (x)

}
,

Π⊥ν X = Π⊥ν x, dir(Σ−
1
2X>ν) = dir(Σ−

1
2x>ν)

]
b.
= prH0

[
‖Σ− 1

2X>ν‖2 ≥ ‖Σ−
1
2x>ν‖2

∣∣∣∣∣
T⋂
t=0

n⋂
i=1

{
c
(t)
i

(
Π⊥ν x+

‖Σ− 1
2X>ν‖2
‖ν‖22

ν
{

dir
(

Σ−
1
2x>ν

)}>
Σ

1
2

)
= c

(t)
i (x)

}
,

Π⊥ν X = Π⊥ν x, dir(Σ−
1
2X>ν) = dir(Σ−

1
2x>ν)

]
c.
= prH0

[
‖Σ− 1

2X>ν‖2 ≥ ‖Σ−
1
2x>ν‖2

∣∣∣∣∣
T⋂
t=0

n⋂
i=1

{
c
(t)
i

(
Π⊥ν x+

‖Σ− 1
2X>ν‖2
‖ν‖22

ν
{

dir
(

Σ−
1
2x>ν

)}>
Σ

1
2

)
= c

(t)
i (x)

}]
.

Here, step a. follows from substituting X with the expression in (A.40). Step b. follows from

replacing Π⊥ν X and dir(Σ−
1
2X>ν) with Π⊥ν x and dir(Σ−

1
2x>ν), respectively. Finally, in step

c., we used Lemma 12. Now, under (17) and H0 : µ>ν = 0q, we have that ‖Σ−
1
2X>ν‖2 ∼

‖ν‖2χq, which concludes the proof of (20).

It remains to show that the test that rejects H0 : µ>ν = 0 when pΣ,selective ≤ α controls
the selective Type I error, in the sense of (5). We omit the proof here, as it follows directly
from the proof of Proposition 1 in Appendix A.1.
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Next, we discuss how we could modify the results in Section 3 to compute the p-value
pΣ,selective. First note that according to Proposition 6, it suffices to compute the set

SΣ
T =

{
φ :

T⋂
t=0

n⋂
i=1

{
c

(t)
i

(
Π⊥ν x+

(
φ

‖ν‖22

)
ν
{

dir
(

Σ−
1
2x>ν

)}>
Σ

1
2

)
= c

(t)
i (x)

}}
. (A.41)

In addition, letting x̃′(φ) denote Π⊥ν x+
(

φ
‖ν‖22

)
ν
{

dir
(

Σ−
1
2x>ν

)}>
Σ

1
2 , we see that x̃′(φ) is

in fact a linear function of φ with

[x̃′(φ)]i = xi − νi
||x>ν||2
||ν||22

dir(x>ν) +

(
||x>ν||2
||Σ−

1
2x>ν||2

νi
||ν||22

φ

)
dir(x>ν). (A.42)

Therefore, a minor modification of Proposition 2 yields the following corollary.

Corollary 13 Suppose the k-means clustering algorithm (see Algorithm 1) with K clusters
the data x, when applied to the data x, runs for T steps. Then, for the set SΣ

T defined in
(A.41), we have that

SΣ
T =

(
n⋂
i=1

K⋂
k=1

{
φ :

∥∥∥∥[x̃′(φ)
]
i
−m(0)

c
(0)
i (x)

(φ)

∥∥∥∥2

2

≤
∥∥∥[x̃′(φ)

]
i
−m(0)

k (φ)
∥∥∥2

2

})
∩ T⋂

t=1

n⋂
i=1

K⋂
k=1

φ :

∥∥∥∥∥[x̃′(φ)
]
i
−

n∑
i′=1

w
(t−1)

i′

(
c
(t−1)

i′ (x)
)[
x̃′(φ)

]
i′

∥∥∥∥∥
2

2

≤

∥∥∥∥∥[x̃′(φ)
]
i
−

n∑
i′=1

w
(t−1)

i′ (k)
[
x̃′(φ)

]
i′

∥∥∥∥∥
2

2


.

