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Abstract
This article studies the infinite-width limit of deep feedforward neural networks whose weights
are dependent, and modelled via a mixture of Gaussian distributions. Each hidden node of the
network is assigned a nonnegative random variable that controls the variance of the outgoing
weights of that node. We make minimal assumptions on these per-node random variables: they
are iid and their sum, in each layer, converges to some finite random variable in the infinite-width
limit. Under this model, we show that each layer of the infinite-width neural network can be
characterised by two simple quantities: a non-negative scalar parameter and a Lévy measure on
the positive reals. If the scalar parameters are strictly positive and the Lévy measures are trivial
at all hidden layers, then one recovers the classical Gaussian process (GP) limit, obtained with
iid Gaussian weights. More interestingly, if the Lévy measure of at least one layer is non-trivial,
we obtain a mixture of Gaussian processes (MoGP) in the large-width limit. The behaviour of
the neural network in this regime is very different from the GP regime. One obtains correlated
outputs, with non-Gaussian distributions, possibly with heavy tails. Additionally, we show that,
in this regime, the weights are compressible, and some nodes have asymptotically non-negligible
contributions, therefore representing important hidden features. Many sparsity-promoting neural
network models can be recast as special cases of our approach, and we discuss their infinite-
width limits; we also present an asymptotic analysis of the pruning error. We illustrate some
of the benefits of the MoGP regime over the GP regime in terms of representation learning and
compressibility on simulated, MNIST and Fashion MNIST datasets.
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1. Introduction

Two decades after the seminal work of Radford Neal (1996), the last few years have seen a renewed
and growing interest in the analysis of (deep) neural networks, with random weights, in the infinite-
width limit. When the weights are independently, identically distributed (iid) and suitably scaled
Gaussian random variables, the random function associated to this random neural network converges
to a Gaussian process (Neal, 1996; Lee et al., 2018; Matthews et al., 2018; Yang, 2019; Bracale
et al., 2021). The connection to Gaussian processes has deepened our understanding of large neural
networks, and motivated the use of Bayesian or kernel regression inference methods (Lee et al., 2018)
or the development of kernel methods for training via gradient descent (Jacot et al., 2018) in the
infinite-width limit.

While insightful, the Gaussian process connection also highlighted some of the limitations of large-
width neural networks with iid Gaussian weights. As already noted by Neal (1995), “with Gaussian
priors the contributions of individual hidden units are all negligible, and consequently, these units
do not represent ‘hidden features’ that capture important aspects of the data.” Additionally, the
different dimensions of the output of the neural network become independent Gaussian processes in
the infinite-width limit, which is generally undesirable. Finally, from a Bayesian perspective, the
Gaussian independence assumption on weights is often seen as unrealistic: estimated weights of deep
neural networks generally exhibit dependencies and heavy tails (Martin and Mahoney, 2019; Wenzel
et al., 2020; Fortuin et al., 2021), and thus a family of prior distributions which allow for heavy
tails is desirable. To alleviate some of these limitations, iid non-Gaussian random weights have been
considered, either assuming stable (Neal, 1996; Der and Lee, 2006; Favaro et al., 2020), or more
generally light-tailed/heavy-tailed distributions (Jung et al., 2023). However, due to the same iid
assumption, some of the above limitations pertain, such as independence of the dimensions of the
output.

We consider a more structured distribution on the weights of the neural network. We assume
that weights emanating from a given node are dependent, where the dependency is captured via

a scale mixture of Gaussians. More precisely, for a weight W
(l+1)
jk between node j = 1, . . . , pl at

hidden layer l and node k = 1, . . . , pl+1 at hidden layer l + 1, we assume that

W
(l+1)
jk =

√
λ
(l)
pl,j

V
(l+1)
jk (1)

where λ
(l)
pl,j

, for j = 1, . . . , pl, are nonnegative iid random variance parameters, one for each node

j = 1, . . . , pl at layer l, and V
(l+1)
jk are iid centred Gaussian random variables with variance σ2

v > 0.

The per-node variance term λ
(l)
pl,j

induces some dependency over the weights W
(l+1)
j1 , . . . ,W

(l+1)
jpl+1

connected to node j. As we describe in the next paragraph, this assumption has been considered by
a number of authors for training (finite) neural networks either (i) as a prior for Bayesian learning and
pruning of neural networks, or (ii) as an implicit prior where a regularised empirical risk minimiser
with group-sparse penalty is interpreted as a maximum a posteriori estimator, or (iii) as a random
weight initialisation scheme for stochastic gradient descent.

A number of articles considered prior distributions of the form in Equation (1) for Bayesian
learning of deep neural networks. Examples of distributions considered for the random variance

λ
(l)
pl,j

include the Bernoulli (Jantre et al., 2021), the horseshoe (Louizos et al., 2017; Ghosh et al.,
2018, 2019; Popkes et al., 2019), the gamma (Scardapane et al., 2017; Wang et al., 2017), the inverse
gamma (Ober and Aitchison, 2021), or the improper Jeffrey distributions (Louizos et al., 2017).
See (Fortuin, 2021, Section 4.1) for a recent review. Distributions concentrated around 0, like the
horseshoe, or with mass at 0, like the Bernoulli, favour more sparse-like representations, and they
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have often been used for compression of deep neural networks, by pruning nodes based on the
posterior distributions of the per-node variance parameter. Using a similar idea but with a slightly
different formulation, Adamczewski and Park (2021) considered a joint Dirichlet distribution for
the square root of the variances. In Section 6 and Appendix E.2, we discuss these examples in the
context of our general framework.

These structured priors are also related to non-Bayesian estimators based on regularised empirical
risk minimisation, where the estimator can be interpreted as a maximum a posteriori estimator under
these priors. A typical example is the group lasso penalty on the weights of a neural network, used
in a number of articles (Murray and Chiang, 2015; Scardapane et al., 2017; Wang et al., 2017; Ochiai

et al., 2017), which can be interpreted as a negative log-prior on the weights when λ
(l)
pl,j

follows a
gamma distribution.

Finally, random weights of the form in Equation (1) have been used to initialise the weights
in stochastic gradient descent algorithms, departing from the standard iid Gaussian initialisation
commonly used for training deep neural networks (Glorot and Bengio, 2010). Blier et al. (2019) use
per-node random learning rates in stochastic gradient descent. This is equivalent to using the prior

in Equation (1) at initialisation, and then learning V
(l+1)
jk while keeping the variances fixed after

initialisation. A similar approach was considered by Wolinski et al. (2020b), but with deterministic
variances.

As outlined above, neural networks with random weights of the form in Equation (1) have been
extensively used in practice. A flurry of different distributions have been proposed for the random

variance λ
(l)
pl,j

, and it is unclear which one we should choose in practice, and how this choice influences
the properties of the resulting random neural network function.

The objective of this work is to analyse the infinite-width properties of feedforward neural net-
works with dependent weights of the form in Equation (1). Our work shows that the choice of the
distribution of the per-node variance is crucial and can lead to fundamentally different infinite-width
limits. Our main assumption is that, at each hidden layer l,

pl∑
j=1

λ
(l)
pl,j

d→ Λ(l) as the width pl → ∞, (2)

where
d→ refers to convergence in distribution and Λ(l) is some nonnegative random variable, which

may be constant. This assumption is natural as it implies that the activations and outputs of the neu-

ral network are almost surely finite in the infinite-width limit. Note that
∑pl
j=1 Var

(
W

(l+1)
jk

∣∣∣ (λ(l)pl,j)j≥1

)
=

σ2
v

∑pl
j=1 λ

(l)
pl,j

. Hence, the assumption in Equation (2) is similar to the commonly made assumption,
in the iid case, that the sum of the variances of the incoming weights to a node converges to a
constant in the infinite-width limit (Glorot and Bengio, 2010; He et al., 2015). The iid Gaussian

case indeed arises as a special case by setting λ
(l)
pl,j

= c
pl

for all j = 1, . . . , pl for some c > 0. Note

that Λ(l) = c is deterministic in this particular case.
The random variable Λ(l) is necessarily infinitely divisible (see Section 2), and parameterised by

(i) a location parameter a(l) ≥ 0 and
(ii) a Lévy measure ρ(l) on (0,∞).

We prove that, if a(l) > 0 and the Lévy measures are trivially zero (that is
∫∞
0
ρ(l)(dx) = 0) at

all hidden layers l, then the limit is a Gaussian process (GP), as in the iid Gaussian case. As a

consequence, all weights are uniformly small, with maxj=1,...,pl |W
(l+1)
jk | → 0 in probability. We

show that this GP limit arises with a few models proposed in the literature, such as the group
lasso (Scardapane et al., 2017; Wang et al., 2017) and inverse gamma (Ober and Aitchison, 2021)
priors. These neural network models therefore are asymptotically equivalent to a model with iid
Gaussian weights in the infinite-width limit.

More interestingly, if at least one of the Lévy measures is non-trivial, we obtain a very different
behaviour, and the limit is now a mixture of Gaussian processes (MoGP), with a given random
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covariance kernel. Under the MoGP regime, we show that the following results hold in the infinite-
width limit, none of which hold for the iid Gaussian case.

• maxj=1,...,pl |W
(l+1)
jk | converges in probability to a random variable which is not degenerately 0

(see Proposition 3). That is, some weights remain non-negligible asymptotically. It is natural
to interpret this as being connected to nodes representing important hidden features.

• The different dimensions of the output remain dependent (see Theorems 8 and 16).
• The outputs are non-Gaussian, and may exhibit heavy tails depending on the behaviour of the
Lévy measures at infinity (see Propositions 9 and 10).

• Pruning the network according to the variance parameter λ
(l)
pl,j

at some level ϵ > 0 sufficiently

small, provides a finite, non-empty neural network with positive probability.1 The resulting
error associated to the pruned network can be related to the behaviour of the Lévy measure
near 0 (see Corollary 13).

• The network is compressible: when pruning the network by removing a fixed proportion (1−
κ) ∈ (0, 1) of nodes at each layer according to the variance parameter λ

(l)
pl,j

, the difference
between the outputs of the pruned and unpruned networks converges to 0 in probability in the
infinite-width limit (see Corollary 15).

Some illustrative examples. To give a sense of the range of results covered in this article, we now
briefly present some illustrative examples in the case of a simple feedforward neural network with one

hidden layer, din-dimensional input x = (x1, . . . , xdin)
T , 2-dimensional output (Z

(2)
1 (x;p), Z

(2)
2 (x;p))T ,

no bias, σv = 1 and rectified linear unit (ReLU) activation function. For k = 1, 2, the output is such
that

Z
(2)
k (x; p1) =

p1∑
j=1

√
λ
(1)
p1,j

V
(2)
jk max

(
0,

1√
din

din∑
i=1

V
(1)
ij xi

)
.

More general deep neural networks and other examples are considered later in this article. As
mentioned above, it is well known (see for instance (Lee et al., 2018)) that, if λp1,j = 2

p1
(iid

Gaussian weights, or He initialisation (He et al., 2015)), the outputs are asymptotically independent
Gaussian processes with, for k = 1, 2,(

Z
(2)
k (x; p1)

Z
(2)
k (x′; p1)

)
d→ N

(
0,

(
K(2)(x,x) K(2)(x,x′)
K(2)(x,x′) K(2)(x′,x′)

))
as p1 → ∞ (3)

where the (deterministic) covariance kernel K(2)(x,x′) is defined by

K(2)(x,x′) =
∥x∥∥x′∥
din

× 1

π

(√
1− ρ2x,x′ +

(π
2
+ arcsin ρx,x′

)
ρx,x′

)
, (4)

with correlation ρx,x′ = xTx′

∥x∥∥x′∥ , see Appendix A.2 for background on ReLU kernels.

Consider now the following models for p1 ≥ 2:

(a) λ
(1)
p1,j

∼ IG
(
2, 2

p1

)
(b) λ

(1)
p1,j

∼ Bernoulli
(

2
p1

)
(c) λ

(1)
p1,j

∼ Beta
(

1
p1
, 12

)
(d) λ

(1)
p1,j

= π2 U
2
j

p21
where Uj ∼ Cauchy+(0, 1)

where IG(β1, β2) denotes the inverse gamma distribution with shape β1 > 0 and scale β2 > 0, and
Cauchy+(0, 1) denotes the half-Cauchy distribution with pdf

f(u) =
2

π(1 + u2)
× 1{u>0}. (5)

1. Note that there is always some small probability of pruning everything and leaving an empty network.
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Model Limit Depend. Distribution Tail of Number of max |W (2)
jk | Tail of (W

(2)

(j)k
)2 Compressible

process outputs of Z
(2)
k (x, p1) Z

(2)
k (x, p1) active nodes

pr→ 0 of W
(2)
jk decrease in

iid GP No Gaussian Expon. ∞ Yes Expon. – No
(a) GP No Gaussian Expon. ∞ Yes Expon. – No
(b) MoGP Yes Compound Poisson Expon. Poisson(2) No Expon. – Yes

(c) MoGP Yes Normal-gamma Expon. ∞ No Expon. O(e−cj) Yes

(d) MoGP Yes Cauchy Power-law ∞ No Power-law O(j−2) Yes

Table 1: Summary of the properties of the neural network models for four different distributions on
the per-node variances.

For all the above models (a-d), we have λ
(1)
p1,j

→ 0 in probability as p1 → ∞. For (a-c),

E[
∑
j λ

(1)
p1,j

] → 2 as p1 → ∞ (the expectation is infinite for the horseshoe example (d)), as in
the iid Gaussian case. However, the infinite-width limits are all very different.

Under the inverse gamma model (a), the infinite-width limit is the same as the iid Gaussian case.
Under models (b-d), the infinite-width limit is a mixture of Gaussian processes, i.e. a Gaussian
process with a random covariance kernel (see Theorem 16). These models illustrate some of the
benefits of the MoGP regime. The outputs are now dependent in the infinite-width limit. The models
(b-d) are compressible in the sense that the difference between the output of the pruned network
and the output of the unpruned network vanishes in the infinite-width limit (see Theorem 5). This
is not the case for the iid Gaussian model, nor for model (a). The weights as well as the outputs
can have an exponential tail (b-c) or a power-law tail (d). The properties of the different models are
summarised in Table 1. More details on these illustrative examples can be found in Appendix E.1.

Organisation of the article. In Section 2, we provide some background material on infinitely di-
visible random variables. The feedforward neural network model with dependent weights is described
in Section 3, together with the asymptotic assumptions. We also show how the behaviour of the
Lévy measure around zero and infinity tunes the properties of large and small weights. In Section 4,
we give the asymptotic distribution of the outputs for a single input x, in the case of ReLU-like
activation functions. We discuss some of the implications of our result in terms of pruning and heavy
tails, depending on the asymptotic properties of the model. In Section 5, the result is extended to
multiple inputs x1, . . . ,xn and general activation functions. In Section 6, we show how many models
proposed in the literature can be formulated in our general framework, and present their limiting
properties. In Section 7, we provide some illustrative experiments on Bayesian inference under this
class of models, and in Section 8, we discuss related approaches. The Appendix contains the de-
tails of the illustrative example from above, further examples, most of the proofs, some additional
background material and secondary lemmas. The code to reproduce the experiments is available at
https://github.com/FadhelA/mogp.

Notations. For a random variable X, X ∼ F indicates that X is distributed according to F . For
functions (or sequences) a(x) and b(x), we use the notation a(x)

x→∞∼ b(x) for limx→∞ a(x)/b(x) =

1. The notation
pr→ and

d→ respectively mean ‘convergence in probability’ and ‘convergence in

distribution’. We also use the notation X
d
= Y to indicate that the two random variables X and Y

have the same distribution. For two sequences of random variables Xn, Yn, we write ‘Xn
n→∞∼ Yn in

probability’ for Xn/Yn
pr→ 1 as n→ ∞.

2. Background Material on Infinitely Divisible Random Variables

A nonnegative random variable X is said to have an infinitely divisible distribution if, for every

n ∈ N, there exist iid nonnegative random variables Yn1, . . . , Ynn such that X
d
=
∑n
i=1 Yni (Sato,

1999). Examples of infinitely divisible nonnegative distributions are the lognormal, log-Cauchy,
Pareto, gamma, betaprime, constant and positive stable distributions. (Appendix A.4 discusses the

5
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last positive-stable case in detail.) If X is nonnegative and infinitely divisible, its distribution is
uniquely characterised by a scalar a ≥ 0 and a Lévy measure ρ on (0,∞) (that is, it is a Borel
measure that satisfies

∫∞
0

min(1, x)ρ(dx) < ∞). We write X ∼ ID(a, ρ). The scalar a is a location
parameter, and X − a ∼ ID(0, ρ). The Lévy measure ρ may be

• Trivial, that is
∫∞
0
ρ(dw) = 0; in this case, X = a is constant;

• Finite, that is
∫∞
0
ρ(dw) <∞; in this case, X ≥ a, with Pr(X = a) > 0;

• Infinite, that is
∫∞
0
ρ(dw) = ∞; in this case, X = a+ Y , where Y is an absolutely continuous

random variable on (0,∞).

The Laplace transform is given, for any t ≥ 0, by E[e−tX ] = e−ta−ψ(t), where ψ(t) :=
∫∞
0

(1 −
e−wt)ρ(dw). Infinitely divisible random variables are closely related to Poisson point processes. The

random variable X ∼ ID(a, ρ) admits the representation X
d
= a +

∑
i≥1 ξi, where (ξi)i≥1 are the

points of a Poisson process on (0,∞) with mean measure ρ.

3. Statistical Model

3.1 Feedforward Neural Network

We consider a feedforward neural network (FFNN) with L hidden layers and pl ≥ 1 nodes at each
layer l. We let p0 = din be the input dimension and pL+1 = dout be the output dimension. We write
p = (p1, . . . , pL)

T ∈ NL. For l with 1 ≤ l ≤ L+1, the pre-activation values at these nodes are given,
for an input x = (x1, . . . , xdin)

T ∈ Rdin , recursively by

Z
(1)
k (x;p) =

din∑
j=1

W
(1)
jk xj +B

(1)
k ,

Z
(l)
k (x;p) =

pl−1∑
j=1

W
(l)
jk ϕ(Z

(l−1)
j (x;p)) +B

(l)
k , l ≥ 2,

(6)

where ϕ : R → R is the activation function,W
(l)
jk is the weight between node j at layer l−1 and node k

at layer l, and B
(l)
k is the bias term of node k at layer l. The vector (Z

(L+1)
1 (x;p), . . . , Z

(L+1)
dout

(x;p))T

is the output of the neural network for the input x.
Let σb ≥ 0. We assume that, for all k ≥ 1 and l = 1, . . . , L+ 1,

B
(l)
k

iid∼ N
(
0, σ2

b

)
(7)

if σb > 0, and B
(l)
k = 0 otherwise.

3.2 Distribution of the Weights

For 0 ≤ l ≤ L, we assume that W
(l+1)
jk follows a scale mixture of Gaussian distributions, with

W
(l+1)
jk =

√
λ
(l)
pl,j

V
(l+1)
jk (8)

where

(a) for each layer l = 0, . . . , L, j = 1, . . . , pl, and k = 1, . . . , pl+1,

V
(l+1)
jk ∼ N

(
0, σ2

v

)
for some σv > 0; (9)

6



Deep neural nets with dependent weights

(b) λ
(0)
p0,j

= 1
din

, and for each layer l = 1, . . . , L and each node j = 1, . . . , pl at layer l, λ
(l)
pl,j

≥ 0 is
a (hidden) node variance parameter, with

λ
(l)
pl,j

∼ µ(l)
pl

for some probability distribution µ(l)
pl

on [0,∞); (10)

(c) all the random variables {λ(l)pl,j , V
(l)
jk }l,j,k are assumed to be independent among themselves,

and also with {B(l)
k }l,k.

3.3 Asymptotic Assumptions and Infinite Divisibility

As mentioned in the introduction, for any node k,

pl∑
j=1

Var
(
W

(l+1)
jk

∣∣∣ (λ(l)pl,j)j≥1

)
= σ2

v

pl∑
j=1

λ
(l)
pl,j

.

In order to have a.s. finite activations in the infinite-width limit, we need
∑pl
j=1 λ

(l)
pl,j

to remain a.s.
finite as pl tends to infinity. To that end, recall from Equation (2) that

pl∑
j=1

λ
(l)
pl,j

d→ Λ(l)

as pl → ∞, for some nonnegative random variable Λ(l). This natural and general assumption,
together with the iid assumption, has two consequences.

(i) By (Kallenberg, 2002, Theorem 15.12), Λ(l) is necessarily an infinitely divisible random vari-
able, characterised by a location parameter a(l) ≥ 0 and a Lévy measure ρ(l) on (0,∞). We
express this by writing

pl∑
j=1

λ
(l)
pl,j

d→ ID(a(l), ρ(l)). (11)

(ii) By (Kallenberg, 2002, Lemma 15.13), we have λ
(l)
pl,j

pr→ 0 for any j ≥ 1.

As we will show in the next subsections, the asymptotic properties of the neural network in the
infinite-width limit are fully characterised by the activation function ϕ, the bias variance σ2

b , the
scaling factor σ2

v and the parameters (a(l), ρ(l)) at each hidden layer l = 1, . . . , L.
The following result shows that the infinite divisibility of the sum of per-node variances implies

that the squared ℓ2-norm of the vector of incoming weights of a node converges in distribution to an
infinitely divisible random variable in the infinite-width limit. The proposition follows from Corol-
lary 37 in the Appendix.

Proposition 1 Let l ∈ {1, . . . , L}. Assume Equations (8), (9) and (11) hold for some σv > 0,
a(l) ≥ 0 and some Lévy measure ρ(l). Then, for any k ≥ 1,

1

σ2
v

pl∑
j=1

(W
(l+1)
jk )2 =

pl∑
j=1

λ
(l)
pl,j

(
V

(l+1)
jk

σv

)2

d→ ID(a(l), ν(l))

where ν(l) is a Lévy measure on (0,∞) defined by

ν(l)(dz) =

∫ ∞

0

ρ(l)(dz/x)Gamma(x; 1/2, 1/2)dx, (12)

where ρ(l)(dz/x) denotes the measure that assigns ρ(l)((a/x, b/x)) to each interval (a, b) ⊆ R.

7
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Remark 2 In the iid Gaussian case where λ
(l)
pl,j

= c
pl

for some c, the sum of variances
∑pl
j=1 λ

(l)
pl,j

=

c is constant and 1
σ2
v

∑pl
j=1(W

(l+1)
jk )2 = c

pl

∑pl
j=1(V

(l+1)
jk /σv)

2 pr→ c, where the convergence is by the

law of large numbers.

3.4 Properties of the Largest Weights in the Infinite-Width Limit

We discuss here some general structural properties of the FFNN in the infinite-width limit, depending
on the parameters a(l) and ρ(l). In particular, we answer the following question: In which cases are
the largest variances/weights of the FFNN asymptotically non-negligible?

We interpret a layer l to capture important features in the infinite-width limit if some of the per-
node variances remain asymptotically non-negligible as pl → ∞. The following proposition, which
follows from (Kallenberg, 2002, Theorem 15.29), shows that this arises whenever ρ(l) is a non-trivial
Lévy measure.

Proposition 3 (Necessary and sufficient conditions for uniform convergence to 0) Let l ∈
{1, . . . , L}. The following are equivalent:

i) ρ(l) is trivial;

ii) maxj λ
(l)
pl,j

pr→ 0;

iii) for every k ≥ 1, maxj |W (l+1)
jk | pr→ 0.

The next proposition goes a bit further and describes the asymptotic distribution of the extreme
weights. For a Lévy measure ρ on (0,∞), define the tail Lévy measure

ρ(x) :=

∫
(x,∞)

ρ(dw) for all x > 0.

For all u > 0, let ρ−1(u) := inf{x > 0 : ρ(x) < u} denote the generalised inverse of ρ, called the
inverse tail Lévy intensity of ρ. Note that both ρ and ρ−1 are non-increasing functions, and are both
equal to zero if ρ is trivial. The following proposition is a direct corollary of Proposition 30 in the
Appendix and of Proposition 1 in the main text.

Proposition 4 (Extremes of the variances and weights) Consider l ∈ {1, . . . , L}, and let λ
(l)
pl,(1)

≥
λ
(l)
pl,(2)

≥ . . . be the order statistics of the per-node variances. Then, for any k ≥ 1, as pl → ∞,

λ
(l)
pl,(k)

pr→ 0 if ρ(l) is trivial; λ
(l)
pl,(k)

d→ (ρ(l))−1(Gk) otherwise,

where Gk ∼ Gamma(k, 1). Here (ρ(l))−1(Gk) is a nonnegative random variable, non-degenerate at

0 if the Lévy measure is non-trivial. Additionally, let W
(l+1)
(1),m ≥ W

(l+1)
(2),m ≥ . . . be the order statistics

of the incoming weights of node m at layer l + 1. Similarly, we have

(W
(l+1)
(k),m)2

pr→ 0 if ρ(l)(hence ν(l)) is trivial; (W
(l+1)
(k),m)2

d→ σ2
v × (ν(l))−1(Gk) otherwise,

where (ν(l))−1 is the inverse tail Lévy intensity of the measure ν(l) defined in Equation (12).

What about the properties of small weights? One answer is given in Appendix D.1.

