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Abstract

We propose a first-order autoregressive (i.e. AR(1)) model for dynamic network processes
in which edges change over time while nodes remain unchanged. The model depicts the
dynamic changes explicitly. It also facilitates simple and efficient statistical inference meth-
ods including a permutation test for diagnostic checking for the fitted network models. The
proposed model can be applied to the network processes with various underlying structures
but with independent edges. As an illustration, an AR(1) stochastic block model has been
investigated in depth, which characterizes the latent communities by the transition proba-
bilities over time. This leads to a new and more effective spectral clustering algorithm for
identifying the latent communities. We have derived a finite sample condition under which
the perfect recovery of the community structure can be achieved by the newly defined spec-
tral clustering algorithm. Furthermore the inference for a change point is incorporated into
the AR(1) stochastic block model to cater for possible structure changes. We have derived
the explicit error rates for the maximum likelihood estimator of the change-point. Appli-
cation with three real data sets illustrates both relevance and usefulness of the proposed
AR(1) models and the associate inference methods.

Keywords: AR(1) networks; Change point; Dynamic stochastic block model; Hamming
distance; Maximum likelihood estimation; Spectral clustering algorithm; Yule-Walker equa-
tion.

1. Introduction

Understanding and being able to model the network changes over time are of immense im-
portance for, e.g., monitoring anomalies in internet traffic networks, predicting demand and
setting prices in electricity supply networks, managing natural resources in environmental
readings in sensor networks, and understanding how news and opinion propagates in online
social networks. In spite of the existence of a large body of literature on dynamic networks,

c©2023 B. Jiang, J. Li, and Q. Yao.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0845.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0845.html


Jiang, Li and Yao

the development of the foundation for dynamic network models is still in its infancy (Ko-
laczyk, 2017). As for dealing with dynamic changes of networks, early attempts are based on
the evolution analysis of network snapshots over time (Aggarwal and Subbian, 2014; Don-
nat and Holmes, 2018). Although this reflects the fact that most networks change slowly
over time, it provides little insight on the dynamics underlying the changes and is almost
powerless for future prediction. The popular approaches for modelling dynamic changes
include, among others, Markov process models (Snijders, 2005; Ludkin et al., 2018), the
exponential random graph models (Hanneke et al., 2010; Krivitsky and Handcock, 2014),
and latent process based models (Friel et al., 2016; Durante et al., 2016; Matias and Miele,
2017). The estimation for those models is compute-intensive, relying on various MCMC or
EM algorithms.

In this paper we propose a simple first-order autoregressive (i.e. AR(1)) model for
dynamic network processes of which the edges changes over time while the nodes are un-
changed. Though our setting is a special case of the Markov chain network models (see
Yudovina et al. (2015), and also Snijders (2005) and Ludkin et al. (2018)), a simple AR(1)
structure makes it possible to measure explicitly the underlying dynamic properties such
as autocorrelation coefficients, and the Hamming distance. It facilitates the maximum
likelihood estimation (MLE) in a simple and direct manner with uniform error rates. Fur-
thermore diagnostic checking for the fitted network models can be performed in terms of
an easy-to-use permutation test, which is impossible under a merely Markovian structure.

Our setting can be applied to any network processes with various underlying struc-
tures as long as the edges are independent with each other, which we illustrate through
an AR(1) stochastic block model. The latent communities in our setting are characterized
by the transition probabilities over time, instead of the (static) connection probabilities –
the approach often adopted from static stochastic block models; see Pensky (2019) and
the references therein. This new structure also paves the way for a new spectral clustering
algorithm which identifies the latent communities more effectively – a phenomenon cor-
roborated by both the asymptotic theory and the simulation results. To cater for possible
structure changes of underlying processes, we incorporate a change point detection mecha-
nism in the AR(1) stochastic block modeling. Again the change point is estimated by the
maximum likelihood method. The AR(1) continuous time stochastic block model of Ludkin
et al. (2018) is based on a sophisticated construction. Its estimation is based on a reversible
jump MCMC, though a discrete-time version of their model admits the same Markov Chain
representation (3) below.