(A.43)

We also have the following extensions of Lemmas 3 and 4, which enable efficient com-
putation of the expressions in Corollary 13.

Lemma 14 (Section 4.2 in Gao et al. (2022)) For x̃′(φ) in (A.42) and ν in (3),
∥∥∥[x̃′(φ)]i − [x̃′(φ)]j

∥∥∥2

2
=

a′φ2+b′φ+γ′, where a′ =

(
||x>ν||2

||Σ−
1
2 x>ν||2

)2(
νi−νj
‖ν‖22

)2

, b′ = 2

(
||x>ν||2

||Σ−
1
2 x>ν||2

)(
νi−νj
‖ν‖22

〈
xi − xj , dir(x>ν)

〉
−
(
νi−νj
‖ν‖22

)2

‖x>ν‖2
)

,

and γ′ =
∥∥∥xi − xj − (νi − νj) x

>ν
||ν||22

∥∥∥2

2
.

Lemma 15 For x̃′(φ) in (A.42), ν in (3), and w
(t)
i (k) in (14),

∥∥∥[x̃′(φ)]i −
∑n
i′=1 w

(t−1)

i′ (k)[x̃′(φ)]i′

∥∥∥2

2
=

ã′φ2 + b̃′φ+ γ̃′, where

ã′ =
1

‖ν‖42

(
||x>ν||2
||Σ− 1

2x>ν||2

)2
(
νi −

n∑
i′=1

w
(t−1)
i′ (k)νi′

)2

,

b̃′ =

(
2||x>ν||2

‖ν‖22||Σ−
1
2 x>ν||2

){(
νi −

n∑
i′=1

w
(t−1)

i′ (k)νi′

)〈
xi −

n∑
i′=1

w
(t−1)

i′ (k)xi′ , dir(x>ν)

〉
−‖x

>ν‖2
‖ν‖42

(
νi −

n∑
i′=1

w
(t−1)

i′ (k)νi′

)2}
,

and

γ̃′ =

∥∥∥∥∥xi −
n∑

i′=1

w
(t−1)

i′ (k)xi′ −

(
νi −

n∑
i′=1

w
(t−1)

i′ (k)νi′

)
x>ν

‖ν‖22

∥∥∥∥∥
2

2

.

Proofs of Lemmas 14 and 15 follow from the same set of calculations in the proofs of
Lemmas 3 and 4 in Appendix A.3.
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A.6 Proof of Proposition 7

Proof of Proposition 7 is similar to the proof of Lemma 1 in Markovic et al. (2017) and the
proof of Lemma 7 in Tibshirani et al. (2018).

We first present an auxiliary lemma.

Lemma 16 For any c
(t)
i (x), i = 1, . . . , n; t = 1, . . . , T , p̂selective(σ̂) defined in (21) is a

continuous and monotonically increasing function of σ̂.

Proof By the definition in (21), we have that

p̂selective(σ̂) =

∫∞
‖x>ν‖2(1

2)q/2−1 tq−1

Γ(q/2)‖ν‖
−q
2 σ̂−q exp

(
− t2

2σ̂2‖ν‖22

)
1{t ∈ ST }dt∫∞

0 (1
2)q/2−1 tq−1

Γ(q/2)‖ν‖
−q
2 σ̂−q exp

(
− t2

2σ̂2‖ν‖22

)
1{t ∈ ST }dt

, (A.44)

where ST defined in (12) is a function of c
(t)
i (x), i = 1, . . . , n; t = 1, . . . , T . By inspection,

(A.44) is a continuous function of σ̂, because the product or ratio of two continuous func-
tions is still continuous. It remains to show that (A.44) is increasing in σ̂. This follows
directly from Lemma S3. of Gao et al. (2022).