8
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3.5 Compressibility of the Neural Network

About a decade ago, Gribonval et al. (2012) established a connection between heavy tails and
compressibility in the compressed sensing literature. Recently, a series of works (Arora et al., 2018;
Suzuki et al., 2019; Kuhn et al., 2021; Suzuki et al., 2020) have shown that the compressibility of
a neural network is related to how well the network generalises, both from a theoretical and an
empirical point of view. These two lines of works were brought together by Shin (2021); Barsbey
et al. (2021), who proposed theoretical frameworks to establish a direct connection among the heavy
tail index of the distribution of the weights of a neural network, the compressibility of the network
and its generalisation properties. In the setting of our model, these studies on compressibility can
be extended from the heavy-tailed case to the much larger class of models for which there is a
non-trivial Lévy measure of the limiting infinitely divisible random variable of Equation (2).

Let vp,(1) ≥ vp,(2) ≥ · · · ≥ vp,(p) be the coordinates, reordered by size, of v(p) = (vp,1, . . . , vp,p).
Motivated by similar notions in (Gribonval et al., 2012), we say that a sequence (v(p))p is ℓ2-
compressible as p→ ∞ if for any κ ∈ (0, 1),

lim
p→∞

∑p
j=1 1{vp,j≤vp,(⌊κp⌋)}v

2
p,j∑p

j=1 v
2
p,j

= 0. (13)

If vp,i ̸= vp,j when i ̸= j, the indicator 1{vp,j≤vp,(⌊κp⌋)} retains the top κ-proportion of v2p,j values.
To place this in the context of neural networks, we will say that layer l is compressible if Equa-

tion (13) holds in probability for the ℓ2-norms of vectors of outgoing weights, for all nodes j in layer
l. More precisely, for any j = 1, . . . , pl, denote the squared norm of the outgoing weights of the
hidden node j at layer l by

T
(l+1)
j := ∥W (l+1)

j,: ∥2 =

pl+1∑
k=1

λ
(l)
pl,j

(V
(l+1)
j,k )2

and let T
(l+1)
(1) ≥ . . . ≥ T

(l+1)
(pl)

denote the ordered values. Then, layer l is ℓ2-norm-compressible if for

every κ ∈ (0, 1), ∑pl
j=1 1{T (l+1)

j ≤T (l+1)

(⌊κpl⌋)
}T

(l+1)
j∑pl

j=1 T
(l+1)
j

pr→ 0 as pl → ∞. (14)

In our model, compressible layers are easily characterised simply by the value of a(l) as our next
result shows.

Theorem 5 (Characterisation of compressibility) For each layer l with 1 ≤ l ≤ L, if a(l) = 0,
then for all κ ∈ (0, 1), ∑pl

j=1 1{λ(l)
pl,j

≤λ(l)

pl,(⌊κpl⌋)
}λ

(l)
pl,j∑pl

j=1 λ
(l)
pl,j

pr→ 0 as pl → ∞, (15)

where λ
(l)
pl,(1)

≥ λ
(l)
pl,(2)

≥ . . . ≥ λ
(l)
pl,(pl)

are the ordered per-node variance terms. In such a case,

Equation (14) holds so that layer l is ℓ2-norm-compressible.

3.6 Heavy Tail and Power-Law Properties of the Variances and Weights

A random variable X has a regularly varying tail if Pr(X > x)
x→∞∼ L(x)x−τ for some power-law

exponent τ > 0 and some slowly varying function L, that is, a function satisfying L(γx)/L(x) → 1

9
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as x→ ∞ for all γ > 0. The simplest slowly varying function is the constant function L(x) = c > 0,
and in this case we say that X has a power-law tail; to simplify the presentation, we restrict the
presentation to this case here. The next proposition shows that, if the tail Lévy intensity decays
polynomially at infinity, then the extremes of the per-node variance parameters and of the weights
have power-law tails asymptotically.

Proposition 6 (Power law properties of the variances and weights) Assume that for some

τ > 0 and some constant c > 0, ρ(l)(x)
x→∞∼ cx−τ . Then, for any k,m ≥ 1,

lim
pl→∞

Pr(λ
(l)
pl,(k)

> x)
x→∞∼ ρ(l)(x)k

k!

x→∞∼ ck

k!
x−kτ (16)

lim
pl→∞

Pr(|W (l)
(k),m| > x)

x→∞∼ ν(l)(x2/σ2
v)
k

k!

x→∞∼

(
2τΓ(τ+1/2)√

π
(σ2
v)
τ c
)k

k!
x−2kτ (17)

where ν(l) is the tail Lévy intensity of the measure ν(l) defined in Equation (12).

4. Infinite-Width Limit for a Single Input for Homogeneous Activation
Functions

Definition 7 A function ϕ : R → R is positive homogeneous if and only if ϕ(γx) = γϕ(x) for all
γ > 0 and x ∈ R.

The following standard activation functions are positive homogeneous:

ϕ(x) = x [Linear] (18)

ϕ(x) = max(x, 0) [ReLU] (19)

ϕ(x) =

{
x x > 0
βx x ≤ 0

[Leaky ReLU] (20)

for some β > 0. Note that the tanh and sigmoid functions are not positive homogeneous. We present
later in Theorem 16 more general assumptions that include these two cases.

4.1 Statement of the Main Theorem

We consider one FFNN for each p ∈ NL. The following result is stated for positive homogeneous
activation functions, which include many important particular cases, in particular the ReLU. A
similar result holds under more general assumptions on ϕ. See Theorem 16.

Theorem 8 (Single input case, ReLU-type activation) Consider the feedforward neural net-
work model defined by Equations (6) to (10). Assume that the activation function ϕ is positive
homogeneous and that, for all hidden layers l = 1, . . . , L, we have

pl∑
j=1

λ
(l)
pl,j

d→ ID(a(l), ρ(l)) as pl → ∞

for some a(l) ≥ 0 and some Lévy measure ρ(l). Then, as min(p1, . . . , pL) → ∞, for any m ≥ 1, any
layer l = 1, . . . , L+ 1 and any input x ∈ Rdin ,

(
Z

(l)
1 (x;p), . . . , Z(l)

m (x;p)
)

d→ E

 ⊗
k=1,...,m

N
(
0,Σ(l)(x)

) . (21)

10



Deep neural nets with dependent weights

Here, for each x ∈ Rdin ,
(
Σ(1)(x), . . . ,Σ(L+1)(x)

)
is a Markov sequence of nonnegative random

variables, defined recursively via the following stochastic recurrence equations:

Σ(1)(x) := σ2
b + (σ2

v∥x∥2/din) (22)

Σ(l)(x) := σ2
b + σ2

vS
(l−1)Σ(l−1)(x) for l = 2, . . . , L+ 1, (23)

where S(1), . . . , S(L) are independent random variables which additionally do not depend on the input
x. Moreover, S(l) ∼ ID(c(l), η(l)) where η(l) is a Lévy measure on (0,∞) with tail Lévy intensity

η(l)(x) :=

∫
{z:ϕ(z) ̸=0}

ρ(l)(x/ϕ(z)2)φ(z)dz

when φ denotes the pdf of the standard normal distribution, and c(l) is a nonnegative scalar defined
by

c(l) := a(l)
∫ ∞

−∞
ϕ(z)2φ(z)dz.

Example 1 Recall that ν(x) =
∫∞
0
ρ(x/z)Gamma(z; 1/2, 1/2)dz is the tail Lévy intensity of the

Lévy measure in Equation (12) associated to the sum of the squares of the weights. For the linear
activation function in Equation (18), we have

c(l) = a(l), η(l)(x) = ν(l)(x). (24)

For the ReLU activation function in Equation (19), we have

c(l) = a(l)/2, η(l)(x) = ν(l)(x)/2. (25)

For the leaky ReLU activation function in Equation (20), we have

c(l) = a(l)(β2 + 1)/2, η(l)(x) = (ν(l)(x) + ν(l)(x/β2))/2. (26)

4.2 Proof of Theorem 8

Denote Σ(1)(x;p) := Σ(1)(x) := σ2
v∥x∥2/din + σ2

b and, for each l = 2, . . . , L+ 1,

Σ(l)(x;p) := σ2
b + σ2

v

pl−1∑
j=1

λ
(l−1)
pl−1,j

ϕ
(
Z

(l−1)
j (x;p)

)2
. (27)

We have, for all l = 2, . . . , L+ 1,

Z
(1)
k (x;p) =

din∑
j=1

1√
din

V
(1)
jk xj +B

(1)
k , Z

(l)
k (x;p) =

pl−1∑
j=1

√
λ
(l−1)
pl−1,j

V
(l)
jk ϕ(Z

(l−1)
j (x;p)) +B

(l)
k .

Since the V
(l)
jk ∼ N (0, σ2

b ) are independent among themselves, and also independent from the families

{λ(l−1)
j , Z

(l−1)
j (x;p)}j and {B(l)

k }k, we may condition on Σ(l)(x;p) to obtain, for all l = 1, . . . , L+1,

(Z
(l)
1 (x;p), . . . , Z(l)

pl
(x;p))

∣∣ Σ(l)(x;p)
iid∼ N

(
0,Σ(l)(x;p)

)
.

Hence,

(Z
(l)
1 (x;p), . . . , Z(l)

pl
(x;p))

d
=
√

Σ(l)(x;p)(ε
(l)
1 , . . . , ε(l)pl ) (28)

11
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when ε
(l)
k

iid∼ N (0, 1). By the positive homogeneity of ϕ, Equation (27) can be rewritten as

Σ(l)(x;p)
d
= σ2

b + σ2
vΣ

(l−1)(x;p)

pl−1∑
j=1

λ
(l−1)
pl−1,j

ϕ(ε
(l−1)
j )2.

Let us set S(l)(pl) :=
∑pl
j=1 λ

(l)
pl,j

ϕ(ε
(l)
j )2 for l = 1, . . . , L. Then, the recurrence relation in Equa-

tion (27) defines a continuous map Ψ from [0,∞)L to [0,∞)L+1 satisfying

(Σ(1)(x;p), . . . ,Σ(L+1)(x;p))
d
= Ψ(S(1)(p1), . . . , S

(L)(pL)).

Note that by the recurrence relation in Equation (23) and its relationship with Equation (27),

(Σ(1)(x), . . . ,Σ(L+1)(x)) = Ψ(S(1), . . . , S(L)).

Also, note that the S(l)(pl) are independent and do not depend on the input x, and that the random

variables {ϕ(ε(l)j )2}j=1,...pl are independent. As |ϕ(x)| ≤ CLip|x| for CLip := max(|ϕ(1)|, |ϕ(−1)|),
we have E[ϕ(ε

(l)
j )2] < ∞. Additionally,

∑pl
j=1 λ

(l)
pl,j

d→ ID(a(l), ρ(l)) for each l = 1, . . . , L. It follows
from Corollary 37 in Appendix B that

(S(1)(p1), . . . , S
(L)(pL))

d→
⊗

l=1,...,L

ID(c(l), η(l)) (29)

as min(p1, . . . , pL) → ∞. By the continuous mapping theorem, this implies

Ψ(S(1)(p1), . . . , S
(L)(pL))

d→ Ψ(S(1), . . . , S(L)).

Thus, (Σ(1)(x;p), . . . ,Σ(L+1)(x;p))
d→ (Σ(1)(x), . . . ,Σ(L+1)(x)). The final result now follows.

4.3 Recursion for the Variance of the Limiting Outputs

Let (ζ
(l)
1 (x), . . . , ζ

(l)
m (x)) be the random variables that are distributed as

⊗
k=1,...,m

N (0,Σ(l)(x)) when

conditioned on Σ(l). Note that if we do not condition on Σ(l), these random variables (ζ
(l)
1 (x), . . . , ζ

(l)
m (x))

have the distributionE[
⊗

k=1,...,m

N (0,Σ(l)(x))]. Thus, they are the infinite-width pre-activations/outputs

in Theorem 8. Assume that, for any l, M
(l)
1 :=

∫∞
0
xρ(l)(dx) <∞, and Cϕ := E[ϕ(X)2] <∞, where

X ∼ N (0, 1). Then,

Var(ζ
(l)
k (x)) = E[Σ(l)(x)] (30)

where E[Σ(l)(x)] follows the recursion

E[Σ(1)(x)] := σ2
b + (σ2

v∥x∥2/din) (31)

E[Σ(l)(x)] := σ2
b + σ2

vCϕ(a
(l−1) +M

(l−1)
1 )E[Σ(l−1)(x)] for l = 2, . . . , L+ 1. (32)

In the particular cases where σb = 0, we obtain the simple expression

Var(ζ
(l)
k (x)) = σ2

v

∥x∥2

din

l−1∏
l′=1

σ2
vCϕ(a

(l′) +M
(l′)
1 ). (33)

In order to avoid the variance of the pre-activations to explode/vanish as the depth increases, the

pair (a(l), ρ(l)) should be chosen such that σ2
vCϕ(a

(l) +M
(l)
1 ) = 1. In the ReLU case, Cϕ = 1/2, and

this reduces, if σv = 1, to a(l) +M
(l)
1 = 2. This is the configuration of the four examples presented

in Section 1.

12
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4.4 Regularly Varying Properties of the Activations and Outputs

We derive here results for the ReLU activation function. Similar results can be derived for other
homogeneous activation functions. We have already shown in Proposition 6 that if the tail Lévy
intensity decays polynomially at infinity, then the weights have power-law tails. The next proposition
shows that if this is the case for all hidden layers, then the activations at each level and the outputs
also have regularly varying tails, with an exponent which is twice the minimum of the exponents of
the tail Lévy intensities in the layers below that level.

Proposition 9 Let L ≥ 1. Consider the same assumptions as in Theorem 8. Also, for l = 1, . . . , L,
assume that ρ(l) has a power-law behaviour at infinity with exponent τ (l), that is

ρ(l)(x)
x→∞∼ c(l)x−τ

(l)

(34)

for some positive constants c(l) > 0. Then, for any l = 1, . . . , L,

Pr(S(l) > u)
u→∞∼ ν(l)(u)/2

u→∞∼ c̃(l)u−τ
(l)

(35)

where

ν(l)(u) =

∫ ∞

0

ρ(l)(u/z)Gamma(z; 1/2, 1/2)dz, c̃(l) = c(l) × 2(τ
(l)−1)Γ(τ (l) + 1/2)/

√
π.

Also, for all k ≥ 1 and 2 ≤ l ≤ L+ 1, if we let ζ
(l)
k (x) := ε

(l)
k

√
Σ(l)(x) for ε

(l)
k ∼ N (0, 1), then

Pr(Σ(l)(x) > u)
u→∞∼ u−β

(l−1)

L(l−1)(u) (36)

Pr((ζ
(l)
k (x))2 > u)

u→∞∼ u−β
(l−1)

L(l−1)(u)× 2β
(l−1)

(Γ(β(l−1) + 1/2)/Γ(1/2)) (37)

where β(l−1) = min(τ (1), . . . , τ (l−1)) and L(l−1) are some slowly varying functions.

In general, the slowly varying functions L(l−1) in Proposition 9 cannot be obtained analytically.
An exception is when the hidden layers have the same asymptotic distribution and there is no bias,
as we show in the next proposition.

Proposition 10 Let L ≥ 1. Consider the same assumptions as in Theorem 8. Additionally, assume
that σb = 0, a(l) = a ≥ 0 and ρ(l) = ρ for all l = 1, . . . , L with ρ(x)

x→∞∼ cx−τ for some positive

constant c > 0 and exponent τ > 0. For k ≥ 1 and l = 2, . . . , L + 1, let ζ
(l)
k (x) := ε

(l)
k

√
Σ(l)(x) for

ε
(l)
k ∼ N (0, 1). Then, for l = 2, . . . , L+ 1,

Pr(Σ(l)(x) > u)
u→∞∼

(
∥x∥2

din
σ2l
v

)τ
τ l−2(c̃)l−1

(l − 2)!
u−τ logl−2 u

Pr((ζ
(l)
k )2 > u)

u→∞∼ Pr(Σ(l)(x) > u)× (2τΓ(τ + 1/2)/Γ(1/2))

where c̃ = c× (2τ−1Γ(τ + 1/2)/
√
π).

Note that in this particular case, the tails of the activations have the same exponent 2τ , but an
additional log factor is added for each additional hidden layer after the first one, and so, the tails
become slightly heavier as the network gets deeper.

13



Lee, Ayed, Jung, Lee, Yang and Caron

4.5 Pruning of the Nodes of the Network

Suppose that we want to prune the nodes of the neural network in order to reduce the computational
cost. We consider two different strategies for node pruning, both based on the values of the per-

node variances λ
(l)
pl,j

. The first strategy, called ϵ-pruning, prunes nodes such that λ
(l)
pl,j

≤ ϵ, for

some fixed threshold ϵ > 0. The second strategy, called κ-pruning, prunes nodes such that λ
(l)
pl,j

≤
λ
(l)
pl,(⌊κpl⌋) where the subscript (⌊κpl⌋) denotes an order statistic: at layer l, λ

(l)
pl,(1)

≥ λ
(l)
pl,(2)

≥ . . . ≥
λ
(l)
pl,(pl)

denote the ordered values of (λ
(l)
pl,j

)j=1,...,pl . When there are no repeated values, κ-pruning

is equivalent to pruning a proportion (1 − κ) ∈ (0, 1) of the pl nodes with lowest λ
(l)
pl,j

values in
each layer. The pruning strategies we employ here are related to the compressibility of a network
discussed in Section 3.5. This connection was noted in Barsbey et al. (2021) where similar pruning
schemes were discussed.

We start with an error bound of the pruned network that holds for both strategies with ϵ and κ.

To this end, let λ
∗(l)
pl , l = 1, 2, . . . , be nonnegative random variables. Consider the following pruned

network:

Z
∗(1)
k (x;p) := Z

∗(1)
k (x) :=

din∑
j=1

1√
din

V
(1)
jk xj +B

(1)
k ,

Z
∗(l)
k (x;p) :=

pl−1∑
j=1

(√
λ
(l−1)
pl−1,j

1{λ(l−1)
pl−1,j>λ

∗(l−1)
pl−1

}

)
V

(l)
jk ϕ(Z

∗(l−1)
j (x;p)) +B

(l)
k , l ≥ 2.

(38)

Namely, we prune a node if its node variance is less than or equal to the threshold λ
∗(l)
pl . For ϵ-

pruning, λ
∗(l)
pl = ϵ. In this case, we write Z

∗(l)
k (x;p) = Z

∗(l)
k (x;p, ϵ) to emphasise the dependence

of the network on ϵ. On the other hand, for κ-pruning, λ
∗(l)
pl = λ

(l)
pl,(⌊κpl⌋). Similarly, we write

Z
∗(l)
k (x;p) = Z

∗(l)
k (x;p, κ) to emphasise the dependence on κ.

Set N
(l)
pl := E[

∑pl
j=1 λ

(l)
pl,j

]. A key assumption used throughout this subsection on pruning is:

(UI) For all layers l = 1, . . . , L,∫ ∞

0

uρ(l)(du) =M
(l)
1 <∞, N (l)

pl
<∞ for all pl, and N (l)

pl
→ a(l) +M

(l)
1 as pl → ∞.

In our setting, the assumption (UI) is equivalent to the uniform integrability of the family {
∑pl
j=1 λ

(l)
pl,j

}pl
(see Appendix C.4).

We will also utilise the following assumptions in this subsection:

(A1) The activation function ϕ is positive homogeneous.

(A2) Equation (11) holds with a(l) = 0 for all hidden layers l = 1, . . . , L.

(A3) The Lévy measures of all layers are equal, ρ(l) = ρ, and ρ satisfies ρ(u)
u→0∼ u−αL(1/u) for

some α ∈ [0, 1) and some slowly varying function L. In this case, M1 :=M
(l)
1 does not depend

on l.

The following proposition gives a bound on the error of the above pruned network. The argument
is a variant of the variance recursion given in Section 4.3. To state the proposition, recall that

CLip = max(|ϕ(1)|, |ϕ(−1)|) and define U (l) := supp E[(Z
(l)
1 (x;p))2]. We point out that U (l) < ∞

under (UI) and (A1); see Lemma 38 in the Appendix.
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Proposition 11 (Pruning error bound) If (A1) holds, then the L2-error between the pruned and
unpruned networks satisfies

E

[(
Z

(l+1)
1 (x;p)− Z

∗(l+1)
1 (x;p)

)2]
(39)

≤ σ2
vC

2
LipU

(l)A(l)
pl

+ (σ2
vC

2
Lip)

2N (l)
pl
U (l−1)A(l−1)

pl−1
+ · · ·+ (σ2

vC
2
Lip)

lN (l)
pl

· · ·N (2)
p2 U

(1)A(1)
p1 ,

where A
(l)
pl := E[

∑pl
j=1 λ

(l)
pl,j

1{λ(l)
pl,j

≤λ∗(l)
pl

}].

Remark 12 To get a bound on U (l), note that the variance E[(Z
(l)
1 (x;p))2] satisfies a similar

recurrence relation to that described in Section 4.3. Namely,

E

[(
Z

(l+1)
1 (x;p)

)2]
≤ σ2

vCϕN
(l)
pl

E

[(
Z

(l)
1 (x;p)

)2]
+ σ2

b .

Also, the bound in Equation (39) holds when the supremum in U (l) for each l is taken for p′ with
minp′ ≥ minp. See the proofs of Lemma 38 and Proposition 11 for details. In the particular case

where σb = 0, Var(ζ
(l)
1 (x)) > 0, minp is sufficiently large and (A2) holds, if the supremum of U (l)

is taken over p′ with minp′ ≥ minp for every l, then U (l) satisfies

U (l) ≤ 2Var(ζ
(l)
1 (x)) = 2σ2

v

∥x∥2

din

l−1∏
l′=1

σ2
vCϕM

(l′)
1 .

4.5.1 ϵ-Pruning

Let λ
∗(l)
pl = ϵ for some ϵ > 0. At layer l, this means that we keep the hidden nodes j such that

λ
(l)
pl,j

> ϵ. (We do not let ϵ, the pruning level, depend on the layer here just to simplify presentation;
lifting this restriction would not invalidate our results to be presented next.) It should be noted that,
when the limiting unpruned network is infinite, this pruning strategy produces a finite network.

To analyse the error between the unpruned network and the ϵ-pruned network in Equation (38),

we investigate the limit of the L2 pruning error E[(Z
∗(l)
k (x;p, 0) − Z

∗(l)
k (x;p, ϵ))2] and show that,

under assumptions (UI) and (A1-A3), this error remains small in the limit as min(p1, . . . , pL) → ∞.
This comes as a corollary to Proposition 11.

Corollary 13 (Single input case, ϵ-pruning) Consider pruned FFNNs defined by Equations (7),

(9), (10) and (38) with λ
∗(l)
pl = ϵ. Suppose (UI) and (A1-A3) hold. Then, for all δ ∈ (0, 1−α), there

exists ϵ0(δ) > 0 such that if ϵ < ϵ0(δ), we have, for each l = 1, . . . , L and any k ≥ 1,

lim
minp→∞

E

[∣∣∣Z(l+1)
k (x;p)− Z

∗(l+1)
k (x;p)

∣∣∣2] ≤ D(l) · ϵ1−(α+δ),

where

D(l) =
σ2
vC

2
Lip

1− (α+ δ)
(U (l) + (σ2

vC
2
LipM1)U

(l−1) + · · ·+ (σ2
vC

2
LipM1)

l−1U (1))

is a constant not depending on ϵ.

Although the pruning error is controlled mostly by the pruning level ϵ, the error can vary ac-
cording to the constant D(l) which depends on the number of previous layers l. The deeper our
network gets, the larger the pruning error becomes. In other words, the pruning error is small at
shallow layers, but it accumulates and gets larger at deeper layers.
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In the particular case σb = 0 (no bias), combining Corollary 13 with Remark 12, we obtain

lim
minp→∞

E

[∣∣∣Z(l+1)
k (x;p)− Z

∗(l+1)
k (x;p)

∣∣∣2]

≤

(
σ2
vC

2
Lip

1− (α+ δ)

)
·

 l−1∑
l′=0

(
C2

Lip

Cϕ

)l′ · 2Var(ζ(l)1 (x)) · ϵ1−(α+δ)

where Cϕ is as in Section 4.3.

Remark 14 In Appendix C.4, we prove Corollary 13 in a slightly more general setting where we
allow for different ρ(l)’s in different layers. The trade-off is that, if we confine ρ(l) = ρ for some ρ
as in (A3), then ϵ0(δ) depends only on δ and not on L, thus one can possibly add more layers after
L+1. On the contrary, if we allow for different ρ(l)’s as in the proof, then ϵ0(δ, L) depends not only
on δ but also on L, so adding more layers requires changing ϵ0.

4.5.2 κ-Pruning

For fixed κ ∈ (0, 1), let λ
∗(l)
pl = λ

(l)
pl,(⌊κpl⌋). That is, κ-pruning discards nodes j at layer l with

λ
(l)
pl,j

≤ λ
(l)
pl,(⌊κpl⌋).

The next result shows that, under assumptions (UI) and (A1-A2) including the compressibility
of layers (A2; see Section 3.5), the error between the unpruned output and the κ-pruned output
in Equation (38) converges to 0, no matter what the value κ ∈ (0, 1) is. Again, this comes as a
corollary to Proposition 11.