Theoretical developments for dynamic stochastic block models in the literature were
typically based on the assumption that networks observed at different times are independent;
see Pensky (2019); Bhattacharjee et al. (2020) and references therein. The autoregressive
structure considered in this paper brings the extra complexity due to serial dependence. By
establishing the α-mixing property with exponentially decaying coefficients for the AR(1)
network processes, we are able to show that the proposed spectral clustering algorithm
leads to a consistent recovery of the latent community structure. On the other hand, an
extra challenge in detecting a change point in the dynamic stochastic block network process
is that the estimation for latent community structures before and after a possible change
point is typically not consistent during the search for the change point. To overcome this
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obstacle, we introduce a truncation technique which breaks the searching interval into two
parts such that the error bounds for the estimated change point can be established.

The proposed methods in this paper only apply to the dynamic networks observed
on discrete times. Even so the relevant literature is large, across mathematics, computer
science, engineer, statistics, biology, genetics and social sciences. We can only list a small
selection of more statistics-oriented papers in addition to the aforementioned references.
Fu et al. (2009) proposed a state space mixed membership stochastic block model (with
a logistic normal prior). Crane et al. (2016) studied the limit properties of Markovian,
exchangeable and càdlàg (i.e. every edge remains in each state which it visits for a positive
amount of time) dynamic network. Pensky (2019) studied the theoretical properties (such
as the minimax lower bounds for the risk) of a dynamic stochastic block model, assuming
‘smooth’ connectivity probabilities. The literature on change point detection in dynamic
networks includes Yang et al. (2011); Wang et al. (2021); Wilson et al. (2019); Zhao et al.
(2019); Bhattacharjee et al. (2020); Zhu et al. (2020a). Knight et al. (2016); Zhu et al. (2017,
2019); Chen et al. (2023); Zhu et al. (2020b) adopted autoregressive models for modelling
continuous responses observed from the nodes of a network process. Kang et al. (2020)
used dynamic network as a tool to model non-stationary vector autoregressive processes.
For the development on continuous-time dynamic networks, we refer readers to Snijders
(2005), Matias et al. (2018), Ludkin et al. (2018) and Corneli et al. (2018).

The new contributions of this paper include: (i) We propose a new and simple AR(1)
model for edge dymanics (see (1) below), which facilitates the easy-to-use inference methods
including a permutation test for model diagnostic checking. (ii) The AR(1) setting can be
applied to various network processes with specific underlying structures such as dynamic
stochastic block models, as illustrated in Section 3 below, and also dynamic dot product
model, dynamic graphon model, etc. (iii) The AR(1) structure also makes it possible to
develop the theoretical guarantees for the serial dependent network processes. For exam-
ple, based on a concentration inequality, we have derived a finite sample condition, under
which the perfect recovery of the community structure can be achieved by the newly defined
spectral clustering algorithm (Theorems 10 and 11 in Section 3.2.2 below). Furthermore,
we have shown that the MLE for the change-point in the AR(1) stochastic block process
is consistent with explicit error rates (Theorem 14 in Section 3.3 below). Those results are
based on some rigorous technical development for the dependent network processes. Note
that both Pensky (2019) and Bhattacharjee et al. (2020) assume that networks observed at
different times are independent with each other in their asymptotic theories for dynamic
stochastic block models. Illustration with the three real network data sets indicates convinc-
ingly that the proposed AR(1) model and the associated inference methods are practically
relevant and fruitful. In particular, the analysis of the contact network data in a French
hospital reveals the different interaction patterns during days and nights. Our proposed
AR(1) stochastic block model exhibits clear and meaningful communities in a school social
network data. The global trade networks, observed over the recent 6 decades, present some
dynamic changes in trade activities across different countries, and our analysis discovers to
the discovery of a remarkable change point in 1991, corresponding to the end of the Cold
War.