Provided that σ̂ converges to σ in probability, we can combine Lemma 16 and the
continuous mapping theorem to see that p̂selective(σ̂) converges to pselective(σ) in probability,
i.e., for all ε > 0, limq→∞ pr(|p̂selective(σ̂)− pselective(σ)| ≥ ε) = 0. Next, letting Aq denote

the event
⋂T
t=0

⋂n
i=1

{
c

(t)
i

(
X(q)

)
= c

(t)
i

(
x(q)

)}
, we will show that under the assumptions in

Proposition 7, p̂selective(σ̂) converges to pselective(σ) in probability, conditional on Aq. For
any ε > 0, we have that

lim
q→∞

pr
H

(q)
0

{|p̂selective(σ̂)− pselective(σ)| ≤ ε | Aq}

a.
= lim

q→∞

pr
H

(q)
0

{|p̂selective(σ̂)− pselective(σ)| ≤ ε, Aq}

pr
H

(q)
0

(Aq)

b.
≥ lim

q→∞

pr
H

(q)
0

(Aq)− pr
H

(q)
0

{|p̂selective(σ̂)− pselective(σ)| > ε}

pr
H

(q)
0

(Aq)

c.
=

limq→∞ pr
H

(q)
0

(Aq)− limq→∞ pr
H

(q)
0

{|p̂selective(σ̂)− pselective(σ)| > ε}

limq→∞ pr
H

(q)
0

(Aq)

d.
=
δ

δ
= 1.

Here, step a. follows from Bayes rule, and the observation that the denominator is non-zero
for finite q. In step b., we used the lower bound that for events A,B defined on the same
probability space, pr(A ∩B) = pr(A)− pr(A \B) ≥ pr(A)− pr(BC). Next, c. follows from
distributing the limit, which is valid because of the assumption that limq→∞ pr

H
(q)
0

(Aq) =

δ > 0; finally, d. follows from the fact that p̂selective(σ̂) converges to pselective(σ) in probability

for any sequence of µ(q), q = 1, 2, . . ., which implies the convergence under H0 : µ(q)>ν(q) = 0
as well.
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Finally, we have that

lim
q→∞

pr
H

(q)
0

{p̂selective(σ̂) ≤ α | Aq}
a.
= lim

q→∞
pr
H

(q)
0

{pselective(σ) ≤ α | Aq}
b.
= lim

q→∞
α = α.

(A.45)

Here, step a. follows from p̂selective(σ̂) converging to pselective(σ) in probability, conditional
on Aq. Step b. follows from the fact that the result of Proposition 1 applies for any positive
integer q. This completes the proof of Proposition 7.

Proposition 7 assumes that we have a consistent estimator σ̂ of σ. In Appendix A.7,
we analyze different estimators of σ in (1), and prove that, under appropriate sparsity
assumptions on µ in (1), σ̂MED in (22) is a consistent estimator for σ.

As an alternative, we can also use an asymptotically conservative estimator of σ as in
Gao et al. (2022). This leads to an asymptotically conservative p-value; details are stated
in Corollary 17.

Corollary 17 For q = 1, 2, . . . , suppose that X(q) ∼ MN n×q
(
µ(q), In, σ

2Iq
)
. Let x(q) be

a realization from X(q) and c
(t)
i (·) be the cluster to which the ith observation is assigned

during the tth iteration of step 3b. of Algorithm 1. Consider the sequence of null hypothe-

ses H
(q)
0 : µ(q)>ν(q) = 0q, where ν(q) defined in (3) is the contrast vector resulting from

applying k-means clustering on x(q). Suppose that (i) σ̂ is an asymptotically conservative
estimator of σ, i.e., limq→∞ pr

(
σ̂(X(q)) ≥ σ

)
= 1; and (ii) there exists δ ∈ (0, 1) such that

limq→∞ pr
H

(q)
0

[⋂T
t=0

⋂n
i=1

{
c

(t)
i

(
X(q)

)
= c

(t)
i

(
x(q)

)}]
> δ. Then, ∀α ∈ (0, 1), we have that

limq→∞ pr
H

(q)
0

[
p̂selective(σ̂) ≤ α

∣∣∣ ⋂T
t=0

⋂n
i=1

{
c

(t)
i

(
X(q)

)
= c

(t)
i

(
x(q)

)}]
≤ α.