Corollary 15 (Single input case, κ-pruning) Consider pruned FFNNs defined by Equations (7),

(9), (10) and (38) with λ
∗(l)
pl = λ

(l)
pl,(⌊κpl⌋). Suppose (UI) and (A1-A2) hold. Then, for each

l = 1, . . . , L and for any κ ∈ (0, 1) and any k ≥ 1,

E

[∣∣∣Z(l+1)
k (x;p)− Z

∗(l+1)
k (x;p)

∣∣∣2]→ 0 as minp → ∞.

This result states that, if a(l) = 0 for all l = 1, . . . , L, the neural network is compressible: the
difference between the output of the κ-pruned network and that of the unpruned network vanishes in
probability as the width of the network goes to infinity. This is not generally the case if a(l) > 0. If,
in addition, almost surely no node variances are repeated (so κ-pruning prunes a (1−κ)-proportion
of nodes), we do not obtain the vanishing error, which occurs when a(l) = 0. For instance, consider
a network with one hidden layer. Then, the L2-error is

E

[∣∣∣Z(2)
1 (x;p)− Z

∗(2)
1 (x;p)

∣∣∣2] = σ2
vE

 p1∑
j=1

λ
(1)
p1,j

1{λ(1)
p1,j≤λ

(1)

p1,(⌊κp1⌋)}

E
[
ϕ2(Z(1)(x))

]
which is not guaranteed to converge to 0 for all κ ∈ (0, 1) when a > 0. See Proposition 32.

In the iid Gaussian case, our κ-pruning strategy prunes every node due to the repeated node
variance c1

pl
, so that the pruning error trivially does not vanish. In practice, one prunes the iid

Gaussian case by removing nodes using instead

T
(l)
p,j := ∥Wj,:∥2 = λ

(l)
p,j

pl+1∑
k=1

(V
(l+1)
j,k )2

Denote by Z∗∗, the network defined in a similar way to Equation (38) but where Tp,j is used for
pruning instead of λp,j . Then, it can be shown that in the iid Gaussian case, the error is non-
vanishing, i.e.

lim supE

[∣∣∣Z(l+1)
k (x;p)− Z

∗(l+1)
k (x;p)

∣∣∣2] > 0.
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5. Infinite-Width Limit for Multiple Inputs in the General Case

We prove the convergence theorem for multiple inputs under a more general assumption for the
activation function ϕ than the positive homogeneity assumption in Theorem 8. Any positive homo-
geneous function such as ReLU satisfies this generalisation, as well as the classical tanh or sigmoid
functions. This assumption is called a “polynomial envelope” condition by (Matthews et al., 2018),
and commonly used in the context of analysing infinitely-wide neural networks either implicitly or
explicitly. In (Neal, 1996; Lee et al., 2018), the authors are implicitly exploiting this assumption by
considering tanh and ReLU mainly, and in (Favaro et al., 2020; Jung et al., 2023), they explicitly
considered a weaker version of this assumption.

Theorem 16 (Multi-input case) Consider the feedforward neural network model defined by Equa-
tions (6) to (10). Assume that the activation function ϕ is continuous and satisfies the so-called
polynomial envelope condition: for all z ∈ R, |ϕ(z)| ≤ A + B|z|C for some A,B,C > 0. Assume
that, for all hidden layers l = 1, . . . , L, we have

pl∑
j=1

λ
(l)
pl,j

d→ ID(a(l), ρ(l)) as pl → ∞

for some a(l) ≥ 0 and some Lévy measure ρ(l). Let x1, . . . ,xn be n inputs, where xi ∈ Rdin . Define

Z⃗
(l)
k (x1, . . . ,xn;p) := (Z

(l)
k (x1;p), . . . , Z

(l)
k (xn;p))

T ∈ Rn, the associated k-th outputs. Then, for all
l = 1, . . . , L+ 1 and all m ≥ 1, as p → ∞ in the order limpL→∞ . . . limp1→∞,

(
Z⃗

(l)
k (x1, . . . ,xn;p)

)
k=1,...,m

d→ E

 ⊗
k=1,...,m

N (0,Σ(l))

 .
Here, Σ(l) is a random n-by-n positive semi-definite matrix defined by Σ

(l)
ij = K(l)(xi,xj), for 1 ≤

i, j ≤ n, where K(l) : Rdin × Rdin → R is a random covariance kernel. The sequence of random
kernels (K(1), . . . ,K(L+1)) is a Markov sequence whose distribution can be defined recursively, for
l = 1, . . . , L, by:

K(1)(x,x′) := σ2
b + σ2

v

xTx′

din
(40)

K(l+1)(x,x′) := σ2
b + σ2

va
(l)E

[
ϕ(ζ

(l)
1 (x))ϕ(ζ

(l)
1 (x′))

∣∣∣K(l)
]
+ σ2

v

∑
j≥1

λ̃
(l)
j ϕ

(
ζ
(l)
j (x)

)
ϕ
(
ζ
(l)
j (x′)

)
where {λ̃(l)j }j≥1 are the points of a Poisson point process on (0,∞) with mean measure ρ(l) and, for
j ≥ 1,

ζ
(l)
j | K(l) iid∼ GP(0,K(l)).

Here GP(µ,K) denotes a Gaussian process on Rdin , i.e., a random element of M = {f : Rdin → R},
with mean µ ∈ M and covariance function K : Rdin × Rdin → R.

Remark 17 The limit in the above theorem is taken in sequential order from the first layer to
the last layer. Extending the theorem to a different and more natural limiting scheme, such as
min(p1, . . . , pL) → ∞, is non-trivial. For instance, although the proof of Theorem 8 handles the case
min(p1, . . . , pL) → ∞, it heavily relies on positive homogeneity of the activation function so as to
rephrase the outputs of hidden nodes in some layer l as a vector of independent Gaussian random
variables that is scaled by a random scalar (Equation (28)). Since the positive homogeneity of ϕ
does not let us move a matrix M from ϕ(Mv) to the outside in any form, It is difficult to obtain an
analogous result in the case of multiple inputs. We expect that a different approach, such as the use
of exchangeability (Favaro et al., 2020; Matthews et al., 2018), is needed for such extension of our
result, and we leave this as one of the remaining future challenges.
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When ρ(l) is trivial for all l = 1, . . . , L, the kernels are deterministic, and one recovers a Gaussian
process. Otherwise, we obtain a mixture of Gaussian processes, where the mixture comes from the
randomness of the kernel K(l). We now discuss some of the properties of the random kernel.

The following proposition is an immediate consequence of the Campbell theorem for Poisson
random measures, together with results regarding the ReLU activation function (Cho and Saul,
2009); see Appendix A.2.

Proposition 18 (Conditional mean and variance of the kernel) For any l ≥ 1 and n ≥ 1,

let M
(l)
n =

∫∞
0
xnρ(l)(dx). We have

E
[
K(l+1)(x,x′)

∣∣∣K(l)
]
= σ2

b + σ2
v(M

(l)
1 + a(l))E

[
ϕ(ζ

(l)
1 (x))ϕ(ζ

(l)
1 (x′))

∣∣∣K(l)
]

Var
[
K(l+1)(x,x′)

∣∣∣K(l)
]
= σ4

vM
(l)
2 E

[
ϕ(ζ

(l)
1 (x))2ϕ(ζ

(l)
1 (x′))2

∣∣∣K(l)
]

where (
ζ
(l)
1 (x)

ζ
(l)
1 (x′)

)∣∣∣∣∣K(l) iid∼ N
(
0,

(
K(l)(x,x) K(l)(x,x′)
K(l)(x,x′) K(l)(x′,x′)

))
. (41)

In the ReLU case, we have the analytic expressions

E
[
K(l+1)(x,x′)

∣∣∣K(l)
]
= σ2

b + σ2
v(M

(l)
1 + a(l))

√
K(l)(x,x)K(l)(x′,x′)

2π
κ1(ρ

(l)
x,x′)

Var
[
K(l+1)(x,x′)

∣∣∣K(l)
]
= σ4

vM
(l)
2

K(l)(x,x)K(l)(x′,x′)

2π
κ2(ρ

(l)
x,x′)

where ρ
(l)
x,x′ = K(l)(x,x′)/

√
K(l)(x,x)K(l)(x′,x′) and

κn(ρ) =

{√
1− ρ2 +

(
π
2 + arcsin ρ

)
ρ if n = 1

3
√

1− ρ2ρ+
(
π
2 + arcsin ρ

)
(1 + 2ρ2) if n = 2.

(42)

Example 2 Assume that σv = 1 and σb = 0. Consider the model λ
(l)
p,j ∼ Beta(β/p, β/2) for some

β > 0. This generalises the example (c) introduced in Section 1, with an additional parameter

β > 0. As will be shown later in Section 6.5,
∑
j λ

(l)
p,j converges in distribution to a random variable

Λ(l) ∼ ID(0, ρ) where ρ(dx) = βx−1(1 − x)(β/2)−11{x∈(0,1)}dx. This is a beta Lévy measure, with

moments Mk = β Γ(k)Γ(β/2)
Γ(k+β/2) , so that M1 = E[Λ(l)] = 2 and M2 = Var(Λ(l)) = 4/(2 + β). It follows

that

E
[
K(2)(x,x′)

]
= K(2)(x,x′), Var

[
K(2)(x,x′)

]
=

2

π(2 + β)

∥x∥2∥x′∥2

din
2 κ2(ρ

(1)
x,x′),

where K(2) is the GP ReLU kernel given in Equation (4). Thus, the random kernel K(2) is centred
on K(2), and the parameter β controls the variance of the kernel. Realisations of the kernel K(2) for
different values of β and with ∥x∥∥x′∥/din = 1 are given in Figure 1.

In Appendix D.2, we further discuss a special case of Theorem 16 when the limiting infinitely

divisible distribution of
∑pl
j=1 λ

(l)
pl,j

is an α-stable distribution.
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(a) β = 1 (b) β = 10 (c) β = 1000

(d) ρx,x′ = 0 (e) ρx,x′ = 0.5

Figure 1: (a-c) Dashed red lines represent 20 realisations of the kernel K(2)(x,x′), as a function

of the correlation ρx,x′ = xTx′

∥x∥∥x′∥ , when ∥x∥∥x′∥/din = 1, σv = 1, σb = 0, for the beta model in

Example 2 with (a) β = 1, (b) β = 10 and (c) β = 1000. The solid blue line represents the GP
ReLU kernel in Equation (4). The random kernels K(2) are centred on the GP ReLU kernel, and
the variance decreases with the tuning parameter β. (d-e) Distribution of K(2)(x,x′) for different
values of β, for (d) ρx,x′ = 0 and (e) ρx,x′ = 0.5.
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Name Mixture’s name µp a Lévy measure Support Finite? Exp. α Exp. τ
Determ. Gaussian δc1/p c1 0 – – – –

Bernoulli Spike and Slab
(
1 − c

p

)
· δ0 + c

p δ1 0 cδ1 {1} Yes 0 –

Gamma Group lasso Gamma
(

pl+1+1

2 ,
pl(pl+1+1)

2c1

)
c1 0 – – – –

Beta Normal-beta Beta
(

1
p ,

1
c

)
0 x−1(1 − x)1/c−1 (0,1) No – –

Inv.-Gamma Multivariate t IG (2, 2/p) 2 0 – – – –

Beta prime Horseshoe 2p

π2 x
−1/2(1 + 4xp2

π2 )−1 0 1
2x

−3/2 (0,∞) No 1/2 1/2

Gen. BFRY
Normal
-gen. BFRY

See Equation (48) 0 ηx−1−τ

Γ(1−α)
γ(τ − α, x) (0,∞) No α ∈ (0, 1) τ > α

Table 2: List of models and their limiting location parameter and Lévy measure.

6. Examples

In this section, we provide examples of models used in the literature, and the associated parameters
of the limiting infinitely divisible random variable of Equation (2). In some cases, we use a different
scaling so that the limit exists, and is not degenerate at 0. Table 2 summarises the properties of these
models. Further discussions on these and additional example models can be found in Appendix E.2.
To simplify notation, we often drop the layer index l fully or partially in the rest of this section,
writing e.g. λp,j ∼ µp.

6.1 Constant Variance (iid Gaussian/Weight Decay/L2 Regularisation)

The standard iid Gaussian model is obtained as a special case when λp,j ∼ δc1/p for some con-
stant c1 > 0 and so the weights Wjk are iid N (0, (c1σ

2
v)/p). In this case,

∑
j λp,j = c1, so that∑

j λp,j
d→ ID(c1, 0). The weights (and variances) converge uniformly to 0, i.e. for any k ≥ 1,

maxj=1,...,p(|Wjk|)
pr→ 0.

6.2 Bernoulli Prior

For some c > 0, consider λ
(l)
pl,j

∼ Bernoulli(c/pl) for every pl ≥ c. This corresponds to a marginal

spike and slab distribution for W
(l)
j = (W

(l)
j1 , . . . ,W

(l)
jpl+1

), with

W
(l)
j ∼

(
1− c

pl

)
· δ0 +

c

pl
· N (0, σ2

vIpl+1
).

Such a prior has been used by Jantre et al. (2021) for pruning Bayesian neural networks. In that

case,
∑
j λ

(l)
pl,j

d→ ID(0, cδ1). That is, the location parameter a is zero, and the Lévy measure ρ = cδ1
is finite and discrete.

6.3 Group Lasso Prior

We consider that2 λ
(l)
pl,j

∼ Gamma((pl+1 + 1)/2, bpl/2), where bpl is an inverse-scale parameter
that depends on the layer’s width. Such a distribution leads to the so-called group lasso distribu-

tion (Raman et al., 2009; Casella et al., 2010) over the weights (W
(l+1)
jk )jk, which have joint marginal

density

f(w) ∝ exp

−
√
bpl
σv

pl∑
j=1

√√√√pl+1∑
k=1

w2
jk

 . (43)

2. Note that in this case, λ
(l)
pl,j

depends on the size pl+1 of the upper layer as well. However, we show here that,

for a specific choice of bpl , at the infinite-width limit with respect to pl, this dependency on pl+1 disappears. For
clarity, we keep the superscript/subscript l in this subsection.
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The regularisation term

− log f(w) =

√bpl
σv

pl∑
j=1

√√√√pl+1∑
k=1

w2
jk

+ C (44)

is known as the group lasso penalty, introduced by Yuan and Lin (2006) for regression models. This
penalty has been used as a regulariser for neural networks by Scardapane et al. (2017) and Wang
et al. (2017). The group lasso distribution in Equation (43) has been used as a sparsity-promoting
prior in Bayesian learning of sparse neural networks by de Jong (2018).

Scardapane et al. (2017) suggested to set bpl = pl. However, this assumption implies that

limpl→∞
∑
j λ

(l)
pl,j

= pl+1 + 1 almost surely, which diverges if pl+1 → ∞. This fact has been noted
by Wolinski et al. (2020a) who suggested the different scaling bpl = pl(pl+1 +1)/c1 (with c1σv = 1).

Setting bpl = pl(pl+1 + 1)/c1, we obtain
∑
j λ

(l)
pl,j

pr→ c1 as pl → ∞. Thus,∑
j

λ
(l)
pl,j

d→ ID(c1, 0).

6.4 Inverse Gamma Prior and Similar Models

We consider here, as in (Ober and Aitchison, 2021), that the variances follow an inverse gamma
distribution

λp,j ∼ IG(2, 2/p). (45)

Note that this is equivalent to

λp,j = Yj/p (46)

where Y1, Y2, . . . , are iid IG(2, 2). By the law of large numbers,
∑
j λp,j

pr→ 2 or equivalently,
∑
j λp,j

d→ ID(2, 0).
More generally, any model of the form in Equation (46) where Y1, Y2, . . . are iid random variables

with finite mean, satisfies
∑
j λp,j

d→ ID(E[Y1], 0).

6.5 Beta Model and Beta Lévy Measure

Consider λp,j ∼ Beta(η/p, b) where η, b > 0. An application of Theorem 29 in Appendix B yields∑
j λp,j

d→ ID(0, ρ), where ρ(dx) = ηx−1(1−x)b−11{x∈(0,1)}dx is a Beta Lévy measure (Hjort, 1990).
The measure is infinite with bounded support.

6.6 Horseshoe Model

In the horseshoe model (Carvalho et al., 2010), we assume the independent random variables
Y1, Y2, . . . that have the same distribution as Y = T 2, where T ∼ Cauchy+(0, 1) is a half-Cauchy
random variable, with pdf given by Equation (5). The random variable Y ∼ Betaprime(1/2, 1/2) is
a beta prime random variable (with both shape parameters equal to 1/2), with pdf

fY (y) =
1

π
√
y(1 + y)

.

Its survival function satisfies
Pr(Y > y)

y→∞∼ (2y−1/2)/π,

and therefore Y has a power-law tail at infinity with exponent α = 1/2. Let c > 0 be some scaling
parameter. Setting

λp,j = (cπ2Yj)/(4p
2),
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we obtain ∑
j

λp,j
d→ ID(0, ρ) = IG(1/2, cπ/4). (47)

where ρ(dx) = (
√
c/2)x−3/21{x>0}dx. The tail Lévy intensity ρ(x) in this case has power-law tails

at 0 and ∞, with exponent 1/2.3

6.7 Generalised Gamma Pareto Model

The model described in Section 6.6 allows us to obtain a Lévy measure which has power-law tails
with the same exponent α at 0 and ∞. We describe here a model that permits power-law tails with
different exponents. Let λp,j = βjζp,j where

βj ∼ Pareto(τ, 1), ζp,j ∼ etBFRY

(
α,

(
pατ

η(τ − α)

)1/α

, 1

)
(48)

for α ∈ (0, 1), τ > α and η > 0. Here Pareto(τ, c) denotes the Pareto distribution with pdf
f(x) = τcτx−τ−11{x>c}. Also, etBFRY(α, t, ξ) denotes an exponentially tilted BFRY distribution
(Lee et al., 2016; Bertoin et al., 2006), with pdf

g(s) =
αs−1−αe−ξs(1− e−ts)

Γ(1− α)((t+ ξ)α − ξα)
.

We can sample easily from this distribution by inversion. The variances λp,j follow a generalised
BFRY distribution with density:

fp(x) =
ταx−τ−1

Γ(1− α)((t+ 1)α − 1)

(
γ(τ − α, x)− γ(τ − α, (t+ 1)x)

(t+ 1)τ−α

)
,

where t =
(

pατ
η(τ−α)

)1/α
and γ(s, x) =

∫ x
0
ts−1e−tdt denotes the lower incomplete gamma function

Under this model,
∑
j λp,j

d→ ID(0, ρ) where the limiting Lévy measure ρ is a generalised gamma
Pareto measure, introduced by Ayed et al. (2019, 2020):

ρ(dx) =
η

Γ(1− α)
x−1−τγ(τ − α, x)dx.

As shown by Ayed et al. (2020), the tail Lévy intensity of this measure shows power-law behaviours
at both 0 and ∞:

ρ(x)
x→0∼ c1x

−α, ρ(x)
x→∞∼ c2x

−τ

for some constants c1, c2 > 0. The exponents α ∈ (0, 1) and τ > α here can take different values,
allowing for different asymptotic behaviours for small and large weights.

7. Illustrative Experiments

7.1 MoGP at Initialisation

In this subsection, we illustrate the key benefits of the MoGP regime as well as our main results
through simulations; we consider a FFNN model defined by Equations (6) to (10), with no bias,

3. We say that a Lévy measure ρ on (0,∞) has a power-law tail at ∞ with exponent τ ∈ R if its tail Lévy intensity ρ

satisfies ρ(x)
x→∞∼ cx−τ . Similarly, we say that ρ has a power-law tail at 0 with exponent α > 0 if ρ(x)

x→0∼ cx−α.
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(a) Full distributions (b) Tails (c) Tails in log scale

Figure 2: MoGP output distribution

Width Deterministic Inverse Gamma Beta Horseshoe Gen. BFRY
100 0.019994 0.113897 0.320444 0.691159 0.33325
500 0.00539 0.028584 0.281498 0.434425 0.219763
1000 0.005495 0.015217 0.279571 0.995462 0.316032
2000 0.001844 0.004522 0.297515 0.253737 0.235673

Table 3: MoGP output correlation.

σv = 1, ReLU activation and univariate inputs. For the variance distributions, we consider five
of the examples described in Section 6, namely the deterministic, inverse-gamma, beta, horseshoe
and generalised BFRY models. For all models except the horseshoe, we set the parameters such

that E[
∑
j λp1,j ] → 1 as p1 → ∞. For the horseshoe model, we take λp1,j = (π2 )

2 U
2
j

p21
where Uj ∼

Cauchy+(0, 1). Unless otherwise stated, the neural networks have a single hidden layer, recovering
the illustrative example described in the introduction.

Output distribution. Figure 2 shows the distribution of the output with a large width p1 = 2000.
We use 50000 samples from the model to draw the plots, each corresponding to a random realisation
of the weights. The figure confirms the limiting behaviour described in Theorem 8: the deterministic
and inverse-gamma converge to the same Gaussian Process (the orange and blue lines overlap),
whereas MoGP regimes offer a wider class of output distributions. In particular, when we examine
the densities in log-log scale, we can notice that the beta, horseshoe and generalised BFRY exhibit a
density with a power-law tail (straight line in log-log scale), whereas the deterministic and inverse-
gamma exhibit a light-tailed density.

Dependence of the dimensions on the output. Another key consequence of Theorem 8 is
that in the GP regime, the different dimensions of the output are asymptotically independent, while
this is not the case in the MoGP regime. For a two-dimensional output FFNN, we report in Table 3

the empirical correlation between (Z
(2)
1 (x; p1))

2 and (Z
(2)
2 (x; p1))

2 when p1 → ∞ for the different
models using 5000 random samples. The empirical results confirm the theoretical ones: we can see
that for the deterministic and inverse-gamma models, the correlation converges to zero, while this
is not the case for the other models.

Distribution of the largest weight. Proposition 4 describes another benefit of the MoGP
regime: when the Levy measure is trivial, i.e. in the GP regime, the largest weight in each layer
converges in probability to zero, while this is not the case in the MoGP regime. Figure 3 empirically

validates this result; we show the evolution of the distribution of max1≤j,k≤p |W (2)
jk | as the width p1

grows. This property can have a significant impact on the performance of the models since some
weights remain non-negligible asymptotically and can be connected to nodes representing important
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(a) Deterministic (b) Beta (c) Gen. BFRY

Figure 3: Distribution of the largest weight when the width increases.

Figure 4: Expected truncation error as a function of ϵ (in log-log scale).

hidden features. This, coupled with a heavy-tailed distribution of the nodes, can favour specialisation
of the neurons, with benefits for pruning and feature learning. We refer the reader to Sections 7.2
and 7.3 for experiments with real data where our proposed framework is used either in a frequentist
or Bayesian fashion.

Truncation error. In Figure 4, we illustrate Corollary 13 with a generalised BFRY model with
different values of α (and τ = 5 is fixed). The expectation is estimated using 1000 simulations with
width p1 = 2000 and depth L = 3. The empirical results match well the theoretical bound. In
particular, in log-log scale, we get an empirical slope of 0.492 for α = 0.5, an empirical slope of 0.691
for α = 0.3 and an empirical slope of 0.920 for α = 0.1. Therefore, the slope is approximately equal
to 1−α, which confirms the theoretical rate of decay of the expected pruning error as a function of
the truncation level ϵ. We get similar results with different depths L.

In Appendix F, we report further experiments analysing the vanishing/exploding gradient phe-
nomenon in the MoGP context for deep networks (up to 20 layers). We also show how it can be
alleviated with the right choice of model parameters.

The following two subsections describe how one can use our proposed framework with real data,
either as a regularisation term or as a prior for a Bayesian Neural Network. We illustrate the
discussed benefits of the proposed framework on compressibility and feature learning. The datasets
considered in our experiments are MNIST and Fashion MNIST. Both datasets correspond to an
image classification problem with 10 classes (digits for MNIST and clothes type for Fashion MNIST).
The images are grey-scale and split between training and test sets, composed of 60000 and 10000
examples.

24



Deep neural nets with dependent weights

(a) Deterministic

(b) Horseshoe

Figure 5: Visualisation of the top-8 neurons of the first hidden layer of models trained on MNIST
(left) and Fashion MNIST (right) — deterministic and horseshoe cases. Each row corresponds to
a neuron. The elements of the row correspond to the ordered 5 images that maximise the neuron
output.
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(a) Gen. BFRY

Figure 6: Visualisation of the top-8 neurons of the first hidden layer of models trained on MNIST
(left) and Fashion MNIST (right) — generalised BFRY case. Each row corresponds to a neuron.
The elements of the row correspond to the ordered 5 images that maximise the neuron output.