The rest of the paper is organized as follows. A general framework of AR(1) network
processes, the probabilistic properties, and the MLE are presented in Section 2. It also
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contains a new and easy-to-use permutation test for the diagnostic checking for the fitted
network models. Section 3 deals with AR(1) stochastic block models. The asymptotic
theory is developed for the new spectral clustering algorithm based on the transition prob-
abilities. Further extension of both the inference method and the asymptotic theory to the
setting with a change point is established. Simulation results are reported in Section 4, and
the illustration with three real dynamic network data sets is presented in Section 5. All
technical proofs are relegated to the Appendix.

2. Autoregressive network models

2.1 AR(1) models

Let {Xt, t = 0, 1, 2, · · · } be a dynamic network process defined on the p fixed nodes, denoted
by {1, · · · , p}, where Xt ≡ (Xt

i,j) denotes the p × p adjacency matrix at time t. We also
assume that all networks are Erdös-Renyi in the sense that Xt

i,j , (i, j) ∈ J , are independent
and take values either 1 or 0, where J = {(i, j) : 1 ≤ i ≤ j ≤ p} for undirected networks,
J = {(i, j) : 1 ≤ i < j ≤ p} for undirected networks without selfloops, J = {(i, j) : 1 ≤
i, j ≤ p} for directed networks, and J = {(i, j) : 1 ≤ i 6= j ≤ p} for directed networks
without selfloops. Note that an edge from node i to j is indicated by Xi,j = 1, and no edge
is denoted by Xi,j = 0. For undirected networks, Xt

i,j = Xt
j,i.

Definition 1. An AR(1) network process is defined as

Xt
i,j = Xt−1

i,j I(εti,j = 0) + I(εti,j = 1), t ≥ 1, (1)

where I(·) denotes the indicator function, the innovations εti,j, (i, j) ∈ J , are independent,
and

P (εti,j = 1) = αti,j , P (εti,j = −1) = βti,j , P (εti,j = 0) = 1− αti,j − βti,j . (2)

In the above expression, αti,j , β
t
i,j are non-negative constants, and αti,j + βti,j ≤ 1.

Equation (1) is an analogue of the noisy network model of Chang et al. (2022). The
innovation (or noise) εti,j is ‘added’ via the two indicator functions to ensure that Xt

i,j is
still binary. Obviously, {Xt, t = 0, 1, 2, · · · } is a Markov chain, and

P (Xt
i,j = 1|Xt−1

i,j = 0) = αti,j , P (Xt
i,j = 0|Xt−1

i,j = 1) = βti,j , (3)

or collectively,

P (Xt|Xt−1, · · · ,X0) = P (Xt|Xt−1) =
∏

(i,j)∈J

P (Xt
i,j |Xt−1

i,j ) (4)

=
∏

(i,j)∈J

(αti,j)
Xt
i,j(1−X

t−1
i,j )(1− αti,j)

(1−Xt
i,j)(1−X

t−1
i,j )(βti,j)

(1−Xt
i,j)X

t−1
i,j (1− βti,j)

Xt
i,jX

t−1
i,j .

It is clear that the smaller αti,j is, the more likely the no-edge status at time t − 1 (i.e.

Xt−1
i,j = 0) will be retained at time t (i.e. Xt

i,j = 0); and the smaller βti,j is, the more likely
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an edge at time t − 1 (i.e. Xt−1
i,j = 1) will be retained at time t (i.e. Xt

i,j = 1). For most

slowly changing networks (such as social networks), we expect αti,j and βti,j to be small.
It is natural to model dynamic networks by a Markov chain. See, e.g. Hanneke et al.

(2010); Krivitsky and Handcock (2014); Xu (2015); Yudovina et al. (2015); Friel et al.
(2016); Crane et al. (2016); Matias and Miele (2017); Rastelli et al. (2018); Ludkin et al.
(2018). For example, the Markovian transition probabilities under a discrete version of the
stationary independent arcs network model of Snijders (2005, Section 5) can be written
equivalently as (3) with αti,j ≡ α and βti,j ≡ β. In this paper we build the Markovian
structure based on the explicit AR(1) model (1), which enables us to study the theoretical
properties of the network processes, and to develop simple and efficient inference methods
with appropriate theoretical guarantee.