We omit the proof of Corollary 17, as it follows directly from combining the proof of
Proposition 7 and the fact that p̂selective(σ̂) is a monotonically increasing function of σ̂
(see Lemma 16).

Finally, we remark that, in principle, the result in Proposition 7 can be extended to an
unknown covariance matrix Σ. However, estimating Σ is challenging, especially when q is
comparable to, or larger than, n (Rousseeuw, 1987; Bickel and Levina, 2008; Avella-Medina
et al., 2018). It may be possible to leverage recent advances in robust covariance matrix
estimation (e.g., Han and Liu (2014); Chen et al. (2018); Belomestny et al. (2019)) to obtain
a consistent estimator of Σ under model (17).

A.7 Estimating σ in (1)

Proposition 7 states that, under appropriate assumptions, a consistent estimator of σ in
(1) leads to asymptotic selective Type I error control. In this section, we analyze the
asymptotic behavior of the two variance estimators considered in Section 5, σ̂2

MED and
σ̂2

Sample. In particular, we prove that under model (1) and a sparsity assumption on µ

(defined in (1)), a close analog of σ̂2
MED in (22) that does not subtract the column median

is a consistent estimator of σ2. Moreover, we prove that σ̂2
Sample is a conservative estimator

of σ2, and characterize its exact bias.
We first introduce an auxiliary result that specifies the rate of convergence for a median-

based estimator of the variance in the sparse vector model (Comminges et al., 2021). For a
vector θ ∈ Rn, we use ‖θ‖0 to denote its `0 norm, i.e. ‖θ‖0 =

∑n
i=1 1{θi 6= 0}.
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Lemma 18 (Proposition 6 in Comminges et al. (2021)) Consider the model

Yi = θi + σξi, i = 1, . . . , d, (A.46)

where σ is unknown, and the independently and identically distributed noise ξi satisfies that
(i) E(ξi) = 0; (ii) E(ξ2

i ) = 1; and (iii) E
(
|ξi|2+ε

)
<∞ for some ε > 0. We further assume

that the signal θ is s-sparse, i.e., ‖θ‖0 ≤ s. Denoting by Mξ2
1

the median of ξ2
1, we consider

the following estimator of σ2:

σ̄2
MED = median(Y 2

1 , . . . , Y
2
d )/Mξ2

1
. (A.47)

Then, there exist constants γ ∈ (0, 1/8), C > 0 depending only on the cumulative distribu-
tion function of ξ1 such that for all integers s and d satisfying 1 ≤ s < γd,

sup
σ>0

sup
‖θ‖0≤s

1

σ2
E
{∣∣σ̄2

MED − σ2
∣∣} ≤ C max

(
1

d1/2
,
s

d

)
. (A.48)

Building on Lemma 18, in Corollary 19, we analyze the properties of an estimator closely
related to σ̂2

MED in (22). In particular, this estimator σ̃2
MED does not subtract the median

of each column in the input data. While σ̂2
MED and σ̃2

MED are very similar provided that µ
is sparse, we expect σ̂2

MED to perform better empirically in scenarios where µ is sparse up
to a constant shift, i.e., there exists a matrix C such that (i) each column of C takes on the
same value; and (ii) µ+ C is sparse.