7.2 MoGP as a Regularisation

The most straightforward application of the MoGP framework is to use the prior as a regularisation
term to add to the loss. We consider FFNN models fθ with ReLU activation and three hidden

layers, all having the same width p = 2000. The parameters θ = (λ
(l)
p,j , V

(l)
jk , B

(l)
k ) are trained using

Adam optimisation for 50 epochs to minimise the objective function:

L =
1

n

n∑
i=1

ℓ(yi, fθ(xi)) + γ

∑
jkl

log πV (V
(l)
jk ) +

∑
lk

log πB(B
(l)
k ) +

∑
jl

log πλ(λ
(l)
p,j)

 (49)

where ℓ is a loss function, πV and πB are, respectively, the densities of zero-mean Gaussian distribu-
tions with variance σ2

v and σ2
b , and πλ is the density of the finite-dimensional approximation of the

limiting infinitely divisible distribution. The parameter γ controls the weight of the prior. Notice
that when γ = 1, we recover the maximum a posteriori estimator when ℓ is a log likelihood. In our
experiments, we take σv = σb = 1 and γ = 0.2, and ℓ is the cross-entropy loss. We consider three
examples detailed in Section 6, namely, the deterministic, the horseshoe and the generalised BFRY
models. The deterministic and the horseshoe parameters are as in the simulated experiments. For
the generalised BFRY, we set α = 0.8 and τ = 5. We bring to the reader’s attention that for the
deterministic model, the variance distribution is a Dirac at 1/p; therefore, the network is trained
with a similar parameterisation as the Neural Tangent Kernel framework (Jacot et al., 2018).

Feature learning. For each variance distribution, we train a network on MNIST and another
on Fashion MNIST to minimise Equation (49). For all the models, we reach a test accuracy of
approximately 98% on MNIST and 88% on Fashion MNIST, which are standard performances for
feedforward models. Exact numbers can be found in the compressibility paragraph hereafter. We
visualise the top-8 neurons of the first hidden layer of each model by plotting the 5 input images
that maximise the neuron output. For the horseshoe and generalised BFRY, the top neurons are the

ones with the highest variance λ
(1)
k . For the deterministic, since all the variances are equal, the top

neurons are selected according to
∑
k(W

(1)
jk )2 (using this metric for the horseshoe and generalised
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(a) (b)

Figure 7: Number of unique images when a) representing each neuron using the top-30 images
that maximise the output of the top neurons, while varying the number of top neurons, and b)
representing each neuron by a varying number of images, while fixing the number of neurons to
thirty. Average of five runs for models trained on the MNIST dataset.

Truncation
(i.e., 1− κ)

Deterministic Horseshoe Gen. BFRY

0.0% 97.44 (±0.05) 97.94 (±0.09) 98.00 (±0.07)
80.0% 95.58 (±0.70) 97.94 (±0.09) 98.00 (±0.07)
90.0% 71.70 (±11.2) 97.94 (±0.09) 98.00 (±0.07)
95.0% 23.90 (±12.0) 97.94 (±0.09) 98.00 (±0.07)
98.0% 12.12 (±3.95) 64.22 (±13.1) 65.74 (±6.98)
98.5% 10.36 (±0.63) 44.14 (±10.9) 50.76 (±2.90)

Table 4: MNIST truncation accuracy: Average accuracy and standard deviation (between paren-
thesis) using five independent runs.

BFRY leads to similar results). Figures 5 and 6 reveal a key distinction between the MoGP regime
(horseshoe and generalised BFRY) and the standard GP regime (deterministic). In the former
regime, the top neurons tend to be more specialised: each neuron learns a different feature. In the
latter regime, several top neurons learn the same features, which is materialised by almost equal
lines in Figures 5 and 6, such as the neurons 1, 4, 5, and 7 of the network trained on MNIST with
the deterministic model. To validate this phenomenon, we repeat the training of each model five
times. In Figure 7, we plot the evolution of the average total number of unique images among the
representative ones as a function of the number of top neurons, and also as a function of the number
of images considered per neuron. The total number of unique images is interpreted as a simple
metric to quantify the diversity of the learned features. The curves validate our hypothesis; in the
MoGP regime, the top neurons learn more heterogeneous features.

Compressibility. We expect the higher diversity of the features learnt by the top neurons to affect
the compressibility of the networks. We compare the degradation of the accuracy of the models
with node pruning. For the horseshoe and generalised BFRY, we prune the nodes as described in

Section 3.5 using the node variances λ
(l)
j . For the deterministic model, we use

∑
k(W

(1)
jk )2. For each

layer, a given fraction κ of the nodes is kept. The mean and standard deviation of the accuracies
are reported in Table 4 for MNIST and Table 5 for Fashion MNIST. As expected, the horseshoe
and generalised BFRY outperform the deterministic model, with a slight advantage for the latter.
What is even more interesting is that the accuracies of the pruned generalised BFRY models have
a smaller variance. Though both the horseshoe and generalised BFRY have a power-law tail, the
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Truncation
(i.e., 1− κ)

Deterministic Horseshoe Gen. BFRY

0.0% 87.98 (±0.19) 88.70 (±0.20) 88.54 (±0.19)
80.0% 86.24 (±0.80) 88.70 (±0.20) 88.54 (±0.19)
90.0% 60.24 (±5.14) 88.68 (±0.19) 88.56 (±0.18)
95.0% 19.64 (±7.01) 88.50 (±0.12) 88.40 (±0.25)
98.0% 10.84 (±1.17) 76.56 (±3.35) 77.24 (±2.32)
98.5% 10.26 (±0.58) 58.26 (±14.2) 60.44 (±3.42)

Table 5: Fashion MNIST truncation accuracy: Average accuracy and standard deviation (between
parenthesis) using five independent runs.

tail of the horseshoe is heavier; in particular, the distribution has an infinite expectation, which is
not the case for the generalised BFRY. This can explain the difference between the models in terms
of variances. We believe this simple experiment serves as motivation to further explore the MoGP
regime beyond the horseshoe model, as different limiting distributions can offer valuable practical
advantages.

In Appendix F, we empirically verify on the Cifar10 dataset that using the MoGP framework as
a regularisation also improves the compressibility of convolutional neural networks.

7.3 MoGP in a Fully Bayesian Setting

We further demonstrate the MoGP in a fully Bayesian setting, where we simulate the posterior
distribution of a FFNN with MoGP priors on the weights. Let fθ be a FFNN with ReLU activation
and three hidden layers of width p = 2000. The log joint-density for classification with this FFNN
is then given as:

log g(θ) =
∑
i

log h(yi, fθ(xi)) +
∑
j,k,l

log πV (v
(l)
jk ) +

∑
l,k

log πB(b
(l)
k ) +

∑
j,l

log πλ(λ
(l)
j ). (50)

We consider the C-way classification problem where yi ∈ {1, . . . , C} and h(y, fθ(x)) is the categorical

likelihood, i.e., h(y, fθ(x)) = softmax(fθ(x))y, with softmax(fθ(x))c =
exp(fθ(x)c)∑C

c′=1
exp(fθ(x)c′ )

to get proper

probability vectors.
We compare the deterministic, the horseshoe and the generalised BFRY models on MNIST and

Fashion MNIST datasets. We infer the posteriors of the network weights via Stochastic Gradient
Hamiltonian Monte-Carlo (SGHMC) (Chen et al., 2014) with batch size set to 100. We run the
samplers for 100 epochs through datasets and collect samples every 2 epochs after 50 burn-in epochs.
Following Zhang et al. (2020), we adopt a simple cosine-annealed step size with a single cycle and
set the first half of the epochs as an exploration stage (updating without noise for quick convergence
to a local minimum). For the generalised BFRY, considering the importance of the hyperparameter
α, we introduce a uniform prior on it and infer its value along with the model parameters. We run
every experiment five times and averaged results.

Compressibility. As in Section 7.2, we first compare the predictive classification accuracies of
the FFNN models under a varying truncation ratio. For all models, we collect 25 samples after 50
burn-in epochs (collecting a sample at the end of every 2 epochs after the burn-in), and the test
accuracy is measured with Monte-Carlo estimates of predictive distributions,

p(y∗|x∗,D) ≈ 1

S

S∑
s=1

softmax(fθ(s)(x∗))y∗ , (51)
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Truncation
(i.e., 1− κ)

Deterministic Horseshoe Gen. BFRY

0.0% 90.23 (±0.12) 97.83 (±0.07) 97.78 (±0.10)
80.0% 13.14 (±3.18) 97.93 (±0.06) 97.71 (±0.10)
90.0% 9.98 (±0.82) 97.73 (±0.04) 97.72 (±0.05)
95.0% 9.70 (±0.89) 97.59 (±0.06) 97.68 (±0.03)
98.0% 9.46 (±0.52) 87.97 (±3.74) 54.90 (±4.13)
98.5% 9.46 (±0.52) 89.29 (±3.58) 57.69 (±11.15)

Table 6: Predictive classification accuracy on MNIST dataset under various truncation ratio.

Truncation
(i.e., 1− κ)

Deterministic Horseshoe Gen. BFRY

0.0% 80.65 (±0.12) 87.72 (±0.12) 87.75 (±0.05)
80.0% 10.00 (±0.00) 87.57 (±0.28) 87.28 (±0.29)
90.0% 10.00 (±0.00) 87.43 (±0.28) 87.01 (±0.29)
95.0% 10.00 (±0.00) 87.27 (±0.32) 86.64 (±0.54)
98.0% 10.00 (±0.00) 80.65 (±3.73) 81.85 (±3.78)
98.5% 10.00 (±0.00) 59.34 (±6.02) 68.34 (±6.71)

Table 7: Predictive classification accuracy on Fashion MNIST under various truncation ratio.

where D is the training set and θ1, . . . , θS are samples collected from SGHMC. As in Section 7.2,

we prune the nodes with respect to the magnitude of the node variances λ
(l)
j and measure the test

accuracies of the pruned networks. Tables 6 and 7 summarise the results. FFNNs with horseshoe
or generalised BFRY priors are more robust to truncation; both maintain decent classification ac-
curacies even when 95% of the neurons are truncated. For the generalised BFRY, we present the
posterior samples of the hyperparameter α in Figure 8. The posteriors are well concentrated around
the range [0.7, 0.8].

Feature learning. Finally, to demonstrate the feature learning aspect of MoGP priors, we conduct
a transfer learning experiment. We start by taking an external dataset, not used during training,
and split it into two halves D1 and D2. Then, we sort the neurons of the first hidden layers of the
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Figure 8: Inferred α values for gen. BFRY on MNIST (left) and Fashion MNIST (right).
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Figure 9: Comparing feature learning aspect of FFNN models via transfer learning. Results for
MNIST (left) and Fashion MNIST (right).

trained FFNNs with respect to their average magnitudes of activations over the images in D1, and
select the top-k activated neurons. Next, for each of these top-k activated neurons, we select m
images from D1 which most strongly activate this neuron, and use the combined collection of these
images (over all the top-k activated neurons) to form a subset that will then be used for transfer
learning. Each image in this subset is then represented by a vector consisting of the activations
of the top-activated neurons. For instance, choosing the top-30 activated neurons and the top-10
activating images per neuron, results in 300 images in total in this subset (assuming no overlaps in
top-activating images). Each image in the subset is represented as a 30-dimensional vector which
is just the concatenation of activations from the top-30 activated neurons. Our hypothesis here is
that if a trained neural network exhibits feature learning, the subset of images selected in this way
is representative enough to express the important features in the set D1, and so, if we train a new
classifier based on this subset, the resulting model should generalise well to D2. To validate this
hypothesis, we train a light-weight FFNN with one hidden layer using the selected subset with the
selected vectors of activations. Then we evaluate the test accuracy of the trained light-weight FFNN
using the vector activation form of D2 computed from the neurons selected with D1. Since we are
working with a Bayesian model, for each configuration, we have multiple samples of parameters.
We first compute the Monte-Carlo estimates of the average activations using those samples, and
then use the estimates to sort neurons, select images and form vectorized activations. We perform
this transfer learning experiment with varying subset sizes, repeating all experiments five times per
configuration and take average results. Figure 9 summarises the result. As we expect, the horseshoe
and generalised BFRY models transfer well, while the deterministic model fails to transfer. In
particular, the test accuracy of the deterministic model does not increase as the size of the training
set increases, demonstrating that the model does not exhibit feature learning.

We comment that unlike our results in Section 7.2, the top-5 activating images for each of the
top-8 activated neurons do not show a noticeable difference between the deterministic case and the
rest in this fully Bayesian setting. See Figure 15 in Appendix F for the visualisation of those images
in the deterministic, the horseshoe and the generalised BFRY cases.

8. Discussion and Further Directions

Models with iid non-Gaussian weights. Neal (1996)’s seminal work on infinite-width limits
of shallow neural networks includes the case where weights are initialised by an iid symmetric
stable distribution. A subsequent thorough analysis (Der and Lee, 2006) showed that such networks
converge to stable processes as the widths increase, and this analysis was generalised from shallow
networks to deep networks (Favaro et al., 2020; Bracale et al., 2021; Jung et al., 2023). This line
of work (the iid model) and our dependent-weight model can both lead to infinite-width limits
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that are heavy-tailed non-Gaussian processes; however, the sources of heavy-tails in the two cases
are different. In the former (the iid model), the source is the use of a non-Gaussian, heavy-tailed

distribution for initialising weights, which corresponds to assuming in our setup that the V
(l)
jk are

sampled independently from a heavy-tailed distribution, instead of a Gaussian distribution. In the
latter (dependent-weight model), on the other hand, the source is the use of a per-node random
variance that is shared by the weights of all outgoing edges from a given node. As a result, the
limiting networks of these two classes of models have different properties. In the former, nodes in a
layer of a limiting network are always independent, while in the latter, they are usually dependent.
Also, in the former, the limiting networks exist largely due to a normalisation adjusted for the
sum of heavy-tailed non-Gaussian random variables, while in the latter, the limiting networks exist
because the random variances of nodes in a layer remain summable at the infinite-width limit.

One interesting future direction is to study the generalisation of our model class where the V
(l)
jk

are sampled independently from a stable or heavy-tailed distribution using techniques developed in
(Neal, 1996; Der and Lee, 2006; Favaro et al., 2020; Bracale et al., 2021; Jung et al., 2023). Such a
generalisation would be a good starting point for analysing the pruning of not only network nodes
but also edges. Also, our tools for handling the limiting random variables with infinitely divisible
distributions, and for analysing the tail behaviour and pruning of the limiting neural networks,
may help extend results of that line of work. Finally, we point out that Lee et al. (2022) studied
the infinite-width limits of neural networks where weights are initialised by iid Gaussians but the
shared variance of weights in the last readout layer is made random. This simple change caused
the limiting networks to be mixtures of Gaussian processes, increasing the expressivity of those
networks without sacrificing the tractability of Gaussian processes for inference much. Our work
differs from Lee et al. (2022) in that our models use per-node random variances, while theirs use
per-layer random variances.

Row-column exchangeable models. Tsuchida et al. (2019) introduced a general class of deep
FFNNs with dependent weights, and analysed their infinite-width limits. They consider4 that, at
a given layer, the weights take the form Wjk = Fjk/

√
p, where the (infinite) array of random

variables (Fjk) is assumed to be row-column exchangeable (RCE), that is (Fπ1(j)π2(k))
d
= (Fjk)

for any permutations π1 and π2 of N. By the Aldous-Hoover theorem, any RCE array admits
the representation Fjk = f(A,Bj , Ck, Djk) for some measurable function f and some iid random
variables A,Bj , Ck, Djk. A crucial thing to note is that here none of the random variables depends on
the width p. In contrast, our model assumes that the rows are independent, and their distributions
may depend on p in a non-trivial way. The models presented in Section 6.4, which converge to a

GP, fall into this RCE class, as they can be expressed as Wjk =

√
Yj√
p Vjk. More generally, Tsuchida

et al. (2019) show that RCE models converge to a MoGP. The properties of the infinite-width neural
network are, however, very different from those obtained in this article in the MoGP regime. A
key difference between the infinitely divisible models considered here and RCE models is that in
the latter, the weights still converge uniformly to 0 in the infinite-width limit: maxj=1,...,p |Wjk| =
1√
p maxj=1,...,p |Fjk|

pr→ 0 as p→ ∞. This follows from the fact that (Fjk) are exchangeable in j, and

thus conditionally iid. RCE therefore cannot exhibit the behaviour described in Proposition 4.

Lévy adaptive regression kernels. In the case of a single hidden layer with location parameter
a = 0, the infinite-width model falls in the class of Lévy adaptive regression kernels (Wolpert et al.,
2011), which is explored by Jang et al. (2017) for kernel learning.

Lévy measures and sparsity-promoting priors. The link between Lévy measures and sparsity
promoting models has been explored in the high-dimensional (sparse) linear regression setting, see
e.g. the works of Caron and Doucet (2008); Polson and Scott (2012); McCullagh and Polson (2018).

4. Under the assumtion that E[Fjk] = 0
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MoGP as a stationary distribution for trained networks with SGD. Understanding the
statistical properties of trained neural networks is a complex endeavor due to the non-convexity of
deep learning problems. The past decade has seen considerable efforts to provide theoretical tools to
understand neural networks trained with SGD. A fruitful line of research proposes to view the SGD
dynamics with a fixed step size as a stationary stochastic process (Mandt et al., 2016; Hu et al., 2017;
Chaudhari and Soatto, 2018; Zhu et al., 2019). The intuition is that with a constant step size, SGD
first moves towards a valley of the objective function and then bounces around because of sampling
noise in the gradient estimate. This stationary distribution governs the statistical properties of the
trained networks. The core question is then how to model the stationary distribution. In Shin
(2021); Barsbey et al. (2021), the authors base their models on the fact that when the networks are
trained with large learning rates or small batch sizes, heavy-tailed stationary distributions emerge
(Hodgkinson and Mahoney, 2021; Gurbuzbalaban et al., 2021). Under such a hypothesis, the authors
derive a generalisation bound as a function of the tail index of the weights. Both papers assume that
the weights of the trained network are asymptotically independent when the width is large enough.
In Shin (2021), the weights follow a Pareto distribution, whereas in Barsbey et al. (2021), the weights
follow a generic heavy-tailed distribution. One might explore whether our MoGP framework might
be used as a possible stationary distribution of a trained network, so that similar generalisation
bounds could then be derived (see Section 3.5 for more details). Our proposed framework has the
additional benefit of readily taking into account the summability of the weights as the width goes
to infinity, whereas other models would need to impose an additional scaling factor.

Infinite networks with bottlenecks. In order to allow for feature/representation learning in
infinitely-wide neural networks, Aitchison (2020) recently proposed the use of infinite neural networks
with bottlenecks. The idea is to consider the same iid Gaussian assumptions on the weights as for
NNGP, but to set one layer (the bottleneck layer) to have a fixed number of hidden nodes, while
taking the number of nodes in other layers to infinity. As shown by Aitchison (2020), the resulting
model no longer converges to a Gaussian process, but rather to a Gaussian process with a random
kernel, and this then allows for representation learning. The training dynamics of such a model is
also partially analysed (Littwin et al., 2021).

Our general approach allows to construct neural networks with bottlenecks similar to (Aitchison,
2020); the difference is that in our case, the limiting model is obtained by taking the widths of all
layers to infinity, including the bottleneck layer, but the number of active nodes in the bottleneck
layer remains finite in this limit, and converges to a Poisson distribution. For example, one way to
achieve this is to use, in the bottleneck layer, the Bernoulli prior described in Section 6.2 where, for

pl ≥ c, λ
(l)
pl,j

∼ Bernoulli(c/pl), for some c > 0. The limit has parameters a(l) = 0 and ρ(l) = cδ1. As
pl tends to infinity, the number of active hidden nodes of the bottleneck layer, that is the number of

nodes with λpl,j > 0, converges to a Poisson random variable:
∑pl
j=1 1{λpl,j

>0}
d→Poisson(c). Using

λ
(l)
pl,j

= c2/pl for all other layers, we obtain a model where the bottleneck layer has a random number
of hidden nodes.

Deep Gaussian processes. Deep Gaussian processes (Damianou and Lawrence, 2013; Bui et al.,
2016; Dunlop et al., 2018) are hierarchical models where each layer is described by a latent variable
Gaussian process. That is, they denote a random function g : Rp0 → RpL+1 of the form g(x) =
(f (L+1) ◦ . . . ◦ f (1))(x), where for each l = 1, . . . , L + 1, the l-th GP layer f (l) has width pl and is
defined as follows:

f (l) : Rpl−1 → Rpl , f (l)(z) = (f
(l)
1 (z), . . . , f (l)pl (z))

with f
(l)
j

iid∼ GP(0, k(l)) for some kernel k(l) : Rpl−1 × Rpl−1 → R of the l-th layer. As noted
by a number of authors, a finite neural network with iid Gaussian weights is a deep Gaussian

process. Similarly, for our finite model, conditionally on the set of variances (λ
(l)
pl,j

)l=1,...,L;j=1,...,pl ,
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the model can be seen as a deep Gaussian process, whose kernels k(l) depends on (λ
(l)
pl,j

)j=1,...,pl .

Assume a(l) = 0. In the infinite limit, as is apparent from Theorem 16, we still have a deep Gaussian

process, conditionally on the point processes {λ̃(l)j }j≥1 with mean measure ρ(l). The Gaussian process
kernels are given by

k(1)(x,x′) := σ2
b + σ2

v

xTx′

din
, k(l+1)(z, z′) := σ2

b + σ2
v

∑
j≥1

λ̃
(l)
j ϕ(zj)ϕ(z

′
j) for l = 1, . . . , L.

Neural tangent kernels. An interesting direction would be to investigate the behaviour of the
neural network during training by gradient descent when initialised with the MoGP model. In the
iid Gaussian case, it has been shown that the evolution of the neural network can be described
by a fixed kernel (neural tangent kernel) in the infinite-width limit (Jacot et al., 2018), and that
this kernel remains constant over training. We conjecture that in the MoGP case, when the Lévy
measure is non-trivial, we would obtain a random kernel in the infinite-width limit, where this kernel
evolves over training.
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Appendices
Organisation of the appendices. Appendix A contains background material on positive homo-
geneous functions, ReLU kernels, regularly varying functions, stable distributions, conditions for the
convergence to infinitely divisible random variables and Lévy measures. Appendix B gives and proves
some limit theorems on independent triangular arrays. These results form the building blocks of the
proofs of the main theorems and propositions, which are given in Appendix C. Appendix D provides
additional secondary theoretical results on the properties of small weights in our model, and on the
infinite-width limit for multiple inputs in the symmetric α-stable case. Appendix E provides details
of the derivations for the examples given in Sections 1 and 6 and additional properties concerning
these examples. It also provides a general recipe to construct novel examples, and describes new
concrete examples. Finally, Appendix F provides additional experimental results, including stability
with respect to depth and our experimental findings on convolutional neural networks.

Appendix A. Background Material

A.1 Background on Positive Homogeneous Functions

Let ϕ : R → R be a positive homogeneous function. That is, for all α > 0,

ϕ(αx) = αϕ(x).

Define CLip := max(|ϕ(1)|, |ϕ(−1)|). Then, ϕ is CLip-Lipschitz continuous and satisfies |ϕ(x)| ≤
CLip|x| for all x.
Proof We first show that |ϕ(x)| ≤ CLip|x| for all x. When x is 0, ϕ(0) = αϕ(0) for all α > 0 and
so ϕ(0) = 0. When x is not 0,

|ϕ(x)| = |x|
∣∣∣∣ϕ( x

|x|

)∣∣∣∣ ≤ |x|max(|ϕ(1)|, |ϕ(−1)|) = |x|CLip.

Next we show the Lipschitz continuity. Let x, y ∈ R. If both x and y are nonnegative, then

|ϕ(x)− ϕ(y)| = |xϕ(1)− yϕ(1)| = |ϕ(1)||x− y| ≤ CLip|x− y|.

If both x and y are nonpositive, then

|ϕ(x)− ϕ(y)| = |(−x)ϕ(−1)− (−y)ϕ(−1)| = |ϕ(−1)||x− y| ≤ CLip|x− y|.

The remaining case is that one of x and y is positive and the other is negative. Without loss of
generality, we may assume that x is positive. Then,

|ϕ(x)− ϕ(y)| =
∣∣|x|ϕ(1)− |y|ϕ(−1)

∣∣ ≤ |x||ϕ(1)|+ |y||ϕ(−1)| ≤ CLip(|x|+ |y|) = CLip|x− y|.

A.2 Background on ReLU Kernels

Following (Cho and Saul, 2009), we have, for Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

(
X
Y

)
∼ N (0,Σ) and α ≥ 0,

E [max(0, X)αmax(0, Y )α] =
1

2π
(Σ11Σ22)

α/2
Jα(θ)
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where

Jα(θ) = Γ(α+ 1) sin2α+1(θ)

∫ π/2

0

cosα(x)

(1− cos(θ) cos(x))α+1
dx

with

θ = arccos(ρ) and ρ =
Σ12√
Σ11Σ22

.

Furthermore, if α ∈ N,

Jα(θ) = (−1)α sin2α+1(θ)

(
1

sin(θ)

∂

∂θ

)α(
π − θ

sin(θ)

)
In particular, we have

J0(θ) = π − θ

J1(θ) = sin(θ) + (π − θ) cos(θ)

J2(θ) = 3 sin(θ) cos(θ) + (π − θ)(1 + 2 cos2(θ)).