2.2 Stationarity

Note that {Xt} is a homogeneous Markov chain if

αti,j ≡ αi,j and βti,j ≡ βi,j for all t ≥ 1 and (i, j) ∈ J . (5)

Specify the distribution of the initial network X0 = (X0
i,j) as follows:

P (X0
i,j = 1) = πi,j = 1− P (X0

i,j = 0), (6)

where πi,j ∈ (0, 1), (i, j) ∈ J , are constants.

Proposition 2. Let the homogeneity condition (5) hold with αi,j + βi,j ∈ (0, 1], and

πi,j = αi,j/(αi,j + βi,j), (i, j) ∈ J . (7)

Then {Xt, t = 0, 1, 2, · · · } is a strictly stationary process. Furthermore for any (i, j), (`,m) ∈
J and t, s ≥ 0,

E(Xt
i,j) =

αi,j
αi,j + βi,j

, Var(Xt
i,j) =

αi,jβi,j
(αi,j + βi,j)2

, (8)

ρi,j(|t− s|) ≡ Corr(Xt
i,j , X

s
`m) =

{
(1− αi,j − βi,j)|t−s| if (i, j) = (`,m),
0 otherwise.

(9)

The Hamming distance counts the number of different edges in the two networks, and
is a measure the closeness of two networks (Donnat and Holmes, 2018).

Definition 3. For any two matrices A = (Ai,j) and B = (Bi,j) of the same size, the
Hamming distance is defined as DH(A,B) =

∑
i,j I(Ai,j 6= Bi,j).

Proposition 4. Let {Xt, t = 0, 1, · · · } be a stationary network process satisfying the condi-
tion of Proposition 2. Let dH(|t− s|) = E{DH(Xt,Xs)} for any t, s ≥ 0. Then dH(0) = 0,
and it holds for any k ≥ 1 that

dH(k) = dH(k − 1) +
∑

(i,j)∈J

2αi,jβi,j
αi,j + βi,j

(1− αi,j − βi,j)k−1 (10)

=
∑

(i,j)∈J

2αi,jβi,j
(αi,j + βi,j)2

{1− (1− αi,j − βi,j)k}. (11)
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Proposition 4 indicates that the expected Hamming distance dH(d) = E{DH(Xt,Xt+k)}
increases strictly, as k increases, initially from dH(1) =

∑ 2αi,jβi,j
αi,j+βi,j

towards the limit

dH(∞) =
∑ 2αi,jβi,j

(αi,j+βi,j)2
which is also the expected Hamming distance of the two independent

networks sharing the same marginal distribution of Xt.

Proposition 5 below shows that {Xt, t = 0, 1, · · · } is α-mixing with exponentially de-
caying coefficients. Note that the conventional mixing results for ARMA processes do not
apply here, as they typically require that the innovation distribution is continuous; see, e.g.,
Section 2.6.1 of Fan and Yao (2003). Let Fba be the σ-algebra generated by {Xk

i,j , a ≤ k ≤ b}.
The α-mixing coefficient of process {Xt

i,j , t = 0, 1, · · · } is defined as

αi,j(τ) = sup
k∈N

sup
A∈Fk0 ,B∈F∞k+τ ,

|P (A ∩B)− P (A)P (B)|.

Proposition 5. Let condition (5) hold, αi,j , βi,j > 0, and αi,j + βi,j ≤ 1. Then αi,j(τ) ≤
ρi,j(τ) = (1− αi,j − βi,j)τ for any τ ≥ 1.

2.3 Estimation

To simplify the notation, we assume the availability of the observations X0,X1, · · · ,Xn

from a stationary network process which satisfies the condition of Proposition 2. With-
out imposing any further structure on the model, the parameters (αi,j , βi,j), for different
(i, j), can be estimated separately. Conditionally on X0, the joint probability function of
X1, · · · ,Xn is

∏
1≤t≤n P (Xt|Xt−1). It then follows from (4) that the maximum likelihood

estimators are

α̂i,j =

∑n
t=1X

t
i,j(1−X

t−1
i,j )∑n

t=1(1−Xt−1
i,j )

, β̂i,j =

∑n
t=1(1−Xt

i,j)X
t−1
i,j∑n

t=1X
t−1
i,j

. (12)

For definiteness we shall set 0/0 = 1. To state the asymptotic properties, we list some
regularity conditions first.