Corollary 19 Under model (1), consider

σ̃2
MED(X) =

{
median

1≤i≤n,1≤j≤q

(
X2
ij

)}
/Mχ2

1
, (A.49)

where Mχ2
1

is the median of the χ2
1 distribution. Then, there exist constants γ0 ∈ (0, 1/8),

c0 > 0 such that for all integers s and q satisfying 1 ≤ s < γ0q,

sup
σ>0

sup
max

1≤i≤n
‖µi‖0≤s

1

σ2
E
{∣∣σ̃2

MED − σ2
∣∣} ≤ c0 max

{
1

(nq)1/2
,
s

q

}
. (A.50)

Proof First note that (1) can be re-written into the form of (A.46):

Xij = µij + σξij , i = 1, . . . , n, j = 1, . . . , q, (A.51)

where ξij is independently and identically distributed as N (0, 1). Therefore, the estima-
tor σ̃2

MED(X) in (A.49) is the estimator (A.47) applied to the model (A.51). Moreover,
max

1≤i≤n
‖µi‖0 ≤ s implies that

∑n
i=1

∑q
j=1 1{µij 6= 0} ≤ ns. Applying Lemma 18, we have

that

sup
σ>0

sup
max

1≤i≤n
‖µi‖0≤s

1

σ2
E
{∣∣σ̃2

MED(X)− σ2
∣∣} ≤ c0 max

{
1

(nq)1/2
,
ns

nq

}
= c0 max

{
1

(nq)1/2
,
s

q

}
,
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where c0 is some universal constant.

In words, Corollary 19 states that under model (1), the rate of convergence of σ̃2
MED in mean

(and therefore, in probability) is max
{

1/(nq)1/2, s/q
}

. In particular, σ̃2
MED is a consistent

estimator of σ2 provided that s/q → 0 as q →∞.

Next, we investigate the property of the sample variance estimator σ̂2
Sample.

Proposition 20 Under model (1), for σ̂2
Sample(X) =

∑n
i=1

∑q
j=1

(
Xij − X̄j

)2
/(nq− q), we

have that

E
{
σ̂2
Sample(X)

}
− σ2 =

1

2n(n− 1)q

q∑
j=1

n∑
i=1

n∑
i′=1

(µij − µi′j)2. (A.52)

Moreover, for any integers s and q such that ns ≤ q, we have that, for some constant c̃0,

sup
σ>0

sup
max

1≤i≤n
‖µi‖0≤s

1

σ2
E
{∣∣σ̂2

Sample(X)− σ2
∣∣} ≥ c̃0

s

q
. (A.53)

Proof We start with the proof of (A.52). Under (1), the following holds:

E
{
σ̂2

Sample(X)
}

= E


n∑
i=1

q∑
j=1

(
Xij − X̄j

)2
/(nq − q)


=

1

(n− 1)q
E

 n∑
i=1

q∑
j=1

{
X2
ij − (X̄j)

2
}

=
1

(n− 1)q

n∑
i=1

q∑
j=1

σ2 + µ2
ij −

σ2

n
+

1

n2

(
n∑

i′=1

µi′j

)2



= σ2 +
1

n2(n− 1)q

n∑
i=1

q∑
j=1

n2µ2
ij −

(
n∑

i′=1

µi′j

)2


= σ2 +
1

n(n− 1)q

q∑
j=1


(

n∑
i=1

nµ2
ij

)
−

(
n∑

i′=1

µi′j

)2


= σ2 +
1

2n(n− 1)q

q∑
j=1

n∑
i=1

n∑
i′=1

(
µij − µi′j

)2
.

Here, the last equality follows from Langrange’s identity, which states that
(∑n

i=1 a
2
i

)(∑n
i=1 b

2
i

)
−

(
∑n

i=1 aibi)
2 = 1/2

∑n
i=1

∑n
i′=1 (aibi′ − ai′bi)2.