For α = 1/2, we show that

J1/2(θ) =

√
π

2

(
2EllipE

(
cos(θ) + 1

2

)
− (1− ρ) EllipK

(
cos(θ) + 1

2

))
where EllipK and EllipE are respectively the complete elliptical integrals of the first and second
kind, defined by

EllipK(m) =

∫ π/2

0

(1−m sin2(t))−1/2dt =

∫ 1

0

dt√
(1− t2)(1−mt2)

(52)

EllipE(m) =

∫ π/2

0

(1−m sin2(t))1/2dt =

∫ 1

0

√
1−mt2√
1− t2

dt (53)

which can be computed efficiently using the arithmetic-geometric mean. Writing the above expres-
sions in terms of the correlation ρ, we obtain

E [max(0, X)αmax(0, Y )α] =
1

2π
(Σ11Σ22)

α/2
κα(ρ)

where

κα(ρ) = Jα(arccos(ρ)) =


π
2 + arcsin(ρ) if α = 0√
π
2

(
2EllipE(ρ+1

2 )− (1− ρ) EllipK(ρ+1
2 )
)

if α = 1/2√
1− ρ2 +

(
π
2 + arcsin(ρ)

)
ρ if α = 1

3
√
1− ρ2ρ+

(
π
2 + arcsin(ρ)

)
(1 + 2ρ2) if α = 2

(54)

using the identities π − arccos(x) = π
2 + arcsin(x) and sin(arccos(x)) = cos(arcsin(x)) =

√
1− x2.

We also have

E
[
max(0, X)2α

]
=

1

2
E
[
X2α

]
= (Σ11)

α 2α−1Γ(α+ 1/2)

Γ(1/2)
=


1
2 if α = 0√

Σ11

2π if α = 1/2
Σ11

2 if α = 1
3
2Σ

2
11 if α = 2

.
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Proof All of the above results are from (Cho and Saul, 2009), except for J1/2 (or equivalently κ1/2).
Write κ1/2(ρ) = Γ(3/2)(1− ρ2)f(ρ), where

f(ρ) :=

∫ π/2

0

√
cos(x)

(1− ρ cos(x))3/2
dx

=

∫ 1

0

√
v

(1− ρv)3/2
√
1− v2

dv.

Integrating with respect to ρ and using Fubini’s theorem,∫ ρ

a

f(u)du = 2

∫ 1

0

1
√
v(1− ρv)1/2

√
1− v2

dv + const. (55)

Using the change of variables u =

√
1+ 1

v

2 , we have that∫ 1

0

1
√
v(1− ρv)1/2

√
1− v2

dv =

∫ ∞

1

4u

(2u2 − 1)2
√

1
2u2−1

√
1− ρ

2u2−1

√
1− 1

(2u2−1)2

du

=

∫ ∞

1

4u
√
2
√
u2 − ρ+1

2

√
2u2 − 2

√
2u2

du

=
√
2

∫ ∞

1

du√
u2 − ρ+1

2

√
u2 − 1

=
√
2EllipK

(
ρ+ 1

2

)
.

Differentiating Equation (55) with respect to ρ gives

f(ρ) =

√
2

1− ρ2

(
2EllipE

(
ρ+ 1

2

)
− (1− ρ) EllipK

(
ρ+ 1

2

))
.

A.3 Useful Lemmas on Regularly Varying Random Variables

A nonnegative random variable X is said to be regularly varying with index α ≥ 0 if and only if

Pr(X > x)
x→∞∼ x−αL(x)

where L is a slowly varying function. That is, its survival function (a.k.a. complementary cumulative
distribution function) F (x) := Pr(X > x) is regularly varying with index −α.

Lemma 19 (Jessen and Mikosch, 2006, Lemma 4.1.(i)) Assume that X1 and X2 are independent
nonnegative random variables and that X1 is regularly varying with index α > 0. If either X2 is
regularly varying with index α > 0 or Pr(X2 > x) = o(Pr(X1 > x)), then X1X2 is regularly varying
with index α > 0.

Lemma 20 (Jessen and Mikosch, 2006, Lemma 4.1.(iv)) Let X1, . . . , Xp be iid nonnegative random

variables with survival function satisfying Pr(X1 > x)
x→∞∼ cx−α for some c > 0. Then,

Pr(X1 . . . Xp > x)
x→∞∼ αp−1cp

(p− 1)!
x−α logp−1 x.
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Lemma 21 (Jessen and Mikosch, 2006, Lemma 4.2) Assume that X1 and X2 are nonnegative
independent random variables and that X1 is regularly varying with index α > 0.

A.1 If there exists ϵ > 0 such that E[Xα+ϵ
2 ] <∞, then

Pr(X1X2 > x)
x→∞∼ E[Xα

2 ] Pr(X1 > x). (56)

A.2 If Pr(X1 > x)
x→∞∼ cx−α and E[Xα

2 ] <∞, then Equation (56) holds.

Proposition 22 (Bingham et al., 1989, Theorem 8.2.1 p.341) Let X ∼ ID(a, ρ) be a nonnegative
infinitely divisible random variable. Let F (x) = 1−F (x) be its survival function, where F is the cdf
of X. Then, for all α ≥ 0, the tail Lévy intensity ρ is regularly varying with index −α if and only
if F is also. Furthermore, in that case,

ρ(x)
x→∞∼ F (x).

Proposition 23 (Resnick, 2005, Proposition 5(iii)) Let G be a regularly varying function with index

α ∈ R, and (ap)p and (bp)p be two sequences that satisfy 0 < ap → ∞, 0 < bp → ∞ and ap
p→∞∼ cbp

for some 0 < c <∞. Then,

G(ap)
p→∞∼ cαG(bp).

Lemma 24 (Feller, 1971, Lemma 2, VIII.8) If L is slowly varying at infinity, then for any δ > 0,
there exists x0 such that x−δ < L(x) < xδ for all x > x0.

A.4 Background on Positive Stable Random Variables

A (possibly degenerate) positive strictly stable random variable X ∼ Stable(α, γ) with stability
exponent α ∈ (0, 1] and scale parameter γ > 0 has Laplace transform

E[e−tX ] = e−(γt)α , for t ≥ 0.

It satisfies, for any n ≥ 1,
∑n
i=1Xi

d
= n1/αX where X1, . . ., Xn are iid copies of X, and is an

important example of an infinitely divisible random variable. If α = 1, X = γ is degenerate at γ;
for α ∈ (0, 1), it is non-degenerate with support (0,∞). In general, X is infinitely divisible with

X ∼
{

ID(0, ρstable( · ;α, γ/Γ(1− α)1/α)) if α ∈ (0, 1)
ID(γ, 0) if α = 1

where ρstable(dx;α, c) denotes the following alpha–stable Lévy measure on (0,∞) with stability
exponent α ∈ (0, 1) and parameter c > 0:

ρstable(dx;α, c) := αcαx−α−11{x>0}dx. (57)

In the special case α = 1
2 , we have Stable(1/2, γ) = IG( 12 ,

γ
4 ), that is, the stable distribution with

scale parameter γ corresponds to the inverse gamma distribution with shape 1/2 and scale γ/4.

Remark 25 Standard definitions of positive stable random variables are given for non-degenerate
random variables, with α ∈ (0, 1). See e.g. (Samorodnitsky and Taqqu, 1994; Janson, 2011). We
include here the degenerate case α = 1, as this case relates to the Gaussian process limit, as we
show in Section 5. For α ∈ (0, 1), our parameterisation Stable(α, γ) corresponds to the standard
four-parameters parameterisation (Janson, 2011, Theorem 3.3) Sα(γ0, β0, δ0), with β0 = 1, δ0 = 0
and γ0 = γ(cos(πα/2))1/α.
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A.5 Background on Lévy Measures on (0,∞)

The generalised gamma Lévy measure (Hougaard, 1986; Brix, 1999) has three parameters η > 0,
α ∈ (−∞, 1) and τ > 0 if α ≤ 0 and τ ≥ 0 if α ∈ (0, 1). It is defined by

ρgg(dx; η, α, τ) = η
1

Γ(1− α)
x−α−1e−τxdx. (58)

It is finite when α < 0, and infinite otherwise. It admits as special cases the gamma measure when
α = 0 and the positive stable measure if α ∈ (0, 1) and τ = 0. We denote the gamma measure and
(scaled) positive stable measures as

ρgamma(dx; η, τ) := ρgg(dx; η, 0, τ) = ηx−1e−τxdx, (59)

ρstable(dx;α, c) := ρgg(dx;αc
αΓ(1− α), α, 0) = αcαx−α−1dx. (60)

Here η, τ > 0 for the gamma measure, and α ∈ (0, 1) and c > 0 for the stable Lévy measure. The
c is called a scaling parameter. Note that ID(0, ρgamma( · ; η, τ)) = Gamma(η, τ). Additionally, if
X ∼ ID(0, ρstable( · ;α, c)), then X is a positive stable random variable with parameter α ∈ (0, 1),
with Laplace transform E[e−tX ] = e−(γt)α for γ := c · Γ(1− α)1/α.

The stable beta Lévy measure with parameter η > 0, α ∈ (−∞, 1), ϕ > −α is defined as (Hjort,
1990; Thibaux and Jordan, 2007; Teh and Gorur, 2009)

ρsb(dx; η, α, ϕ) = η
Γ(1 + ϕ)

Γ(1− α)Γ(ϕ+ α)
x−α−1(1− x)ϕ+α−11{x∈(0,1)}dx. (61)

It is infinite if α ≥ 0 and finite otherwise. If α = 0, this is known as the beta Lévy measure.
The scaled stable beta measure has the additional scale parameter c > 0, and is defined as

ρssb(dx; η, α, ϕ, c) = η
Γ(1 + ϕ)cα

Γ(1− α)Γ(ϕ+ α)
x−α−1(1− x/c)ϕ+α−11{x∈(0,c)}dx. (62)

The following proposition derives some connections between the scaled stable beta measure and
the generalised gamma measure, and some invariance property of the scaled stable measure. Sim-
ilar expressions were obtained by Griffin and Leisen (2017) for constructing dependent completely
random measures.

Proposition 26 (Gamma-function integral formulas) Let Gamma(x; a, b) denote the pdf of a
Gamma random variable with shape parameter a and inverse scale parameter b. Let κ > 0, η > 0,
α ∈ (−∞, 1), c > 0, ϕ > max(0,−α) and b > 0. Then,

ρgg

(
dx;

ηκϕ

(bc)α
, α, bc

)
= dx× κ

∫ ∞

0

1

z
Gamma

(x
z
;ϕ, b

)
ρssb(dz; η, α, ϕ, 1/c), (63)

ρstable

(
dx;α,

c

b

(
κΓ(ϕ+ α)

Γ(ϕ)

)1/α
)

= dx× κ

∫ ∞

0

1

z
Gamma

(x
z
;ϕ, b

)
ρstable(dz;α, c). (64)

Proof Let

ν(x) := κ

∫ ∞

0

1

z
Gamma

(x
z
;ϕ, b

)
ρssb(dz; η, α, ϕ, 1/c)

= ηκ
c−αbϕΓ(1 + ϕ)

Γ(ϕ)Γ(ϕ+ α)Γ(1− α)

∫ 1/c

0

z−1(x/z)ϕ−1e−xb/zz−α−1(1− cz)α+ϕ−1dz

= ηκ
c−αbϕϕ

Γ(ϕ+ α)Γ(1− α)
xϕ−1

∫ 1/c

0

z−ϕ−α−1e−xb/z(1− cz)α+ϕ−1dz.
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Using the change of variable u = 1
z − c so that z = 1

u+c and dz = −du
(u+c)2 , we obtain

ν(x) = ηκ
c−αbϕϕ

Γ(ϕ+ α)Γ(1− α)
xϕ−1

∫ ∞

0

(u+ c)ϕ+α−1e−xb(u+c)
(

u

u+ c

)α+ϕ−1

du

= ηκ
c−αbϕϕ

Γ(ϕ+ α)Γ(1− α)
xϕ−1

∫ ∞

0

e−xb(u+c)uα+ϕ−1du

= ηκ
c−αbϕϕ

Γ(ϕ+ α)Γ(1− α)
xϕ−1e−bcx

Γ(α+ ϕ)

(bx)α+ϕ

= ηκ
c−αb−αϕ

Γ(1− α)
x−α−1e−bcx,

which is the density of the generalised gamma Lévy measure with parameters (ηκ(bc)−αϕ, α, bc) at
x.

Similarly,

ν2(x) := κ

∫ ∞

0

1

z
Gamma

(x
z
;ϕ, b

)
ρstable(dz;α, c)

= κ
cααbϕ

Γ(ϕ)

∫ ∞

0

z−1(x/z)ϕ−1e−xb/zz−α−1dz

= κ
cααbϕ

Γ(ϕ)
xϕ−1

∫ ∞

0

e−xbuuϕ+α−1du

= κ
cααΓ(ϕ+ α)

Γ(ϕ)bα
x−α−1 =

(
κ1/αcΓ(ϕ+ α)1/α

Γ(ϕ)1/αb

)α
αx−α−1.

The following are corollaries of the above proposition, with κ = ϕ = b = 1
2 , in combination with

Corollary 37.

Corollary 27 Let X1, X2, . . . , be iid standard normal random variables, and (ξi)i be the points of
a Poisson point process with mean measure ρssb(dz; η, α, 1/2, 1/c) for η > 0, c > 0 and α > − 1

2 .
Then, ∑

i≥1

ξi ∼ ID(0, ρssb( · ; η, α, 1/2, 1/c)),∑
i≥1

ξimax(0, Xi)
2 ∼ ID

(
0, ρgg

(
· ; η2α−2c−α, α, c/2

))
.

In particular, if additionally α = 0,∑
i≥1

ξimax(0, Xi)
2 ∼ Gamma

(η
4
,
c

2

)
.

Corollary 28 Let X1, X2, . . . , be iid standard normal random variables, and (ξi)i be the points of
a Poisson point process with mean measure ρstable(dz;α, c) for some α ∈ (0, 1) and c > 0. Then,∑

i≥1

ξi ∼ ID(0, ρstable( · ;α, c)),

∑
i≥1

ξimax(0, Xi)
2 ∼ ID

(
0, ρstable

(
· ;α, 2c

(
Γ(1/2 + α)

2
√
π

)1/α
))

,
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so that ∑
i≥1

ξimax(0, Xi)
2 d
= 2

(
Γ(1/2 + α)

2
√
π

)1/α∑
i≥1

ξi.
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Appendix B. Some Limit Theorems on Independent Triangular Arrays

Throughout the paper, we use a necessary and sufficient condition for sums of random variables to
converge to an infinitely divisible random variable, and also a sufficient condition for such convergence
when all the random variables involved have densities. These two conditions are summarised in the
following theorem. All the proofs of the examples in Section 6 and Appendix E.2 rely on these
conditions; details are given in Appendix E.3.

Theorem 29 (Necessary and sufficient conditions for convergence to ID(a, ρ))
Let (Xp,j)p≥1,j=1,...,p be a triangular array of nonnegative real random variables, where for each
p ≥ 1, the random variables Xp,1, . . . , Xp,p are iid. Let a ≥ 0 and ρ be a Lévy measure on (0,∞).

Then,
∑p
j=1Xp,j

d→ ID(a, ρ) if and only if the following two conditions hold:

(i) pPr(Xp,1 > x) → ρ(x) for all x > 0 such that ρ({x}) = 0, and

(ii) pE[Xp,11{Xp,1≤h}] → a+
∫ h
0
xρ(dx) for any h > 0 with ρ({h}) = 0.

If every Xp,1 is an absolutely continuous random variable with density fp, and ρ is absolutely con-
tinuous with density ϱ and support S, then condition (i) is implied by the following three conditions:

(a) pfp(x) → ϱ(x) for all x > 0,

(b) for any x0 > 0, there exists Cx0 such that
pfp(x)
ϱ(x) ≤ Cx0 for all x ∈ [x0,∞) ∩ S, and

(c) for any x0 > 0,
∫
[x0,∞)\S fp(x)dx = o(1/p).

In Theorem 29, we have included the second part since in practice, for continuous random variables,
conditions (a-c) will be easier to check than the condition (i).
Proof The first part of the theorem is a corollary of Theorem 15.28 in (Kallenberg, 2002). We
focus on the second part for absolutely continuous random variables.

Let (0,∞] = (0,∞)∪{∞} denote the set of positive reals with the addition of ∞, which is called
the set of extended positive reals. Note that for any a > 0, [a,∞] is a compact set of (0,∞]. Let
C+
K((0,∞]) denote the set of continuous functions f : (0,∞] → R+ with compact support. Note

that the functions are necessarily bounded as f(∞) ∈ R+.
Let (Xp,j) be a triangular array of random variables such that for every p, (Xp,j)j=1,...,p is an iid

sequence of random variables from µp. By (Kallenberg, 2002, Theorem 15.29), pPr(Xp,1 > x) → ρ(x)
for all x > 0 such that ρ({x}) = 0 is equivalent to

ηp :=

p∑
j=1

δXp,j

d→ η on (0,∞]

where η is a Poisson random measure with mean measure ρ. This is equivalent to showing that

E[e−ηp(g)] → E[e−η(g)]

for all g ∈ C+
K((0,∞]). Pick g ∈ C+

K((0,∞]). Let S ⊆ (0,∞) be the support of ρ. We have

E[e−ηp(g)] = E
[
e−

∑p
j=1 g(Xp,j)

]
= E

[
e−g(Xp,1)

]p
=

(∫ ∞

0

e−g(x)fp(x)dx

)p
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=

(
1−

∫ ∞

0

(1− e−g(x))fp(x)dx

)p
=

(
1− 1

p

∫ ∞

0

(1− e−g(x))pfp(x)dx

)p
=

(
1− 1

p

[∫
S

(1− e−g(x))
pfp(x)

ϱ(x)
ϱ(x)dx+

∫
R+\S

(1− e−g(x))pfp(x)dx

])p
.

Since g has compact support on (0,∞], there exists x0 > 0 such that g(x) = 0 for x < x0. Then, by

assumption,
pfp(x)
ϱ(x) ≤ Cx0

for all x ∈ S ∩ [x0,∞) and p ≥ 1. Also, again by assumption,
pfp(x)
ϱ(x) → 1

as p → ∞. What we have proved so far lets us use the dominated convergence theorem and derive
the following convergence:∫

S∩[x0,∞)

(1− e−g(x))
pfp(x)

ϱ(x)
ϱ(x)dx→

∫
S∩[x0,∞)

(1− e−g(x))ϱ(x)dx.

Additionally,
∫
R+\S(1− e−g(x))pfp(x)dx ≤

∫
R+\S pfp(x)dx = o(1). Hence,∫

S

(1− e−g(x))
pfp(x)

ϱ(x)
ϱ(x)dx+

∫
R+\S

(1− e−g(x))pfp(x)dx

=

∫
S∩[x0,∞)

(1− e−g(x))
pfp(x)

ϱ(x)
ϱ(x)dx+

∫
R+\S

(1− e−g(x))pfp(x)dx

→
∫
S

(1− e−g(x))ϱ(x)dx+ 0 =

∫ ∞

0

(1− e−g(x))ϱ(x)dx.

Recall that for any real sequence (ap)p≥1 converging to a, we have (1− ap
p )

p → e−a. Thus,(
1− 1

p

∫
S

(1− e−g(x))
pfp(x)

ϱ(x)
ϱ(x)dx

)p
→ e−

∫ ∞
0

(1−e−g(x))ϱ(x)dx = E[e−η(g)].

Proposition 30 (Extremes of triangular arrays and infinite divisibility) Let

(Xp,j)p≥1,j=1,...,p

be a triangular array of independent nonnegative real random variables such that for each p, (Xp,j)j=1,...,p

are iid. Assume
∑p
j=1Xp,j

d→ ID(a, ρ) for some a ≥ 0 and some Lévy measure ρ on (0,∞). Let

ρ−1(u) := inf{x > 0 : ρ(x) < u},

the inverse tail Lévy intensity of ρ. For each p ≥ 1, let Xp,(1) ≥ Xp,(2) ≥ . . . ≥ Xp,(p) denote
the order statistics of (Xp,j)j. Then, the asymptotic behaviour of Xp,(k), as p → ∞, is solely

characterised by ρ (not a) with Xp,(1)
pr→ 0 if ρ is trivial, and if ρ is non-trivial,(

Xp,(k)

)
k≥1

d→
(
ρ−1(Gk)

)
k≥1

with (Gk)k≥1 being ordered points of a standard rate one Poisson process on (0,∞) with Gk ∼
Gamma(k, 1). In particular, for non-trivial ρ, ρ−1(Gk) is a nonnegative random variable, non-
degenerate at 0, with cumulative density function Fk defined by

Fk(x) = e−ρ(x)
k−1∑
i=0

ρ(x)i

i!
for any x > 0 with ρ({x}) = 0
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and

Fk(0) =

{
e−ρ(0)

∑k−1
i=0

ρ(0)i

i! if ρ is finite,

0 if ρ is infinite.

Proof From (Kallenberg, 2002, Theorem 15.29),
∑p
j=1Xp,j

d→ ID(a, ρ) implies that for any pre-
compact Borel subsets B1, . . . , Bk of the extended real half-line (0,∞] = (0,∞) ∩ {∞},(

#{j | Xp,j ∈ Bi}
)k
i=1

d→
(
η(Bi)

)k
i=1

where η is a Poisson random measure with mean measure ρ. In particular,
(
Xp,(j)

)k
j=1

converges in

distribution to the joint distribution of the first k arrival times, going backwards in time from ∞,
of a Poisson process with intensity ρ. This is because for

0 < xk < yk < xk−1 < · · · < x1 < y1 < x0 = ∞

such that ρ({xk, yk, . . . , x1, y1}) = 0,

Pr

 k⋂
j=1

{Xp,(j) ∈ (xj , yj)}


→ Pr

{η(xk, yk) ≥ 1} ∩
k−1⋂
j=1

{η(xj , yj) = 1} ∩
k⋂
j=1

{η(yj , xj−1) = 0}


=
(
1− e−[ρ(xk)−ρ(yk)]

) k−1∏
j=1

e−[ρ(xj)−ρ(yj)][ρ(xj)− ρ(yj)]

k∏
j=1

e−[ρ(yj)−ρ(xj−1)]

=
(
1− e−[ρ(xk)−ρ(yk)]

)
e−ρ(yk)

k−1∏
j=1

[ρ(xj)− ρ(yj)]

=
(
e−ρ(yk) − e−ρ(xk)

) k−1∏
j=1

[ρ(xj)− ρ(yj)]

and the final expression on the right-hand side above can be seen to be the joint distribution of
those k arrival times. It remains to calculate the limiting distribution of the marginal Xp,(k).

For any x > 0 such that ρ({x}) = 0,

Pr(Xp,(k) ≤ x) =

k−1∑
i=0

Pr(#{j | Xp,j > x} = i)

→
k−1∑
i=0

Pr(η(x,∞) = i) =

k−1∑
i=0

ρ(x)ie−ρ(x)

i!
.

The value at 0 follows due to the right continuity of the cdf. Finally, using the identity, for any
λ > 0,

k−1∑
i=0

λie−λ

i!
=

λk

Γ(k)

∫ ∞

1

uk−1e−uλdu

we obtain

k−1∑
i=0

ρ(x)ie−ρ(x)

i!
=
ρ(x)k

Γ(k)

∫ ∞

1

uk−1e−uρ(x)du = Pr(Gk ≥ ρ(x)) = Pr(x ≥ ρ−1(Gk))
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where the last equality follows from the definition of the inverse tail intensity ρ−1 and the absolute
continuity of Gk.

Lemma 31 (Lévy continuity theorem for triangular arrays) Let (Xp,i)p≥1,i=1,...,p be a tri-
angular array of nonnegative scalar random variables such that for every p, (Xp,i)i=1,...,p is an iid
sequence of random variables from a probability distribution µp on [0,∞). Let a ≥ 0 and ρ be a Lévy
measure on (0,∞). Then,

p∑
i=1

Xp,i
d→ ID(a, ρ) as p→ ∞

if and only if, for any t ≥ 0,∫ ∞

0

(1− e−tx)pµp(dx) → at+

∫ ∞

0

(1− e−wt)ρ(dw)

pointwise as p→ ∞.

Proof Recall that if S ∼ ID(a, ρ), then E[e−tS ] = e−at−ψ(t) where ψ(t) =
∫∞
0

(1− e−wt)ρ(dw). By

the Lévy continuity theorem for Laplace transforms of nonnegative random variables,
∑p
i=1Xp,i

d→ ID(a, ρ)
if and only if, for any t ≥ 0,

E
[
e−t

∑p
i=1Xp,i

]
= E

[
e−tXp,1

]p
=

(∫ ∞

0

e−txµp(dx)

)p
=

(
1− 1

p

∫ ∞

0

(1− e−tx)pµp(dx)

)p
→ e−at−ψ(t),

which holds if and only if
∫∞
0

(1− e−tx)pµp(dx) → at+ ψ(t).