C1. There exists a constant l > 0 such that αi,j , βi,j ≥ l and αi,j+βi,j ≤ 1 for all (i, j) ∈ J .

C2. n, p→∞, and (logn)(log log n)
√

log p
n → 0.

Condition C1 defines the parameter space, and condition C2 indicates that the number of
nodes is allowed to diverge in a smaller order than exp

{
n

(logn)2(log logn)2

}
.

Proposition 6. Let conditions (5), C1 and C2 hold. For any constant c > 2, there exists
a large enough constant C > 0 such that,

P

(
max

(i,j)∈J
|α̂i,j − αi,j | ≥ l−1C

√
log p

n

)
≥ 2p2 exp{−c log p},

P

(
max

(i,j)∈J
|β̂i,j − βi,j | ≥ l−1C

√
log p

n

)
≥ 2p2 exp{−c log p}.
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Consequently, as n, p→∞, we have:

max
(i,j)∈J

|α̂i,j − αi,j | = Op

(√
log p

n

)
and max

(i,j)∈J
|β̂i,j − βi,j | = Op

(√
log p

n

)
.

Proposition 6 provides a uniform convergence rate for the MLEs in (12). Proposi-
tion 7 below implies that any fixed number of estimators {α̂i,j , β̂i,j} are jointly asymp-
totically normal; noting that p diverges together with n. To state this joint asymp-
totic normality, we introduce some notation first: let J1 = {(i1, j1), . . . , (im1 , jm1)}, J2 =
{(k1, `1), . . . , (km2 , `m2)} be two arbitrary subsets of J with m1,m2 ≥ 1 fixed. Denote
ΘJ1,J2 = (αi1,j1 , . . . , αim1 ,jm1

, βk1,`1 , . . . , βkm2 ,`m2
)>, and correspondingly denote the MLEs

as Θ̂J1,J2 = (α̂i1,j1 , . . . , α̂im1 ,jm1
, β̂k1,`1 , . . . , β̂km2 ,`m2

)>.

Proposition 7. Let conditions (5), C1 and C2 hold. Then
√
n(Θ̂J1,J2−ΘJ1,J2)→ N(0,ΣJ1,J2),

where ΣJ1,J2 = diag(σ11, . . . , σm1+m2,m1+m2) is a diagonal matrix with

σrr =
αir,jr(1− αir,jr)(αir,jr + βir,jr)

βir,jr
, 1 ≤ r ≤ m1,

σrr =
βkr,`r(1− βkr,`r)(αkr,`r + βkr,`r)

αkr,`r
, m1 + 1 ≤ r ≤ m1 +m2.

2.4 Model diagnostic check

Based on estimators in (12), we define ‘residual’ ε̂ti,j , resulted from fitting model (1) to the

data, as the estimated value of E(εti,j |Xt
i,j , X

t−1
i,j ), i.e.

ε̂ti,j =
α̂i,j

1− β̂i,j
I(Xt

i,j = 1, Xt−1
i,j = 1)− β̂i,j

1− α̂i,j
I(Xt

i,j = 0, Xt−1
i,j = 0)

+I(Xt
i,j = 1, Xt−1

i,j = 0)− I(Xt
i,j = 0, Xt−1

i,j = 1), (i, j) ∈ J , t = 1, · · · , n.