To prove the second statement, we consider a specific matrix µ̃ ∈ Rn×q with exactly
ns ≤ q non-zero entries. In addition, each column of µ̃ has at most one non-zero entry
and each row of µ̃ has exactly s non-zero entries. This is possible because ns is assumed
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to be less than q. Finally, we assume that the square of the minimal non-zero entry of µ̃,
min

i,j:µ̃ij 6=0
µ̃2
ij , is lower bounded by some universal constant M . Then, we have that

sup
σ>0

sup
max

1≤i≤n
‖µi‖0≤s

1

σ2
E
{∣∣σ̂2

Sample(X)− σ2
∣∣}

a.
≥ sup

σ>0

1

σ2
EX∼MN (µ̃,In,σ2Iq)

{∣∣σ̂2
Sample(X)− σ2

∣∣}
b.
≥ sup

σ>0

1

σ2
EX∼MN (µ̃,In,σ2Iq)

{
σ̂2

Sample(X)− σ2
}

c.
≥ sup

σ>0

1

σ2

1

2n(n− 1)q

q∑
j=1

n∑
i=1

n∑
i′=1

(µ̃ij − µ̃i′j)2

≥ sup
σ>0

1

σ2

1

2n(n− 1)q

q∑
j=1

n∑
i=1

n∑
i′=1

1{µ̃ij 6= 0}1
{
µ̃i′j = 0

}
(µ̃ij − µ̃i′j)

2

d.
≥ sup

σ>0

1

σ2

M(n− 1)ns

2n(n− 1)q

≥ c̃0
s

q
.

Here, a. follows from picking any µ̃ satisfying the conditions outlined above, since by con-
struction, max

1≤i≤n
‖µ̃i‖0 = s. Steps b. and c. follow from the inequality E(|X|) ≥ E(X) and

the expression for E
{
σ̂2

Sample(X)
}

in (A.52), respectively. Finally, to prove d., we note that

for each of the ns columns with exactly one non-zero element, there are n − 1 pairs of
(i, i′), i = 1, . . . , n; i′ = 1, . . . , n such that the product 1{µ̃ij 6= 0}1

{
µ̃i′j = 0

}
is non-zero.

Moreover, each of pair contributes at leastM by the assumption that mini,j:µ̃ij 6=0 µ̃
2
ij ≥M .

Contrasting the results in Corollary 19 and Proposition 20, we note that, under (1), the
convergence of σ̃2

MED depends critically on the sparsity parameter s (or, equivalently, the `0

norm of µi), whereas the convergence of σ̂2
Sample is determined by

∑q
j=1

∑n
i=1

∑n
i′=1

(
µij − µi′j

)2
.

Thus, in scenarios where the underlying means µi, i = 1, . . . , n are sparse (e.g., (23) in Sec-
tion 5), we expect σ̃2

MED (and therefore its “centered” analog σ̂2
MED in (22)) to be a less

conservative estimator of σ2. As a result, we expect the test based on p̂selective(σ̂MED) to be
more powerful than that based on p̂selective(σ̂Sample), as shown in Figure 4 of Section 5.

A.8 Additional power comparisons

In Section 5.2, we compared the conditional power of the tests based on pselective, p̂selective(σ̂MED),
and p̂selective(σ̂Sample) under (23). Here, we conduct two additional analyses.

In the first analysis, we consider a different notion of power that does not condition on
Ĉ1 and Ĉ2 being true clusters. In this case, comparing the power of the tests requires a bit
of care, because the effect size ‖µ>ν‖2 may differ across simulated datasets from the same
data-generating distribution. As a result, we consider the power of the tests as a function
of ‖µ>ν‖2. We fit a regression spline using the gam function in the R package mgcv (Wood,
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2017) to obtain a smooth estimate of power on the same simulated datasets from Section 5.2.
The results are in Figure 6. The power of the tests that reject H0 if pselective, p̂selective(σ̂MED),
or p̂selective(σ̂Sample) is less than α = 0.05 increases as ‖µ>ν‖2 increases. For a given value
of ‖µ>ν‖2 and σ, the test based on pselective has the highest power, followed by that based
on p̂selective(σ̂MED); the test based on p̂selective(σ̂Sample) has the lowest power.