Proposition 32 (Compressibility of triangular arrays) Let

(Xp,j)p≥1,j=1,...,p

be a triangular array of nonnegative real random variables such that for each p, (Xp,j)j=1,...,p are

iid. Assume
∑p
j=1Xp,j

d→ ID(a, ρ) for some a ≥ 0 and some Lévy measure ρ on (0,∞). For each
p ≥ 1, let Xp,(1) ≥ Xp,(2) ≥ . . . ≥ Xp,(p) be the ordered values. Then, for every κ ∈ (0, 1),

Xp,(⌊κp⌋)
pr→ 0 as p→ ∞. (65)

Moreover, if a = 0, then for each κ ∈ (0, 1),

p∑
j=1

1{Xp,j≤Xp,(⌊κp⌋)}Xp,j
pr→ 0 as p→ ∞. (66)

Proof We first prove Equation (65). Suppose to the contrary that Xp,(⌊κp⌋) does not converge to
0. Then, there exist ϵ > 0 and η ∈ (0, 1) such that ϵ is a continuity point of ρ (i.e. ρ({ϵ}) = 0) and
for any p0, there exists p > p0 such that

Pr(Xp,(⌊κp⌋) > ϵ) > η.
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Hence,

pPr(Xp,1 > ϵ) = E

∑
j

1{Xp,j>ϵ}

 > η⌊κp⌋. (67)

But pPr(Xp,1 > ϵ) → ρ(ϵ) <∞, which gives a contradiction.
Now, suppose a = 0 and choose κ ∈ (0, 1). We prove Equation (66) by showing that, for any

ϵ > 0, as p→ ∞,

Pr

 p∑
j=1

1{Xp,j≤Xp,(⌊κp⌋)}Xp,j > ϵ

→ 0.

Since a = 0, it follows that for any continuity point h > 0 of ρ,

pE[Xp,11{Xp,1≤h}] →
∫ h

0

xρ(dx)

as p→ ∞. (See the first part of Theorem 29, which is a corollary of Theorem 15.28 in (Kallenberg,
2002).) Thus, for any η > 0, there exist a continuity point h0 > 0 of ρ and p0 ∈ N such that for all
p ≥ p0,

pE[Xp,11{Xp,1≤h0}] < η. (68)

Consider ϵ > 0 and γ > 0. Define η := (γϵ)/2. Let h0 and p0 be such that Equation (68) holds
for η. Note that

Pr

 p∑
j=1

1{Xp,j≤Xp,(⌊κp⌋)}Xp,j > ϵ

 = Pr

 p∑
j=1

1{Xp,j≤Xp,(⌊κp⌋)}Xp,j > ϵ and Xp,(⌊κp⌋) ≤ h0


+ Pr

 p∑
j=1

1{Xp,j≤Xp,(⌊κp⌋)}Xp,j > ϵ and Xp,(⌊κp⌋) > h0

 .

(69)

We will prove that for all sufficiently large p, each summand on the right-hand side above is bounded
by γ/2. The next derivation uses Markov’s inequality and bounds the first summand in Equation (69)
for all p ≥ p0:

Pr

 p∑
j=1

1{Xp,j≤Xp,(⌊κp⌋)}Xp,j > ϵ and Xp,(⌊κp⌋) ≤ h0

 ≤ Pr

∑
j

Xp,j1{Xp,j≤h0} > ϵ


≤
pE[Xp,11{Xp,1≤h0}]

ϵ
<
η

ϵ
=
γϵ

2ϵ
=
γ

2
.

The bound for the second summand in Equation (69) follows from Equation (65). There is p1 ∈ N
such that for all p ≥ p1,

Pr

 p∑
j=1

1{Xp,j≤Xp,(⌊κp⌋)}Xp,j > ϵ and Xp,(⌊κp⌋) > h0

 ≤ Pr
(
Xp,(⌊κp⌋) > h0

)
<
γ

2
.

Bringing these two bounds together, we can conclude that for all p ≥ max(p0, p1),

Pr

 p∑
j=1

1{Xp,j≤Xp,(⌊κp⌋)}Xp,j > ϵ

 < γ,
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as desired.

For the rest of this section, we consider the space Kd of positive semi-definite n×n matrices. To
state the results, we need to recall a few definitions regarding cones.

Let H be a finite-dimensional Hilbert space, and ∥ · ∥ and ⟨ · , · ⟩ be its norm and inner product.
A nonempty convex subset S of H is a cone if λ ≥ 0 and x ∈ S implies λx ∈ S. A cone is proper if
x = 0 whenever x and −x are in S. The dual cone S′ of S is defined as S′ = {y ∈ H : ⟨y, x⟩ ≥ 0 for
all x ∈ S}. Examples of proper cones include [0,∞), [0,∞)d, and the set Kd of positive semi-definite
d-by-d matrices with real entries.

Let S be a proper convex cone of H. Denote by S∪{∆} the one-point compactification of the cone.
Let C(S∪{∆}) be the set of continuous functions f : S∪{∆} → R. For a function f ∈ C(S∪{∆}),
define ∥f∥ = supx∈S∪{∆} |f(x)|. Similarly, for a function g : S → R, define ∥g∥ = supx∈S |g(x)|.

The next proposition expresses Lévy’s continuity theorem for Kd, the cone of positive semi-
definite d-by-d matrices with real entries. In this case, the ambient space H is that of symmetric
d-by-d matrices with real entries, and its inner product and norm are inherited from the Euclidean
space Rd×d. We point out that with respect to this ambient space H, the cone Kd is self-dual:
(Kd)′ = Kd.

Lemma 33 (Lévy continuity theorem on Kd) Let µ, µ1, µ2, . . . be probability measures on Kd.
If µ̃n(θ) =

∫
e−⟨x,θ⟩µn(dx) converges pointwise to µ̃(θ) =

∫
e−⟨x,θ⟩µ(dx) for every θ ∈ Kd, then

µn
d→µ.

Proof The proof follows that of Theorem 5.3 in (Kallenberg, 2002).
Assume that µ̃n(θ) converges to µ̃(θ) for every θ ∈ Kd. We have, using e−t ≤ 1

2 for all t ≥ 1,

1− µ̃n(θ) =

∫
Kd

(1− e−⟨x,θ⟩)µn(dx) ≥
1

2
µn({x : ⟨x, θ⟩ ≥ 1}).

Hence, for all θ ∈ Kd and r > 0, we have µn({x : ⟨x, θ⟩ ≥ r}) ≤ 2(1− µ̃n(θ/r)), which then implies

lim sup
n
µn({x : ⟨x, θ⟩ ≥ r}) ≤ lim

n→∞
2(1− µ̃n(θ/r)) = 2(1− µ̃(θ/r)).

Taking r → ∞ and using the continuity of µ̃ at 0, we obtain that

lim
r→∞

lim sup
n
µn({x : ⟨x, θ⟩ ≥ r}) = 0.

From this, straightforward calculations show that

lim
r→∞

lim sup
n
µn({x : ∥x∥ ≥ r}) = 0,

that is, the sequence (µn)n is tight. As a result, for any ε > 0, we may choose large r that
µn({x : ∥x∥ ≥ r}) ≤ ε for all n and µ({x : ∥x∥ ≥ r}) ≤ ε.

Now fix a bounded continuous function f : Kd → R, with ∥f∥ ≤ m < ∞. Pick an arbitrary
ε > 0. Let r > 0 be the real such that µn({x : ∥x∥ ≥ r}) ≤ ε for all n and µ({x : ∥x∥ ≥ r}) ≤ ε.

Define fr to be the restriction of f to the ball {∥x∥ ≤ r}, and extend fr to a continuous function f̃

on Kd ∪ {∆} with
∥∥∥f̃∥∥∥ ≤ m. For instance, one can set

f̃(x) = f

(
rx

∥x∥

)
×max(r + 1− ∥x∥ , 0) for ∥x∥ ≥ r.
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By Lemma 34, there exists some function g(x) =
∑p
j=1 λje

−⟨x,θj⟩ with θj ∈ Kd and λj ∈ R such

that
∥∥∥f̃ − g

∥∥∥ ≤ ε. We obtain

|µnf − µng| ≤
∣∣∣µnf − µnf̃

∣∣∣+ ∣∣∣µnf̃ − µng
∣∣∣

≤ µn({x : ∥x∥ ≥ r})
∥∥∥f − f̃

∥∥∥+ ∥∥∥f̃ − g
∥∥∥

≤ (2m+ 1)ε,

and similarly for µ. Thus,

|µnf − µf | ≤ |µnf − µng|+ |µng − µg|+ |µf − µg|
≤ |µng − µg|+ 2(2m+ 1)ε.

By the pointwise convergence of µ̃n,

|µng − µg| ≤
p∑
j=1

|λj ||µ̃n(θj)− µ̃(θj)|

→ 0

as n→ ∞. Letting n→ ∞ and then ε→ 0, we obtain µnf → µf . As f was chosen arbitrarily, this

proves µn
d→µ.

We state the following version of Lemma 5.4 in (Kallenberg, 2002) for the cone of d-by-d positive
semi-definite matrices.

Lemma 34 (Stone-Weierstrass theorem on Kd) Every continuous function g : Kd ∪ {∆} → R
can be approximated uniformly by linear combinations of the functions x 7−→ e−⟨x,θ⟩ for θ ∈ Kd.

We omit the proof of Lemma 34 as it directly follows from the general Stone-Weierstrass theorem.

Lemma 35 Let (Xpi) be a triangular array of nonnegative scalar random variables such that for
every p, (Xpi)i=1,...,p is an iid sequence of random variables from µp. Suppose also that (Yi) is an
iid sequence in the cone Kn of positive semi-definite n-by-n matrices with Yi ∼ F and E[∥Y1∥] <∞.
If
∑p
i=1Xpi converges in distribution to ID(a, ρ) as p→ ∞, then as p→ ∞,

p∑
i=1

XpiYi
d→ ID(A, ν) (70)

where A ∈ Kn and the Lévy measure ν on Kn \ {0} are defined by

A := aE[Y1], ν(dz) :=

∫ ∞

0

F

(
dz

x

)
ρ(dx).

Remark 36 The measure ν defined above is indeed a Lévy measure. Obviously, ν({0}) = 0. To see
that

∫
min(∥z∥, 1) ν(dz) <∞, note that∫

min(∥z∥, 1) ν(dz) =
∫
Kn

∫
min(x∥y∥, 1)1{xy ̸=0} ρ(dx)F (dy).

Here, note that, for nonnegative a and b, min(1, ab) ≤ max(1, a)min(1, b). It follows that∫
Kn

∫
min(x∥y∥, 1)1{xy ̸=0} ρ(dx)F (dy) ≤

∫
Kn

∫
max(1, ∥y∥)min(1, x)1{xy ̸=0} ρ(dx)F (dy)

≤
∫
Kn

(1 + ∥y∥)F (dy)
∫

min(1, x) ρ(dx) <∞.
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Proof Let θ ∈ K′
n = Kn. We calculate the following Laplace transform at θ:

E

[
exp

(
−

〈
θ,

p∑
i=1

XpiYi

〉)]
= (E [exp (−⟨θ,Xp1Y1⟩)])p

=

(∫
Kn

∫
e−⟨θ,y⟩x µp(dx)F (dy)

)p
=

(
1− 1

p

∫
Kn

∫ (
1− e−⟨θ,y⟩x

)
pµp(dx)F (dy)

)p
.

Now, for a fixed θ, y ∈ Kn, Lemma 31 implies that∫ (
1− e−⟨θ,y⟩x

)
pµp(dx) → a⟨θ, y⟩+

∫ (
1− e−⟨θ,y⟩x

)
ρ(dx).

Note that, as a function of y, the above integral on the left-hand side is dominated by an integrable
function. Specifically, we get, for large enough p’s,∫ (

1− e−⟨θ,y⟩x
)
pµp(dx) ≤

∫
min(1, ⟨θ, y⟩x) pµp(dx)

≤ max(1, ⟨θ, y⟩)
∫

min(1, x) pµp(dx)

≤ (1 + ∥θ∥∥y∥)
(
a+

∫
min(1, x) ρ(dx) + ϵ

)
,

where we used the fact that min(1, ab) ≤ max(1, a)min(1, b) for nonnegative a and b. As E[∥Y1∥] <
∞, the last expression is integrable with respect to F (dy). By dominated convergence, it follows
that

E

[
exp

(
−

〈
θ,

p∑
i=1

XpiYi

〉)]

→ exp

(
−
(
⟨θ, aE[Y1]⟩+

∫
Kn

∫ (
1− e−⟨θ,xy⟩

)
ρ(dx)F (dy)

))
= exp

(
−
(
⟨θ,A⟩+

∫ (
1− e−⟨θ,z⟩

)
ν(dz)

))
,

which is the Laplace transform of ID(A, ν). By Lemma 33, (see (Davydov et al., 2008, Theorem
5.4)), the Laplace transform uniquely determines the distribution, so the proof is completed.

In the special case when n = 1, we have the following.

Corollary 37 Let (Xpi) be a triangular array of nonnegative scalar random variables such that for
every p, (Xpi)i=1,...,p is an iid sequence of random variables from µp. Let Y1, Y2, . . . . be a sequence
of iid nonnegative random variables Yi ∈ [0,∞) with Yi ∼ F and E[Y1] < ∞. Let a ≥ 0 and ρ be a
Lévy measure on (0,∞). Then,

p∑
i=1

Xpi
d→ ID(a, ρ) (71)

implies
p∑
i=1

XpiYi
d→ ID(c, ν) (72)
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where c ≥ 0 and the Lévy measure ν on (0,∞) are defined by

c := aE[Y1], ν(dz) :=

∫ ∞

0

F

(
dz

x

)
ρ(dx).

When F has a density f with respect to the Lebesgue measure, the Levy measure ν can be expressed
as

ν(dz) :=

∫ ∞

0

ρ(dz/x)f(x)dx.

In this paper, we often used this equivalent form of ν.
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Appendix C. Proofs of the Main Theorems and Propositions

C.1 Proof of Theorem 5

Assume a(l) = 0. Then, Equation (15) follows directly from Proposition 32 in the Appendix and
Slutsky’s theorem.

Note that T
(l+1)
j = λ

(l)
pl,j

Yj , where the random variables Yj :=
∑pl+1

k=1 (V
(l+1)
j,k )2 are iid, and do

not depend on pl. If a
(l) = 0, then Corollary 37 implies that

∑pl
j=1 T

(l+1)
j → ID(0, ν) for some Lévy

measure ν. Equation (14) then follows similarly from Proposition 32 and Slutsky’s theorem.

C.2 Proof of Proposition 6

We assume here more generally that ρ(l)(x)
x→∞∼ x−τL(x), where L is a slowly varying function.

Using Proposition 4 and Proposition 30 in the Appendix with the fact that 1−
∑k−1
i=0

xie−x

i!

x→0∼ xk

k! ,
we obtain the first equivalence relations in Equations (16) and (17). We have

ν(l)(x) =

∫ ∞

0

ρ(l)(x/z)Gamma

(
z;

1

2
,
1

2

)
dz

= x

∫ ∞

0

ρ(l)(1/u)Gamma

(
ux;

1

2
,
1

2

)
du

=
1√
2π
x1/2

∫ ∞

0

ρ(l)(1/u)u−1/2e−ux/2du.

We have ρ(l)(1/u)u−1/2 u→0∼ uτ−1/2L(1/u). Using a Tauberian theorem (Feller, 1971, Chapter 13,
Theorem 2), we obtain

ν(l)(x)
x→∞∼ 1√

2π
x1/2 × Γ(τ + 1/2)(x/2)−τ−1/2L(x/2)

x→∞∼ 2τΓ(τ + 1/2)√
π

x−τL(x).

The second equivalence relations in Equations (16) and (17) now follow directly.

C.3 Proofs of Propositions 9 and 10

Proof of Proposition 9. First consider Equation (35). We have S(l) ∼ ID(a
(l)

2 , ν
(l)

2 ) as mentioned
in Equation (25). Also, we have shown in the proof of Proposition 6 that Equation (34) implies

ν(l)(x)
x→∞∼ 2τ

(l)

Γ(τ (l) + 1/2)√
π

c(l)x−τ
(l)

.

Equation (35) then follows from Proposition 22. For l = 2, we have

Σ(2)(x) = σ2
b + σ2

vS
(1)Σ(1)(x) (73)

where Σ(1)(x) = σ2
b + σ2

v
∥x∥2

din
is fixed. Thus,

Pr
(
Σ(2)(x) > u

)
u→∞∼ Pr(S(1) > u) · (σ2

vΣ
(1)(x))τ

(1)

(74)

and the random variable Σ(2)(x) has a power-law tail with exponent β(1) = τ (1). We can now
proceed by induction. If Σ(l)(x) has a regularly varying tail with exponent β(l−1) and S(l) has a
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regularly varying tail with exponent τ (l), then Σ(l+1)(x) = σ2
b + σ2

vS
(l)Σ(l)(x) also has regularly

varying tail with exponent β(l) = min(β(l−1), τ (l)) by Lemma 19. Finally, we have, using Lemma 21,

Pr
(
(ζ

(l)
k )2 > u

)
u→∞∼ Pr

(
Σ(l)(x) > u

)
E
[
(ε

(l)
k )2β

(l−1)
]

u→∞∼ Pr
(
Σ(l)(x) > u

)
× 2β

(l−1) Γ(β(l−1) + 1/2)

Γ(1/2)
.

Proof of Proposition 10. If σb = 0, then

Σ(l+1)(x) =
∥x∥2

din
σ2(l+1)
v

l∏
j=1

S(j)

where S(1), . . . , S(L) are iid and

Pr
(
S(j) > u

)
u→∞∼ c̃u−τ .

Here

c̃ =
2τ−1Γ(τ + 1/2)√

π
c.

It follows from Lemma 20 that

Pr

 l∏
j=1

S(j) > u

 u→∞∼ τ l−1(c̃)l

(l − 1)!
u−τ logl−1 u.

Therefore, for l ≥ 1,

Pr
(
Σ(l+1)(x) > u

)
u→∞∼

(
∥x∥2

din
σ2(l+1)
v

)τ
τ l−1(c̃)l

(l − 1)!
u−τ logl−1 u.

Finally, we have, using Lemma 21,

Pr
(
(ζ

(l+1)
k )2 > u

)
u→∞∼ Pr

(
Σ(l+1)(x) > u

)
× 2τ

Γ(τ + 1/2)

Γ(1/2)
.

C.4 Proofs of Proposition 11 and Corollaries 13 and 15

Recall the assumption (UI): For all layers l = 1, . . . , L,∫ ∞

0

uρ(l)(du) =M
(l)
1 <∞, N (l)

pl
<∞ for all pl, and N (l)

pl
→ a(l) +M

(l)
1 as pl → ∞.

As mentioned earlier, this is equivalent to the uniform integrability of the family
pl∑
j=1

λ
(l)
pl,j


pl

. (75)

This can be seen by Durrett (2019, Theorem 4.6.3) and Skorokhod representation.
We start by introducing a lemma that results from this assumption.

Lemma 38 Suppose (UI) and (A1) hold. For all l = 1, . . . , L+ 1, we have

sup
p

E

[(
Z

(l)
1 (x;p)

)2]
<∞.
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Proof Recall Cϕ = E[ϕ(ϵ)2] for ϵ ∼ N (0, 1). Note that

E

[(
Z

(l+1)
1 (x;p)

)2]
= σ2

vE

 pl∑
j=1

λ
(l)
pl,j

ϕ2(Z
(l)
j (x;p))

+ σ2
b

= σ2
vE

 pl∑
j=1

λ
(l)
pl,j

E
[
ϕ2(Z

(l)
1 (x;p))

]
+ σ2

b

= σ2
vCϕN

(l)
pl

E

[(
Z

(l)
1 (x;p)

)2]
+ σ2

b .

Apply this recurrence repeatedly and note that E[(Z
(1)
1 (x))2] = Σ(1)(x) = σ2

v∥x∥2/din + σ2
b is a

constant. Then, we get

E

[(
Z

(l)
1 (x;p)

)2]
= σ2

v

∥x∥2

din

(
l−1∏
l′=1

σ2
vCϕN

(l′)
pl′

)
+ σ2

b

(
l−1∏
l′=1

σ2
vCϕN

(l′)
pl′

+ · · ·+ σ2
vCϕN

(l−1)
pl−1

+ 1

)
.

Since N
(l)
pl → a(l) +M

(l)
1 as pl → ∞ for each l = 1, . . . , L, we have

sup
p

E

[(
Z

(l)
1 (x;p)

)2]

≤ 2

[
σ2
v

∥x∥2

din

(
l−1∏
l′=1

σ2
vCϕ(a

(l′) +M
(l′)
1 )

)

+ σ2
b

(
l−1∏
l′=1

σ2
vCϕ(a

(l′) +M
(l′)
1 ) + · · ·+ σ2

vCϕ(a
(l−1) +M

(l−1)
1 ) + 1

)]
<∞.

where the supremum is taken for all p’s with large enough minp.

Proof of Proposition 11. Note that, for all pl,

E

[(
Z

(l+1)
1 (x;p)− Z

∗(l+1)
1 (x;p)

)2]

= σ2
vE

 pl∑
j=1

λ
(l)
pl,j

1{λ(l)
pl,j

>λ
∗(l)
pl

}

(
ϕ(Z

(l)
j (x;p)− ϕ(Z

∗(l)
j (x;p))

)2
+ σ2

vE

 pl∑
j=1

λ
(l)
pl,j

1{λ(l)
pl,j

≤λ∗(l)
pl

}ϕ
2(Z

(l)
j (x;p))


≤ σ2

vC
2
LipN

(l)
pl

E

[(
Z

(l)
1 (x;p)− Z

∗(l)
1 (x;p)

)2]

+ σ2
vC

2
LipE

[
(Z

(l)
1 (x;p))2

]
E

 pl∑
j=1

λ
(l)
pl,j

1{λ(l)
pl,j

≤λ∗(l)
pl

}

 .
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If U (l) := supp E
[
(Z

(l)
1 (x;p))2

]
<∞ for all l = 1, . . . , L, we get the following recurrence relation:

E

[(
Z

(l+1)
1 (x;p)− Z

∗(l+1)
1 (x;p)

)2]

≤ σ2
vC

2
LipN

(l)
pl

E

[(
Z

(l)
1 (x;p)− Z

∗(l)
1 (x;p)

)2]
+ σ2

vC
2
LipU

(l)E

 pl∑
j=1

λ
(l)
pl,j

1{λ(l)
pl,j

≤λ∗(l)
pl

}


=: σ2

vC
2
LipN

(l)
pl

E

[(
Z

(l)
1 (x;p)− Z

∗(l)
1 (x;p)

)2]
+ σ2

vC
2
LipU

(l)A(l)
pl

Noting that Z
(1)
1 (x;p) = Z

∗(1)
1 (x;p), it inductively follows that

E

[(
Z

(l+1)
1 (x;p)− Z

∗(l+1)
1 (x;p)

)2]
(76)

≤ σ2
vC

2
LipU

(l)A(l)
pl

+ (σ2
vC

2
Lip)

2N (l)
pl
U (l−1)A(l−1)

pl−1
+ · · ·+ (σ2

vC
2
Lip)

lN (l)
pl

· · ·N (2)
p2 U

(1)A(1)
p1 .

On the other hand, if U (l) = ∞ for some l, the above inequality holds trivially.

Proof of Corollary 13. As mentioned in Remark 14, we prove the corollary in the setting where,
for each l = 1, . . . , L, the tail Lévy measure satisfies

ρ(l)
u→0∼ u−α

(l)

L(l)

(
1

u

)
(77)

where α(l) ∈ [0, 1) and L(l) is a slowly varying function. We also let M
(l)
1 =

∫∞
0
uρ(l)(du), α =

maxl α
(l) and 0 < δ < 1− α.

From Theorem 29, it is straightforward to check that, for each l = 1, . . . , L,

pl∑
j=1

λ
(l)
pl,j

1{λ(l)
pl,j

≤ϵ}
d→ ID(0, ρ(l)|(0,ϵ]), (78)

as pl → ∞, where we denote by ρ(l)|(0,ϵ] the measure ρ(l) restricted to (0, ϵ]. (Technically, we need

to assume that ϵ is a continuity point of ρ(l). See Remark 40.) As the family in Equation (75) is
uniformly integrable, it follows that, for each l = 1, . . . , L,

A(l)
pl

= E

 pl∑
j=1

λ
(l)
pl,j

1{λ(l)
pl,j

≤ϵ}

→
∫
x1{x≤ϵ} ρ

(l)(dx)

as pl → ∞. To finish the proof, we introduce a corollary to Lemma 24.

Corollary 39 Recall that α = maxl α
(l) and 0 < δ < 1 − α. Then, for each l = 1, . . . , L, there

exists ϵ(l) > 0 such that
ρ(l)(x) ≤ x−(α(l)+δ)

for all x ≤ ϵ(l). Consequently, for all l = 1, . . . , L,

ρ(l)(x) ≤ x−(α+δ)

for all x ≤ ϵ0, where ϵ0 = minl ϵ
(l) > 0.
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Proof Since ρ(l)(x) ∼ x−α
(l)

L(l)(1/x), for any η > 0, we can find ϵ̃(l) such that for all x ≤ ϵ̃(l)

ρ(l)(x) ≤ (1 + η)x−α
(l)

L(l)(1/x).

Note that (1 + η)L(l)(1/x) is still a slowly varying function. By Lemma 24, there exists ϵ(l) ≤ ϵ̃(l)

such that (1 + η)L(l)(1/x) ≤ x−δ for all x ≤ ϵ(l). Thus, for every x ≤ ϵ(l), we have

ρ(l)(x) ≤ x−(α(l)+δ).

The second statement automatically follows.