One way to check the adequacy of the model is to test for the independence of Êt ≡ (ε̂ti,j)
for t = 1, · · · , n. Since ε̂ti,j , t = 1, · · · , n, only take 4 different values for each (i, j) ∈ J , we

adopt the two-way, or three-way contingency table to test the independence of Êt and Êt−1,
or Êt, Êt−1 and Êt−2. For example the test statistic for the two-way contingency table is

T =
1

n |J |
∑

(i,j)∈J

4∑
k,`=1

{ni,j(k, `)− ni,j(k, ·)ni,j(·, `)/(n− 1)}2
/
{ni,j(k, ·)ni,j(·, `)/(n− 1)},

(13)
where |J | denotes the cardinality of J , and for 1 ≤ k, ` ≤ 4,

ni,j(k, `) =

n∑
t=2

I{ε̂ti,j = ui,j(k), ε̂t−1
i,j = ui,j(`)},

ni,j(k, ·) =
n∑
t=2

I{ε̂ti,j = ui,j(k)}, ni,j(·, `) =
n∑
t=2

I{ε̂t−1
i,j = ui,j(`)}.
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In the above expressions, ui,j(1) = −1, ui,j(2) = − β̂i,j
1−α̂i,j , ui,j(3) =

α̂i,j

1−β̂i,j
and ui,j(4) = 1.

We calculate the P -values of the test T based on the following permutation algorithm:

1. Permute Ê1, · · · , Ên to obtain a new sequence E?1, · · · ,E?n. Calculate the test statistic

T ? in the same manner as T with {Êt} replaced by {E?t }.

2. Repeat 1 above M times, obtaining permutation test statistics T ?j , j = 1, · · · ,M ,
where M > 0 is a large integer. The P -value of the test (for rejecting the stationary
AR(1) model) is then

1

M

M∑
j=1

I(T < T ?j ).

3. Autoregressive stochastic block models

The general setting in Section 2 may apply to various network processes with some specific
underlying structures as long as the edges are independent with each other. In this section
we illustrate the idea with a new dynamic stochastic block (DSB) model.

3.1 Models

The DSB networks are undirected (i.e. Xt
i,j ≡ Xt

j,i) with no self-loops (i.e. Xt
i,i ≡ 0).

Most available DSB models assume that the networks observed at different times are inde-
pendent (Pensky, 2019; Bhattacharjee et al., 2020) or conditionally independent (Xu and
Hero, 2014; Durante et al., 2016; Matias and Miele, 2017) as connection probabilities and
node memberships evolve over time. We take a radically different approach as we impose
autoregressive structure (1) in the network process. Furthermore, instead of assuming that
the members in the same communities share the same (unconditional) connection proba-
bilities, we entertain the idea that the transition probabilities (3) for the members in the
same communities are the same. This reflects more directly the dynamic behavior of the
process, and implies the former assumption on the unconditional connection probabilities
under the stationarity. See (7). Furthermore, it is only natural under our AR(1) DSB
model to identify the latent community structure using the information on both αi,j and
βi,j , instead of that on πi,j = αi,j/(αi,j + βi,j) only. Both our theory (Theorem 10 and
also Remark 3 below) and the numerical experiments (Section 4.2 below) confirm that the
newly proposed spectral clustering algorithm based on αi,j and βi,j provides more accurate
estimation than that based on πi,j only.

Let νt be the membership function at time t, i.e. for any 1 ≤ i ≤ p, νt(i) takes an integer
value between 1 and q (≤ p); indicating that node i belongs to the νt(i)-th community at
time t, where q is a fixed integer. This effectively assumes that the p nodes are divided into
the q communities. We assume that q is fixed though some communities may contain no
nodes at some times.

8
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Definition 8. An AR(1) stochastic block network process {Xt = (Xt
i,j), t = 0, 1, 2, · · · } is

defined by (1), where for 1 ≤ i < j ≤ p,

P (εti,j = 1) = αti,j = θtνt(i),νt(j), P (εti,j = −1) = βti,j = ηtνt(i),νt(j), (14)

P (εti,j = 0) = 1− αti,j − βti,j = 1− θtνt(i),νt(j) − η
t
νt(i),νt(j)

.

In the above expressions, θtk,`, η
t
k,` are non-negative constants, and θtk,` + ηtk,` ≤ 1 for all

1 ≤ k ≤ ` ≤ q.