Figure 6: Left : Additional analysis of the data in Section 5.2 with σ = 0.5. We fit a
regression spline to display the power of the tests based on pselective (green line),
p̂selective(σ̂MED) (orange line), and p̂selective(σ̂Sample) (purple line) as a function of
‖µ>ν‖2. Right : Same as left, but for σ = 1.

In the second analysis, we consider the conditional power (defined in (24)) of the tests
based on pselective, p̂selective(σ̂MED), and p̂selective(σ̂Sample) under a different data generating
model than (23). We generate data from (1) with n = 150 and

µ1 = . . . = µn
3

=

[
θ1

00.9q

]
, µn

3
+1 = . . . = µ 2n

3
=

[
θ2

00.9q

]
, µ 2n

3
+1 = . . . = µn =

[
θ3

00.9q

]
, (A.54)

where, q is taken to be a multiple of 10, and for δ > 0, θ ∈ R3×0.1q has orthogonal rows,
with ‖θi‖22 = δ/2 for i = 1, 2, 3. As in Section 5.2, we can think of C1 = {1, . . . , n/3}, C2 =
{(n/3) + 1, . . . , (2n/3)}, C3 = {(2n/3) + 1, . . . , n} as “true clusters”. Under (A.54), the
pairwise distance between each pair of true clusters is δ.

We generate M = 100, 000 datasets from (A.54) with q = 50,σ = 0.25, 0.5, 1, and
δ = 2, 3, . . . , 10. For each simulated dataset, we apply k-means clustering with K = 3 and
reject H0 : µ>ν = 0q if pselective, p̂selective(σ̂MED), or p̂selective(σ̂Sample) is less than α = 0.05.
Figure 7(a) displays the detection probability (25) of k-means clustering as a function of δ
in (A.54). Under model (1), the detection probability increases as a function of δ in (A.54)
across all values of σ. For a given value of δ, a larger value of σ leads to lower detection
probability. Figure 7(b) displays the conditional power (24) for the tests based on pselective,
p̂selective(σ̂MED), and p̂selective(σ̂Sample). For some combinations of δ and σ, the conditional
power is not displayed, because the true clusters are never recovered in simulation. For all
tests and values of σ under consideration, conditional power is an increasing function of δ.
For a given test and a value of δ, smaller σ leads to higher conditional power. Moreover, for
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(a) (b)

(c) (d)

Figure 7: (a): Detection probability defined in (25) for k-means clustering with K = 3
under model (1) with n = 150, q = 50, and µ in (A.54), across δ = ‖θi − θj‖2 in
(A.54) and σ = 0.25 (solid lines), 0.5 (dashed lines), and 1 (long-dashed lines).
(b): The conditional power (24) at α = 0.05 for the tests based on pselective

(green), p̂selective(σ̂MED) (orange), and p̂selective(σ̂Sample) (purple), under model
(1) with n = 150, q = 50, and µ in (A.54). (c): Same as (a), but for µ in (23).
(d): Same as (b), but for µ in (23).
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the same values of δ and σ, the test based on pselective has the highest conditional power,
followed closely by the test based of p̂selective(σ̂MED). Using p̂selective(σ̂Sample) leads to a less
powerful test, especially for larger values of δ. As a comparison, we included the detection
probability and conditional power under model (23) with q = 50 in panels (c) and (d) of
Figure 7. The tests under consideration behave qualitatively similarly as a function of δ
and σ. Under (23), we observe an even larger gap between the power of the test based on
p̂selective(σ̂Sample) and the power of the test based on p̂selective(σ̂MED).

A.9 Additional results for real data applications

In this section, we visualize the estimated clusters for the single cell RNA-sequencing data
in Section 6.2.

Figure 8: Left: The two-dimensional UMAP embedding (McInnes et al., 2018) of the “no
cluster” dataset after preprocessing (as described in Section 6.2), colored by the
estimated cluster membership via k-means clustering. Right: Same as left, but
for the “cluster” dataset.
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