By Corollary 39, for any 0 < δ < 1− α, there exists ϵ0(δ) such that for ϵ < ϵ0(δ),∫
x1{x≤ϵ} ρ

(l)(dx) ≤
∫ ϵ

0

ρ(l)(t) dt ≤ 1

1− (α+ δ)
ϵ1−(α+δ).

Thus, for each l = 1, . . . , L,

lim
pl→∞

A(l)
pl

≤ 1

1− (α+ δ)
ϵ1−(α+δ).

By taking the limit of Equation (76) as minp → ∞, we get

lim
minp→∞

E

[(
Z

(l+1)
1 (x;p)− Z

∗(l+1)
1 (x;p)

)2]
≤ (σ2

vC
2
LipU

(l) + (σ2
vC

2
Lip)

2M (l)U (l−1) + · · ·+ (σ2
vC

2
Lip)

lM (l) · · ·M (2)U (1))
ϵ1−(α+δ)

1− (α+ δ)

= D(l)ϵ1−(α+δ)

where

D(l) :=
σ2
vC

2
Lip

1− (α+ δ)
(U (l) + (σ2

vC
2
Lip)M

(l)U (l−1) + · · ·+ (σ2
vC

2
Lip)

l−1M (l) · · ·M (2)U (1))

is a constant not depending on ϵ.

Remark 40 When checking Equation (78), it is necessary that the pruning level ϵ is a continuity
point of ρ(l) for all l = 1, . . . , L. However, if ϵ is not a continuity point of some ρ(l), we can find
such a continuity point that is arbitrarily close to ϵ (or arbitrarily small; see Corollary 39).

Proof of Corollary 15. By Proposition 32, for each l = 1, . . . , L and any κ ∈ (0, 1),

pl∑
j=1

λ
(l)
pl,j

1{λ(l)
pl,j

≤λ(l)

pl,(κpl)
}

pr→ 0

as pl → ∞. As the family in Equation (75) is uniformly integrable, it follows that, for each l =
1, . . . , L and κ ∈ (0, 1),

A(l)
pl

= E

 pl∑
j=1

λ
(l)
pl,j

1{λ(l)
pl,j

≤λ(l)

pl,(κpl)
}

→ 0

as pl → ∞. Thus, by taking the limit of Equation (76) as minp → ∞, we get

lim
minp→∞

E

[(
Z

(l+1)
1 (x;p)− Z

∗(l+1)
1 (x;p)

)2]
= 0.
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C.5 Proof of Theorem 16

Let us denote x⃗ := (x1, . . . ,xn), the tuple of the n inputs in the theorem. Throughout this sub-
section, let Σ(l)(x⃗) ∈ Rn×n be a (possibly random) covariance matrix depending on x⃗, and let

(ζ⃗
(l)
j (x⃗))j≥1 be iid centred Gaussian random vectors in Rn, given the covariance matrix Σ(l)(x⃗).

Since the matrix ϕ(ζ⃗
(l)
j (x⃗))ϕ(ζ⃗

(l)
j (x⃗))T is clearly positive semi-definite, we obtain the following corol-

lary from Lemma 35. Consider z⃗ := (z1, . . . , zn)
T ∈ Rn. For a given activation function ϕ, define

the map
Lz⃗(u) = uϕ(z⃗)ϕ(z⃗)T : [0,∞) → Rn×n.

Corollary 41 Let (ζ⃗
(l)
j (x⃗))j be iid centred Gaussian random vectors in Rn with covariance Σ(l)(x⃗).

Then, for l ≥ 1,
pl∑
j=1

λ
(l)
pl,j

ϕ
(
ζ⃗
(l)
j (x⃗)

)
ϕ
(
ζ⃗
(l)
j (x⃗)

)T
converges in distribution, as pl → ∞, to S(l)(x⃗) ∼ ID

(
ã(l), ρ̃(l)

)
concentrating on the cone Kn of

n× n positive semi-definite matrices, where, for l ≥ 1, ã(l) and ρ̃(l) are defined as

ã(l) := a(l)E

[
ϕ
(
ζ⃗
(l)
j (x⃗)

)
ϕ
(
ζ⃗
(l)
j (x⃗)

)T]
ρ̃(l)(B) :=

∫
(Lz⃗)⋆(ρ

(l))(B) ξ(dz⃗)

with ξ being the measure of N (0,Σ(l)(x⃗)) (i.e., the law of ζ⃗
(l)
j (x⃗)) and (Lz⃗)⋆(ρ

(l)) denoting the

pushforward of ρ(l) under the map Lz⃗.

Note that the above corollary is later used in the setting of a random covariance matrix. However,
when it is used, we condition on the covariance, and thus for all intents and purposes, the covariance
is nonrandom.

Remark 42 Throughout the paper, we use two ‘dual’ perspectives of viewing the measure ν. For a
distribution F and a measure ρ, the measure ν(dz) =

∫
ρ(dx)F (dz/x) is a mixture of a pushforward

distribution F (dz/x) (which maps each Borel set B ⊆ Kn to F ({z/x : z ∈ B})) with mixing measure
ρ(dx). Note that, in some other places, we use ν(dx) =

∫
(Lz)⋆(ρ)(dx)F (dz), where Lz(x) = xz :

R → Kn for x ∈ [0,∞) and z ∈ Kn, which can be described as a mixture of a pushforward of ρ by
Lz with mixing measure F (dz). Indeed, both definitions refer to the same measure: for a Borel set
B ⊂ Kn, ν(B) = (ρ

⊗
F )({(x, z) : xz ∈ B}), where

⊗
denotes the product of measures.

Proof of Theorem 16. Recall that x⃗ = (x1, . . . ,xn) is the tuple of the n inputs in the theorem.
Let t⃗k ∈ Rn for k ≤ m and 1⃗ = (1, . . . , 1)T ∈ Rn.

We start by calculating, for m ∈ N, l ≥ 2 and p ∈ NL, the conditional characteristic function of
the size-m tuple of n-dimensional random vectors

(Z⃗
(l)
k (x⃗;p))k≤m := (Z

(l)
k (x1;p), . . . , Z

(l)
k (xn;p))k≤m,

given {λ(l−1)
pl−1,j

}j and {Z⃗(l−1)
j }j = {Z⃗(l−1)

j (x⃗;p)}j . Since both {V (l)
jk }jk and {B(l)

k }k are iid and also
independent of each other, we have

E

∏
k≤m

exp

i⟨⃗tk, B(l)
k 1⃗⟩+ i

pl−1∑
j=1

〈
t⃗k,
√
λ
(l−1)
pl−1,j

V
(l)
jk ϕ(Z⃗

(l−1)
j )

〉∣∣∣∣∣∣ {λ(l−1)
pl−1,j

}j , {Z⃗(l−1)
j }j


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=
∏
k≤m

E
[
exp
(
i⟨⃗tk, B(l)

k 1⃗⟩
)] pl−1∏

j=1

E

[
exp

(
i
〈
t⃗k,
√
λ
(l−1)
pl−1,j

V
(l)
jk ϕ(Z⃗

(l−1)
j )

〉)∣∣∣∣ {λ(l−1)
pl−1,j

}j , {Z⃗(l−1)
j }j

]

=
∏
k≤m

exp

−1

2

〈
t⃗k,

σ2
b 1⃗⃗1

T + σ2
v

pl−1∑
j=1

λ
(l−1)
pl−1,j

ϕ(Z⃗
(l−1)
j )ϕ(Z⃗

(l−1)
j )T

 t⃗k〉
 .

Thus, the (unconditional) characteristic function ψ
(Z⃗

(l)
k (x⃗;p))k≤m

satisfies

ψ
(Z⃗

(l)
k (x⃗;p))k≤m

(⃗t1, . . . , t⃗m)

= E

∏
k≤m

exp

−1

2

〈
t⃗k,

σ2
b 1⃗⃗1

T + σ2
v

pl−1∑
j=1

λ
(l−1)
pl−1,j

ϕ(Z⃗
(l−1)
j )ϕ(Z⃗

(l−1)
j )T

 t⃗k〉
 . (79)

We now prove the following convergence in distribution using induction on the layer l = 1, . . . , (L+
1): for all m ∈ N, where we henceforth assume without loss of generality that m ≤ pl,(

lim
pl−1→∞

. . . lim
p1→∞

(Z⃗
(l)
k (x⃗;p))k≤m

)
d
= (ζ⃗

(l)
k (x⃗))k≤m

where (ζ⃗
(l)
k (x⃗))k≤m is the size-m tuple of the random vectors ζ⃗

(l)
k (x⃗) = (ζ

(l)
k (x1), . . . , ζ

(l)
k (xn))

T

in Rn defined as follows. When conditioned on Σ(l), the tuple (ζ⃗
(l)
k (x⃗))k≤m is distributed as

⊗k≤mN (0,Σ(l)), where Σ(l) is a random covariance matrix defined recursively by the kernels in

Equation (40). In other words, conditioned on Σ(l), the m components of (ζ⃗
(l)
k (x⃗))k≤m are iid Gaus-

sian vectors with covariance matrix Σ(l), while if we do not condition, then the joint distribution

(ζ⃗
(l)
k (x⃗))k≤m is a convex mixture of iid Gaussian vectors with covariance matrix Σ(l) with the mix-

ture being governed by the randomness of Σ(l). Since (Z⃗
(l)
k (x⃗;p))k≤m does not depend on pl, . . . , pL,

(as long as pl is bigger or equal to m) the above convergence implies the claim of the theorem. In
our inductive proof, we explicitly denote the dependency of Σ(l) on the inputs x⃗ by writing Σ(l)(x⃗).
Also, we fix m ∈ N.

Case l = 1:
Note that in this case, for all p ∈ NL, both (Z⃗

(1)
k (x⃗;p))k≥1 and (ζ⃗

(1)
k (x⃗))k≥1 are iid even without

conditioning since Σ(1) is nonrandom. Each component follows the law N (0,Σ(1)(x⃗)) and

(Z⃗
(1)
k (x⃗;p))k≤m

d
= (ζ⃗

(1)
k (x⃗))k≤m,

holds for all p ∈ NL.

Case l ≥ 2:
By the induction hypothesis, we have the following convergence in distribution: for all m′ ∈ N,
where we assume without loss of generality that m′ ≤ pl−1,(

lim
pl−2→∞

. . . lim
p1→∞

(Z⃗
(l−1)
j (x⃗;p))j≤m′

)
d
= (ζ⃗

(l−1)
j (x⃗))j≤m′ , (80)

where the left-hand side is interpreted as (Z⃗
(1)
j (x⃗;p))j≤m′ when l = 2.

For all non-negative reals c1, . . . , cpl−1
, and for all m ∈ N and t⃗1, . . . , t⃗m ∈ Rn, the function

h : Rn×pl−1 → (0,∞) defined by
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h
(
(z⃗j)j≤pl−1

; (⃗tk)k≤m, (cj)j≤pl−1

)
=∏

k≤m

exp

−1

2

〈
t⃗k,

σ2
b 1⃗⃗1

T + σ2
v

pl−1∑
j=1

cjϕ(z⃗j)ϕ(z⃗j)
T

 t⃗k〉
 , (81)

is continuous in (z⃗j)j≤pl−1
, non-negative, and bounded by 1. Thus, we can use the induction hypoth-

esis for the (l−1)-th layer in Equation (80) and, from the definition of convergence in distribution,
deduce the following convergence for this bounded continuous function h:

lim
pl−2→∞

. . . lim
p1→∞

E
[
h
(
(Z⃗

(l−1)
j (x⃗;p′))j≤pl−1

; (⃗tk)k≤m, (cj)j≤pl−1

)]
=

E
[
h
(
(ζ⃗

(l−1)
j (x⃗))j≤pl−1

; (⃗tk)k≤m, (cj)j≤pl−1

)]
.

Also, by Equation (79),

ψ
(Z⃗

(l)
k (x⃗;p))k≤m

(⃗t1, . . . , t⃗m)

= E
[
h
(
(Z⃗

(l−1)
j (x⃗;p))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

)]
= E

[
E
[
h
(
(Z⃗

(l−1)
j (x⃗;p))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

) ∣∣∣ (λ(l−1)
pl−1,j

)j≤pl−1

]]
.

Since h is bounded, by the dominated convergence theorem, we have

lim
pl−2→∞

... lim
p1→∞

ψ
(Z⃗

(l)
k (x⃗;p))k≤m

(⃗t1, . . . , t⃗m)

= lim
pl−2→∞

... lim
p1→∞

E
[
E
[
h
(
(Z⃗

(l−1)
j (x⃗;p))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

) ∣∣∣ (λ(l−1)
pl−1,j

)j≤pl−1

]]
= E

[
lim

pl−2→∞
... lim
p1→∞

E
[
h
(
(Z⃗

(l−1)
j (x⃗;p))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

) ∣∣∣ (λ(l−1)
pl−1,j

)j≤pl−1

]]
= E

[
E
[
h
(
(ζ⃗

(l−1)
j (x⃗))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

) ∣∣∣ (λ(l−1)
pl−1,j

)j≤pl−1

]]
= E

[
h
(
(ζ⃗

(l−1)
j (x⃗))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

)]
.

To complete the inductive step, we now show that

lim
pl−1→∞

E
[
h
(
(ζ⃗

(l−1)
j (x⃗))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

)]
= ψ

(ζ⃗
(l)
k (x⃗))k≤m

(⃗t1, . . . , t⃗m).

Since h is bounded, by the dominated convergence theorem, we have

lim
pl−1→∞

E
[
h
(
(ζ⃗

(l−1)
j (x⃗))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

)]
= lim
pl−1→∞

E
[
E
[
h
(
(ζ⃗

(l−1)
j (x⃗))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

) ∣∣∣ Σ(l−1)(x⃗)
]]

= E

[
lim

pl−1→∞
E
[
h
(
(ζ⃗

(l−1)
j (x⃗))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

) ∣∣∣ Σ(l−1)(x⃗)
]]

where the nested conditional expectation has the following form by the definition of h:

E
[
h
(
(ζ⃗

(l−1)
j (x⃗))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

) ∣∣∣ Σ(l−1)(x⃗)
]
=

E

 ∏
k≤m

exp

−1

2

〈
t⃗k,

σ2
b 1⃗⃗1

T + σ2
v

pl−1∑
j=1

λ
(l−1)
pl−1,j

ϕ(ζ⃗
(l−1)
j (x⃗))ϕ(ζ⃗

(l−1)
j (x⃗))T

 t⃗k〉
∣∣∣∣∣∣ Σ(l−1)(x⃗)

 .
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Note that by Corollary 41, when conditioned on Σ(l−1)(x⃗),pl−1∑
j=1

λ
(l−1)
pl−1,j

ϕ(ζ⃗
(l−1)
j (x⃗))ϕ(ζ⃗

(l−1)
j (x⃗))T

 d→S(l−1)(x⃗) ∈ Rn×n as pl−1 → ∞,

where the random matrix S(l−1)(x⃗) has an infinitely divisible distribution with Lévy characteristic
(ã(l−1), ρ̃(l−1)) as defined in Corollary 41. Since

∏
k≤m exp(−yk/2) is bounded by 1 for all non-

negative reals y1, . . . , yk, the above convergence implies that as pl−1 tends to ∞,

E

 ∏
k≤m

exp

−1

2

〈
t⃗k,

σ2
b 1⃗⃗1

T + σ2
v

pl−1∑
j=1

λ
(l−1)
pl−1,j

ϕ(ζ⃗
(l−1)
j (x⃗))ϕ(ζ⃗

(l−1)
j (x⃗))T

 t⃗k〉
∣∣∣∣∣∣ Σ(l−1)(x⃗)


→ E

 ∏
k≤m

exp

(
−1

2

〈
t⃗k,
[
σ2
b 1⃗⃗1

T + σ2
vS

(l−1)(x⃗)
]
t⃗k

〉) ∣∣∣∣∣∣ Σ(l−1)(x⃗)

 .
Thus,

lim
pl−1→∞

E
[
h
(
(ζ⃗

(l−1)
j (x⃗))j≤pl−1

; (⃗tk)k≤m, (λ
(l−1)
pl−1,j

)j≤pl−1

)]
= E

E
 ∏
k≤m

exp

(
−1

2

〈
t⃗k,
[
σ2
b 1⃗⃗1

T + σ2
vS

(l−1)(x⃗)
]
t⃗k

〉) ∣∣∣∣∣∣ Σ(l−1)(x⃗)


= E

E
 ∏
k≤m

exp

(
−1

2

〈
t⃗k,Σ

(l)(x⃗)⃗tk

〉) ∣∣∣∣∣∣ Σ(l−1)(x⃗)


= E

∏
k≤m

exp

(
−1

2

〈
t⃗k,Σ

(l)(x⃗)⃗tk

〉)
= ψ

(ζ⃗
(l)
k (x⃗))k≤m

(⃗t1, . . . , t⃗m).

The last equality follows from the definition of (ζ⃗
(l)
k (x⃗))k≤m and the fact that when conditioned

on Σ(l)(x⃗), the random variables (ζ⃗
(l)
k (x⃗))k≤m are iid with each component having the distribution

N (0,Σ(l)(x⃗)). The justification of the second equality is slightly more involved. It follows from the
boundedness of

∏
k≤m exp(−yk/2) for all non-negative reals y1, . . . , yk, and the below conditional

distributional equality: when conditioned on Σ(l−1)(x⃗),

σ2
b 1⃗⃗1

T + σ2
vS

(l−1)(x⃗)
d
= Σ(l)(x⃗),

which follows from the definition of ρ̃(l−1). To see this, condition on Σ(l−1)(x⃗). Then, as S(l−1)(x⃗)
follows ID(ã(l−1), ρ̃(l−1)), it can be represented as ã(l−1) +

∑
j≥1Xj where (Xj)j≥1 are points in

Rn×n which result from the pushforward of a Poisson process on (0,∞) with mean measure ρ(l−1),
as described in Corollary 41. Since ρ̃(l−1) is a pushforward of ρ(l−1)(du), Xj can be represented as

λ̃
(l−1)
j ϕ(ζ⃗

(l−1)
j (x⃗))ϕ(ζ⃗

(l−1)
j (x⃗))T . Thus, under our assumed conditioning on Σ(l−1)(x⃗), we have

σ2
b 1⃗⃗1

T + σ2
vS

(l−1)(x⃗)
d
= σ2

b 1⃗⃗1
T + σ2

v ã
(l−1) + σ2

v

∑
j≥1

λ̃
(l−1)
j ϕ(ζ⃗

(l−1)
j (x⃗))ϕ(ζ⃗

(l−1)
j (x⃗))T

d
= Σ(l)(x⃗).

This completes the proof of the inductive case.
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Appendix D. Additional Theoretical Results

D.1 Properties of Small Weights in our Model

The following proposition characterises the rate of decay of the variances/weights, under a polyno-
mial decay of the tail Lévy measure at 0.

Proposition 43 (Asymptotic properties of small variances and weights) Assume ρ(l) is an

infinite Lévy measure with tail ρ(l)(x)
x→0∼ cx−α for some α ∈ (0, 1) and some constant c > 0. Let

Φ
(l)
(k) and Ψ

(l+1)
(k),m be random variables in Proposition 4 such that λ

(l)
pl,(k)

d→Φ
(l)
(k) and (W

(l+1)
(k),m)2

d→Ψ
(l+1)
(k),m

as pl tends to ∞. Then, in probability,

Φ
(l)
(k)

k→∞∼ (ρ(l))−1(k)
k→∞∼ c1/αk−1/α (82)

and for any m ≥ 1, in probability,

Ψ
(l+1)
(k),m

k→∞∼ σ2
v × (ν(l))−1(k)

k→∞∼
(
2αΓ(α+ 1/2)√

π
(σ2
v)
αc

)1/α

k−1/α . (83)

Proof By Proposition 4, λ
(l)
pl,(k)

d→(ρ(l))−1(Gk) as pl → ∞, where Gk ∼ Gamma(k, 1). Additionally,

by the law of large numbers Gk

k

pr→ 1 as k → ∞. Also, ρ(l)(x)
x→0∼ cx−α implies (ρ(l))−1(x)

x→∞∼
(x/c)−1/α. The rest follows from properties of regularly varying functions, see Proposition 23 in

Appendix A.3. Additionally, similarly to the proof of Proposition 6, ρ(l)(x)
x→0∼ cx−α implies

ν(l)(x)
x→0∼ 2αΓ(α+ 1/2)√

π
x−αc

concluding the proof.

D.2 Infinite-Width Limit for Multiple Inputs in the Symmetric α-Stable Case

If, for some α ∈ (0, 1),
pl∑
j=1

λ
(l)
pl,j

d→Stable(α, 1) as pl → ∞,

then the Poisson point process {λ̃(l)j }j≥1 in Theorem 16 has mean measure

ρ(l)(du) =
α

Γ(1− α)
u−α−1du.

Let Kn denote the set of n-by-n positive semi-definite matrices and define the limit in distribution

ζ
(l)
k (x) = lim

pl−1→∞
. . . lim

p1→∞
Z

(l)
k (x;p)

which we recall is conditionally Gaussian given the previous layers 1, . . . , l − 1. If ϕ(ζ
(l)
k (x)) has

sufficient moments, then for all n inputs x1, . . . ,xn ∈ Rdin , the n-by-n random matrix

R(l) :=
(
K(l)(xi,xj)− σ2

b

)n
i,j=1

=

σ2
v

∑
k≥1

λ̃
(l)
k ϕ

(
ζ
(l)
k (xi)

)
ϕ
(
ζ
(l)
k (xj)

)n

i,j=1

(84)
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has a (strictly) α-stable distribution in Kn with characteristic exponent α, i.e.,

c
1/α
1 R

(l)
1 + c

1/α
2 R

(l)
2

d
= (c1 + c2)

1/αR(l),

where R
(l)
1 and R

(l)
2 are independent copies of R(l). This allows us to strengthen Theorem 16 in

this special case. For a single input x ∈ Rdin , we obtain a more precise form of the limiting output
distribution.

Theorem 44 (α-stable case, further results) Suppose that in the l-th hidden layer,

pl∑
j=1

λ
(l)
pl,j

d→ Stable(α, 1) as pl → ∞ (85)

for α ∈ (0, 1]. Then, for any inputs x1, . . . ,xn, Theorem 16 holds with the random matrix (K(l)(xi,xj)−
σ2
b )
n
i,j=1 in Equation (84) having a conditional distribution, given K(1), . . . ,K(l−1), that is α-stable in

Kn. Moreover, in the case n = 1 with the single input x, the conditional distribution of K(l)(x,x)−σ2
b

is Stable(α, r(l)(x)) where

r(l)(x) := σ2
v ·
(
E

[∣∣∣ϕ(ζ(l)1 (x))
∣∣∣2α ∣∣∣∣ K(1), . . . ,K(l−1)

])1/α

.

Thus, given K(1), . . . ,K(l−1), the random variance K(l)(x,x) has the same conditional distribution
as

σ2
b + σ2

v · Λ̃ ·
(
E

[∣∣∣ϕ(ζ(l)1 (x))
∣∣∣2α ∣∣∣∣ K(1), . . . ,K(l−1)

])1/α

for Λ̃ ∼ Stable(α, 1).

Proof We assume, without loss of generality, that (λ̃
(l)
k )k≥1 is ordered:

λ̃
(l)
1 ≥ λ̃

(l)
2 ≥ · · · .

By Proposition 30, the order statistics (λ
(l)
pl,(1)

, . . . , λ
(l)
pl,(pl)

, 0, . . .) converge in distribution to (λ̃
(l)
k )k≥1,

a Poisson point process with intensity measure ρ(l)(du) = αΓ(1 − α)−1u−α−1du. Such a Poisson
process takes the form ((GkΓ(1− α))−1/α)k≥1 where (Gk)k≥1 is a standard rate-one Poisson point
process on (0,∞) (LePage et al., 1981; Davydov et al., 2008).

Given K(1), . . . ,K(l−1), we have that
(
(ζ

(l)
k (x1), . . . , ζ

(l)
k (xn))

T
)
k≥1

are iid with common distri-

bution N (0,Σ(l)). Since ϕ satisfies the polynomial envelope condition, we have, conditioned on

K(1), . . . ,K(l−1), that ϕ
(
ζ
(l)
1 (xi)

)
ϕ
(
ζ
(l)
1 (xj)

)
has conditional moments of all order for all pairs (i, j)

(importantly, recall that we defined the conditional expectation via regular conditional probabilities).

By the three-series theorem,
∑
k≥1 λ̃

(l)
k ϕ
(
ζ
(l)
k (xi)

)
ϕ
(
ζ
(l)
k (xj)

)
converges for all pairs (i, j). Therefore,

by Theorem 2 in (LePage et al., 1981), R(l) is α-stable.

For the special case n = 1 with the single input x, setting Uk := ϕ2
(
ζ
(l)
k (x)

)
, by Corollary 37,

the Lévy-Khintchine formula and the integral formula (Samorodnitsky and Taqqu, 1994, p. 15)

yα =

∫ ∞

0

(1− e−xy)
α

Γ(1− α)
x−α−1dx for 0 < α < 1

we have that

E

[
exp

(
−t
∑
k

λ̃
(l)
k Uk

)]
= exp

(
−E

[∫ ∞

0

(
1− e−txU1

) α

Γ(1− α)
x−α−1dx

])
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= exp (−tαE[Uα1 ]) .
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Appendix E. Additional Details on the Examples

E.1 Detailed Illustration of the Main Results on the Simple Model in Section 1

Recall the four models briefly discussed in Section 1: for p1 ≥ 2,

(a) λ
(1)
p1,j

∼ IG
(
2, 2

p1

)
(b) λ

(1)
p1,j

∼ Bernoulli
(

2
p1

)
(c) λ

(1)
p1,j

∼ Beta
(

1
p1
, 12

)
(d) λ

(1)
p1,j

= π2 U
2
j

p21
where Uj ∼ Cauchy+(0, 1)

where IG(β1, β2) denotes the inverse gamma distribution with shape β1 > 0 and scale β2 > 0, and
Cauchy+(0, 1) denotes the half-Cauchy distribution with pdf in Equation (5). The 50 largest values

of a realisation of (λ
(1)
p1,j

)j=1,...,p1 for a neural network of width p1 = 5000 are represented in Figure 10
under these models.

These four models have different infinite-width limits. Under the inverse gamma model (a), the
infinite-width limit is the same as the iid Gaussian case, and Equation (3) holds. Under models
(b-d), the infinite-width limit is a mixture of Gaussian processes (see Theorem 16). That is, for each
case s ∈ {b, c, d},(

Z
(2)
k (x; p1)

Z
(2)
k (x′; p1)

)
d→ N

(
0,

(
K

(2)
s (x,x) K

(2)
s (x,x′)

K
(2)
s (x,x′) K

(2)
s (x′,x′)

))
as p1 → ∞ (86)

where K
(2)
b , K

(2)
c and K

(2)
d are random covariance kernels defined by

K(2)
s (x,x′) :=

∑
j≥1

λ̃
(1)
(j),smax

(
0, ζ

(1)
(j),s(x)

)
max

(
0, ζ

(1)
(j),s(x

′)
)
. (87)

Here λ̃
(1)
(1),s ≥ λ̃

(1)
(2),s ≥ . . . ≥ 0 are random weights defined by (see details in Appendix E.3)

λ̃
(1)
(j),b =

{
1 if j ≤ N (1)

0 otherwise
where N (1) ∼ Poisson(2) (88)

λ̃
(1)
(j),c =

j∏
k=1

βk where βk
iid∼ Beta(2, 1) (89)

λ̃(j),d =

(
j∑

k=1

Ej

)−2

where Ek
iid∼ Exponential(2) (90)

and, for j ≥ 1, ζ
(1)
(j),s

iid∼ GP(0,K(1)) with K(1)(x,x′) = xTx′

din
.

We have E[K
(2)
b ] = E[K

(2)
c ] = K(2). In the case (d), E[K

(2)
d ] is undefined.

Due to the shared random covariance kernel, the outputs are therefore dependent in the infinite-
width limit for examples (b-d). In the case (b), only a finite (random) number of nodes are active

(that is, such that λ
(1)
p1,j

> 0) in the infinite-width limit; the infinite-width network is equivalent
to a finite network with a Poisson(2) number of hidden nodes. In the cases (c-d), an infinite
number of nodes are active in the infinite-width limit. The marginal random variances take the form

K
(2)
s (x,x) = (S

(1)
s ∥x∥2)/din for s ∈ {b, c, d}, where (see Theorem 8, Appendices E.3.1 and E.3.2,

and Corollary 27)

• S
(1)
b ∼ Gamma(N2 ,

1
2 ) with N ∼ Poisson(1)5;

5. with the convention that S
(1)
b = 0 if N = 0.
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(a) Inverse Gamma (b) Bernoulli

(c) Beta (d) Horseshoe

Figure 10: The 50 largest values λ
(1)
p1,(1)

≥ λ
(1)
p1,(2)

≥ . . . ≥ λ
(1)
p1,(50)

of (λ
(1)
p1,j

)j=1,...,p1 in a neural

network of width p1 = 5000 for examples (a-d). The y-scale is the same for all the plots. For (a), all
the values are non-zero and very small, of order (2/p1). For (b), only a small number of values are

non-zero, all being equal to 1. For (c-d), all the values are non-zero. For model (c), λ
(1)
p1,(k)

decreases

exponentially fast with k, while it decreases in O(k−2) for model (d).
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• S
(1)
c ∼ Gamma( 12 ,

1
2 );

• S
(1)
d ∼ IG( 12 ,

1
2 ) is an inverse gamma/Lévy random variable.

In the case (c), Z
(2)
k (x; p1) converges in distribution to a normal-gamma6 random variable. For (d),

it converges to a Cauchy random variable, and both dimensions of the output therefore have power-

law tails, with exponent 1. For model (a), for any k = 1, 2, maxj=1,...,p1(W
(2)
jk )2

pr→ 0, and the weights

are all asymptotically small. For each case s ∈ {b, c, d}, maxj(W
(2)
jk )2

d→Ms where Ms is a random
variable whose cdf is analytically available (see Section 3.4). In particular, in the horseshoe example

(d),Md follows a scaled Fréchet distribution. For models (b-d), let (W
(2)
(1),k)

2 ≥ (W
(2)
(2),k)

2 ≥ . . . be the

ordered weights connected to an output k. In the infinite-width limit, W
(2)
(j),k decreases exponentially

fast with j for model (c), while it decreases in O(j−2) for model (d) (see Appendix D.1). These
properties are of importance when using such models for pruning the nodes/edges of large networks.
A related important property is that of the compressibility of the network. Let λp,(1) ≥ λp,(2) ≥ . . .
be the ordered per-node variance terms. For some compression level κ ∈ (0, 1), let

Z
∗(2)
k (x; p1, κ) :=

p1∑
j=1

√
λ
(1)
p1,j

1{λ(1)
p1,j>λ

(1)

p1,(⌊κp1⌋)}
V

(2)
jk max

(
0,

1√
din

din∑
i=1

V
(1)
ij xi

)

be the neural network obtained by pruning a (1 − κ) proportion of nodes with the smallest λ
(1)
p1,j

values. The models (b-d) are compressible in the sense that the difference between the pruned output

Z
∗(2)
k (x; p1, κ) and the unpruned output Z

(2)
k (x; p1) vanishes in probability in the infinite-width limit

(see Theorem 5). This is not the case for the iid Gaussian model, nor for model (a), which are not
compressible. The properties of the different models are summarised in Table 1.

E.2 Additional Examples

In Section 6, we discussed examples of models used in the literature, and the associated parameters
of the limiting infinitely divisible random variable of Equation (2). In this part of the appendix, we
provide additional examples and a general recipe behind some of these models and the Horseshoe
model. As in Section 6, we use a different scaling in some cases so that the limit exists without
being degenerate at 0.

All the proofs of the examples in this subsection rely on Theorem 29. Details are given in Ap-
pendix E.3. To simplify notation, we often drop the layer index l fully or partially in the rest of this
subsection, writing e.g. λp,j ∼ µp.

E.2.1 Generalised Spike and Slab Prior

As a generalisation of the Bernoulli case in Section 6.2, we can consider the following spike and slab
prior for the variances. Let c > 0 and c̃ ≥ 0. Consider

λp,j ∼
(
1− c

p

)
· δc̃/p +

c

p
·H

for some probability distribution H (slab) on (0,∞). We have∑
j

λp,j
d→ ID(c̃, cH).

6. Various authors use the name normal-gamma to mean different things. Here we mean a Gaussian mixture
distribution where the variance is governed by a gamma distribution.
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Name Mixture’s name µp a Lévy measure Support Finite? Exp. α Exp. τ
Determ. Gaussian δc1/p c1 0 – – – –

Bernoulli Spike and Slab
(
1 − c

p

)
· δ0 + c

p δ1 0 cδ1 {1} Yes 0 –

Gamma Group lasso Gamma
(

pl+1+1

2 ,
pl(pl+1+1)

2c1

)
c1 0 – – – –

Beta Normal-beta Beta
(

1
p ,

1
c

)
0 x−1(1 − x)1/c−1 (0,1) No – –

Inv.-Gamma Multivariate t IG (2, 2/p) 2 0 – – – –

Inv.-Gamma Multivariate t IG
(
α,Γ(1 + α)−1/αp−1/α

)
0 αx−α−1 (0,∞) No α ∈ (0, 1) τ = α

Beta prime Horseshoe 2p

π2 x
−1/2(1 + 4xp2

π2 )−1 0 1
2x

−3/2 (0,∞) No 1/2 1/2

Resc. Beta Prime Reg. Horseshoe See Equation (95) 0 x−3/2

π (1 − x
c2

)−1/2 (0, c2) No 1/2 –

Gen. BFRY
Normal
-gen. BFRY

See Equation (48) 0 ηx−1−τ

Γ(1−α)
γ(τ − α, x) (0,∞) No α ∈ (0, 1) τ > α

Table 8: List of models and their limiting location parameter and Lévy measure, with its properties.

E.2.2 Stable Limit and the Horseshoe Model

We describe here a family of models whose limit is a positive stable random variable, defined in Ap-
pendix A.4, which is a special kind of infinitely divisible random variable. The horseshoe model
(Carvalho et al., 2010) in Section 6.6, which has been used by Louizos et al. (2017); Ghosh et al.
(2018, 2019); Popkes et al. (2019) as a Bayesian prior for the weights of a deep neural network, arises
as a special case.

Models converging to a stable distribution. We consider that

λp,j =
Yj

(c1p)1/α
(91)

where Y1, Y2, . . . , are iid nonnegative random variables with cdf F and survival function F = 1− F
satisfying

F (y)
y→∞∼ y−αc1 (92)

for some index α ∈ (0, 1) and some positive constant c1.
7 We have (Feller (1971, Theorem XVII.5.3),

see also Janson (2011, Example 5.5))∑
j

λp,j
d→ ID(0, ρstable( · ;α, 1)) = Stable(α,Γ(1− α)1/α). (93)

In this case, the limit Lévy measure is the positive stable Lévy measure with tail Lévy intensity
ρstable(u;α, 1) = u−α. It has power-law tails at 0 and ∞, but with the same exponent α, thus
lacking some flexibility. This limitation will be addressed by our later example which permits
different exponents at 0 and ∞. There is a lot of flexibility in the choice of the distribution F .
For example, all the following distributions have tails that satisfy Equation (92) for some constant
c1 > 0:

Yj ∼ Pareto(α, c), Yj ∼ IG(α, 1), Yj ∼ Fréchet(α), Yj ∼ Betaprime(c, α)

where c > 0. Pareto(α, c) denotes the Pareto distribution with pdf f(x) = αcαx−α−11{x>c},

Fréchet(α) denotes the Fréchet distribution with cdf F (x) = e−x
−α

and Betaprime(c, α) denotes

the beta prime distribution with pdf f(x) = xc−1(1 + x)−c−α Γ(c+α)
Γ(c)Γ(α) . Combining Equation (91)

with Yj ∼ IG(α, 1) gives

λp,j ∼ IG

(
α,

1

Γ(1 + α)1/αp1/α

)
.

While this model appears similar to the model in Equation (45), the asymptotic properties of the
two models are very different.

7. More generally, one could replace the constant c1 by a slowly varying function L.
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Horseshoe distribution. The horseshoe model (Carvalho et al., 2010) arises as another special
case. One assumes that the random variables Yj have the same distribution as Y = T 2, where
T ∼ Cauchy+(0, 1) is a half-Cauchy random variable, with pdf given by Equation (5). The random
variable Y ∼ Betaprime(1/2, 1/2) is a beta prime random variable (with both shape parameters
equal to 1/2), with pdf

fY (y) =
1

π
√
y(1 + y)

.

Its survival function satisfies

Pr(Y > y)
y→∞∼ 2

π
y−1/2,

and therefore Y has a power-law tail at infinity with exponent α = 1/2. Let c > 0 be some scaling
parameter. Setting

λp,j = c× π2

4

Yj
p2
,

we obtain ∑
j

λp,j
d→ ID(0, ρstable( · ; 1/2, c)) = Stable(1/2, cπ) = IG(1/2, cπ/4). (94)

The limit is therefore a stable distribution, with exponent 1
2 , which is also inverse gamma with shape

parameter 1/2 in this case. The tail Lévy intensity ρstable(x; 1/2, c) has power-law tails at 0 and ∞,
with exponent 1/2.

E.2.3 Regularised Horseshoe and Stable Beta Process

Ghosh et al. (2018, 2019) considered Bayesian learning of neural networks using regularised horseshoe
priors. In this case, we have

λp,j =
c2
T 2
j

p2

c2 +
T 2
j

p2

where Tj ∼ Cauchy+(0, 1) and c > 0. Note that λp,j ∈ (0, c2) is bounded, with pdf

fp(x) =
p

π
· x− 1

2 (1− x/c2)−
3
2

(
1 +

p2x

(1− x/c2)

)−1

1{x<c2}. (95)

We have, for any x > 0,

lim
p→∞

pfp(x) =
1

π
· x− 3

2

(
1− x/c2

)− 1
2 1{x<c2}.

An application of Theorem 29 gives ∑
j

λp,j
d→ ID(0, ρ)

where

ρ(du) =
1

π
· u− 3

2

(
1− u/c2

)− 1
2 1{u<c2}du

is a (scaled) stable beta Lévy measure (Teh and Gorur, 2009). The Lévy measure has bounded
support, and the associated tail Lévy intensity increases polynomially at 0, with exponent α = 1/2,

ρ(x)
x→0∼ 2

π
x−1/2.

The limiting random variable ID(0, ρ) has support (0,∞).
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E.2.4 General Models with Arbitrary Limiting Lévy Measure

It may be of interest to set the limiting constant a and the Lévy measure ρ, so that they satisfy a

number of properties, and then pick a distribution µp that makes
∑
j λp,j

d→ ID(a, ρ).

First note that if
∑
j λp,j

d→ ID(0, ρ), then
∑
j(λp,j +

a
p )

d→ ID(a, ρ), so without loss of generality,
we restrict the discussion to models with a = 0.

If ρ is finite, then H(dx) = ρ(dx)/ρ(0) is a probability distribution, and one can simply set

µp =
ρ(0)

p
H +

(
1− ρ(0)

p

)
δ0.

If ρ is infinite, on the other hand, one can resort to the construction of Perman et al. (1992) (see
also (Lee et al., 2019)), with

µp(du) =
(1− e−uψ

−1(p))

p
ρ(du)

where ψ−1 is the generalised inverse of ψ(t) =
∫∞
0

(1− e−ut)ρ(du), the Laplace exponent of ρ.

E.3 Derivations of the Beta and Horseshoe Examples in Sections 1 and 6

E.3.1 Beta Model (c) in Sections 1 and 6.5

Consider

λp,j ∼ Beta

(
η

p
, b

)
.

The pdf of λp,j is

fp(x) =
Γ(η/p+ b)

Γ(η/p)Γ(b)
xη/p−1(1− x)b−11{x∈(0,1)}

=
η

p

Γ(η/p+ b)

Γ(η/p+ 1)Γ(b)
xη/p−1(1− x)b−11{x∈(0,1)}.

We have

pfp(x) = η
Γ(η/p+ b)

Γ(η/p+ 1)Γ(b)
xη/p−1(1− x)b−11{x∈(0,1)}

→ ηx−1(1− x)b−11{x∈(0,1)} = ϱ(x).

This is the density of a stable beta measure ρsb with parameters (ηb , 0, b). For x ∈ (0, 1),

pfp(x)

ϱ(x)
=

Γ(η/p+ b)

Γ(η/p+ 1)Γ(b)
xη/p1{x∈(0,1)} ≤ Γ(η/p+ b)

Γ(η/p+ 1)Γ(b)
≤ 2

for p large enough. Finally, µp and ρ have the same support. Thus, Theorem 29 implies that∑
j λp,j

d→ ID(0, ρ) with ρ(dx) = ηx−1(1− x)b−11{x∈(0,1)}dx. The tail Lévy intensity satisfies

ρ(x)
x→0∼ η log(1/x).

Let (λ̃(1) ≥ λ̃(2) ≥ . . .) denote the ordered weights of a Poisson point process on (0,∞) with mean
measure ρ. In the case b = 1, they admit the simple inverse-Lévy/stick-breaking construction (Teh
and Gorur, 2009)

λ̃(j) =

j∏
k=1

βk, where β1, β2 . . . are iid Beta(η, 1).
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E.3.2 Horseshoe Example (d) in Section 1 and Appendices E.1 and E.2.2

Let λp,j = cπ
2

4

U2
j

p2 where Uj ∼ Cauchy+(0, 1), with c = 4. From Appendix E.2.2,∑
j

λp,j
d→ ID(0, ρstable( · ; 1/2, c)) = Stable(1/2, cπ) = IG(1/2, cπ/4).

Let (λ̃(1) ≥ λ̃(2) ≥ . . .) denote the ordered weights of a Poisson point process on (0,∞) with mean
measure ρstable( · ; 1/2, c). They admit the inverse-Lévy representation

λ̃(j) =
c(∑j

k=1Ek

)2
where E1, E2, . . ., are iid exponential random variables with unit rate.

From Corollary 28,∑
j

λp,j max(0, Xj)
2 d→ ID(0, ρstable( · ; 1/2, c/(2π))) = Stable(1/2, c/2) = IG(1/2, c/8)

where X1, X2 . . . , are iid N(0, 1) random variables. Using Proposition 4, for any x > 0,

Pr(max
j
λp,j ≤ x) → e−(x/c)−1/2

which is the cdf of a Fréchet random variable with shape parameter α = 1/2 and scale parameter c.
Similarly, since σv = 1,

Pr(max
j
W 2
jk ≤ x) → e−(x/(2c/π))−1/2

which is the cdf of a Fréchet random variable with shape parameter α = 1/2 and scale parameter
2c/π. Equivalently,

Pr(max
j

|Wjk| ≤ y) → e
−
(
y/
√

2c/π
)−1

which is the cdf of a Fréchet random variable with shape parameter α = 1 and scale parameter√
2c/π.
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Appendix F. Additional Experiments

F.1 Stability of MoGP for Deep Networks

A common practical problem that may emerge with deep models is that of the vanishing/exploding
norm of the output/gradient. In this subsection, we empirically investigate these phenomena for the
ReLU activation in the MoGP context. We consider the FFNN model with the generalised BFRY
variance distribution described in Section 7.1, with a fixed width of p = 1000 and univariate input
and output. The parameters of the generalised BFRY are fixed as in Section 7.1; here, only σb
and σv vary. For each depth, we simulate 500 random initialisations of the model. We investigate
the stability of forward passes by looking at the empirical distribution of the norm of the output
Z(L+1)(x) as the depth L+ 1 increases. For backward passes, we look at the empirical distribution
of the norm of the gradient of the loss with respect to the input weights W (1).

Theorem 8 states that the variance of the output follows the stochastic recurrence equation

Σ(l) = σ2
b + σ2

vS
(l−1)Σ(l−1),

where S(l−1) :=
∑p
j=1 λ

(l−1)
j ϕ(ε

(l−1)
j )2 and ε

(l−1)
j are i.i.d standard normals. It is well known that if

E
[
log σ2

vS
(l)
]
< 0, the random process Σ(l) is strictly stationary ergodic (Buraczewski et al., 2013).

If we further assume that σb > 0, the forward pass is stable (non-vanishing and non-exploding),
as illustrated in Figure 11. However, one can notice that, similarly to standard initialisations, a
non-zero bias leads to an unstable backward pass. With σb = 0, taking parameters such that
E
[
log σ2

vS
(l)
]
< 0 or E

[
log σ2

vS
(l)
]
> 0 is not practical for deep networks as such parameters

lead respectively to vanishing or exploding outputs and gradients (see Figure 12). As illustrated
in Figure 13, taking parameters such that E

[
log σ2

vS
(l)
]
= 0 leads to relatively stable forward and

backward passes even at depth 20. However, we do observe an increased variance of the distributions.
In rare runs, this may cause difficulties in training the models.

Figure 11: Stability of the forward and backward passes as the depth increases. Initialisation with
non-zero bias σb = 1 and E

[
log σ2

vS
(l)
]
= −1.

F.2 Using MoGP as a Regularisation for Convolutional Layers

In this subsection, we empirically illustrate how the MoGP framework can be used with convolutional
neural networks (CNN) to promote compressibility. Here we consider the more challenging dataset
Cifar10. The CNN model consists of two convolutional layers (Conv1 and Conv2) and a final fully-
connected layer (fc). Each convolutional layer is followed by a max pooling layer, with kernel size
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(a) E
[
log σ2

vS
(l)

]
= 1

(b) E
[
log σ2

vS
(l)

]
= −1

Figure 12: Stability of the forward and backward passes as the depth increases. Initialisation with
zero bias σb = 0.

Figure 13: Stability of the forward and backward passes as the depth increases. Initialisation with
σb = 0 and E

[
log σ2

vS
(l)
]
= 0.
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2× 2. The weights of each convolutional layer l ∈ {1, 2} is a tensor of dimensions

n
(l)
f × C

(l)
in ×K(l)

x ×K(l)
y ,

where n
(l)
f is the number of filters of the layer, C

(l)
in is the number of input channels (number of

channels of the input “image”) and K
(l)
x ×K

(l)
y is the kernel size. For both Conv1 and Conv2, we

take Kx = Ky = 3. We note that n
(1)
f , the number of filters of Conv1, is equal to C

(2)
in the number

of input channels of Conv2. In this CNN setting, the input channels of a convolutional layer play
the role of the input nodes in the FFNN setting. We reproduce the experiment of Section 7.2 and
assign to each input channel j of Conv2, a scale λConv2j and associate penalisation. Notice that if we
prune a fraction 1 − κ of the input channels of Conv2, then only a fraction κ of the output filters
of Conv1 and the input channels of Conv2 are active; the total number of parameters of Conv1 and
Conv2 after compression is hence reduced to a fraction κ of the original number. We also assign a
scale λfcj to each input node j of the final fully-connected layer. This enables to compress the full
model and not only the convolutional layers. Both convolutional layers have 512 filters. The results
are reported in Table 9 and Figure 14. We can see that the conclusion of the FFNN setting still hold
in this CNN setting: using the MoGP framework as a regularisation during training leads to more
compressible models. We believe that similar results would hold for more complex architectures
such as ResNets, but leave this open question for future work.

Truncation
(i.e., 1− κ)

Deterministic Horseshoe Gen. BFRY

0% 70.58 (±0.11) 69.66 (±0.12) 69.58 (±0.24)
10% 68.26 (±0.33) 69.52 (±0.20) 69.52 (±0.34)
20% 66.13 (±0.68) 68.81 (±0.28) 68.36 (±0.46)
50% 52.15 (±2.9) 60.95 (±1.8) 59.35 (±0.57)
80% 29.10 (±1.0) 44.34 (±5.3) 40.52 (±2.7)
90% 19.25 (±1.6) 32.60 (±3.46) 29.23 (±2.7)

Table 9: Classification accuracy on Cifar10 under various truncation ratio for a CNN model.

F.3 Further Results from MNIST and Fashion-MNIST

Figure 15 shows the top-5 activating images for each of the top-8 activating neurons in the deter-
ministic, the horseshoe and the generalised BFRY cases in our full Bayesian experiments.
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V. Fortuin, A. Garriga-Alonso, F. Wenzel, G. Rätsch, R. Turner, M. van der Wilk, and L. Aitchison.
Bayesian neural network priors revisited. arXiv preprint arXiv:2102.06571, 2021.

S. Ghosh, J. Yao, and F. Doshi-Velez. Structured variational learning of Bayesian neural networks
with horseshoe priors. In Proceedings of the 35th International Conference on Machine Learning
(ICML’18), pages 1744–1753, 2018.

S. Ghosh, J. Yao, and F. Doshi-Velez. Model selection in Bayesian neural networks via horseshoe
priors. Journal of Machine Learning Research, 20(182):1–46, 2019.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural net-
works. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics
(AISTATS’10), pages 249–256, 2010.

74



Deep neural nets with dependent weights

R. Gribonval, V. Cevher, and M. E. Davies. Compressible distributions for high-dimensional statis-
tics. IEEE Transactions on Information Theory, 58(8):5016–5034, 2012.

J. E. Griffin and F. Leisen. Compound random measures and their use in Bayesian non-parametrics.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(2):525–545, 2017.

M. Gurbuzbalaban, U. Simsekli, and L. Zhu. The heavy-tail phenomenon in SGD. In Proceedings
of the 38th International Conference on Machine Learning (ICML’21), pages 3964–3975, 2021.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV’15), pages 1026–1034, 2015.

N. L. Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data.
The Annals of Statistics, pages 1259–1294, 1990.

L. Hodgkinson and M. Mahoney. Multiplicative noise and heavy tails in stochastic optimization. In
Proceedings of the 38th International Conference on Machine Learning (ICML’21), pages 4262–
4274, 2021.

P. Hougaard. Survival models for heterogeneous populations derived from stable distributions.
Biometrika, 73(2):387–396, 1986.

W. Hu, C. J. Li, L. Li, and J.-G. Liu. On the diffusion approximation of nonconvex stochastic
gradient descent. arXiv preprint arXiv:1705.07562, 2017.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. In Proceedings of the 32nd Conference on Neural Information Processing Systems
(NeurIPS’18), pages 8571–8580, 2018.

P. A. Jang, A. Loeb, M. Davidow, and A. G. Wilson. Scalable Lévy process priors for spectral
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