The evolution of membership process νt and/or the connection probabilities was often
assumed to be driven by some latent/Markov processes. The statistical inference for those
models is carried out using computational methods such as MCMC, EM or extended Kalman
filters. See, for example, Yang et al. (2011); Xu and Hero (2014); Xu (2015); Durante et al.
(2016); Matias and Miele (2017); Rastelli et al. (2018). Bhattacharjee et al. (2020) adopted
a change point approach: assuming both the membership and the connection probabilities
remain constants either before or after a change point. See also Ludkin et al. (2018); Wilson
et al. (2019). This reflects the fact that many networks (e.g. social networks) hardly change,
and a sudden change is typically triggered by some external events.

We adopt a change point approach in this paper. Section 3.2 considers the estimation
for both the community membership and transition probabilities when there are no change
points in the process. This will serve as a building block for the inference with a change
point in Section 3.3. Note that detecting change points in dynamic networks is a surging
research area. In addition to the aforementioned references, more recent developments
include Wang et al. (2021); Zhu et al. (2020a). Also note that the method of Zhao et al.
(2019) can be applied to detect multiple change points for any dynamic networks.

3.2 Estimation without change points

We first consider a simple scenario of no change points in the observed period, i.e.

νt(·) ≡ ν(·) and (θtk,`, η
t
k,`) ≡ (θk,`, ηk,`), t = 1, · · · , n, 1 ≤ k ≤ ` ≤ q. (15)

Then fitting the DSB model consists of two steps: (i) estimating ν(·) to cluster the p nodes
into q communities, and (ii) estimating transition probabilities θk,` and ηk,` for 1 ≤ k ≤
` ≤ q. To simplify the presentation, q is assumed to be known, which is the assumption
taken by most papers on change point detection for DSB networks. In practice, one can
determine q by, for example, the jittering method of Chang et al. (2020), or a Bayesian
information criterion; see an example in Section 5.2 below. Below we first introduce a new
Laplacian eigendecomposition which provides the underpinning for the proposed spectral
clustering algorithm for estimating network memberships. With the estimated membership,
the MLEs for θk,` and ηk,` can be derived in the similar manner as in (12).

3.2.1 Laplacian eigendecomposition

The stochastic block model with p nodes and q communities can be parameterized by a pair
of matrices (Z,Ω), where Z = (zi,j) ∈ {0, 1}p×q is the membership matrix such that it has
exactly one 1 in each row and at least one 1 in each column, and Ω = (ωk,`)q×q ∈ [0, 1]q×q

9
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is a symmetric and full rank connectivity matrix, with ωk,` =
θk,`

θk,`+ηk,`
. Then zi,j = 1 if

and only if the i-th node belongs to the j-th community. On the other hand, ωk,` is the
connection probability between the nodes in community k and the nodes in community `,
and sk ≡

∑p
i=1 zi,k is the size of community k ∈ {1, . . . , q}. Clearly, matrix Z and function

ν(·) are the two equivalent representations for the community membership of the network
nodes.

Under model (15), the edge connection probability matrix is given as E(Xt) = W −
diag(W), where W = ZΩZ> = (ων(i),ν(j)). Then the standard spectral clustering algorithm
for estimating the community memberships are based on Laplacian eigendecomposition of
W or its normalized version (Rohe et al., 2011), for which connection probability ων(i),ν(j)

is taken as a similarity measure between nodes i and j. To take the advantage of the
dynamic structure of dynamic networks, we take the transition probabilities θν(i),ν(j) and
(1 − ην(i),ν(j)), instead of conNection probability ων(i),ν(j), as the similarity measures (see
Remark 1(i) below). To this end, define

Ω1 = (θk,`)q×q, Ω2 = (1− ηk,`)q×q,
W1 = ZΩ1Z

> = (αi,j)p×p, W2 = ZΩ2Z
> = (1− βi,j)p×p,

where αi,j = θν(i),ν(j), βi,j = ην(i),ν(j). Let D1 and D2 be two p× p diagonal matrices with,
respectively, di,1, di,2 as their (i, i)-th elements, where

di,1 =

p∑
j=1

αi,j , di,2 =

p∑
j=1

(1− βi,j).

The normalized Laplacian matrices based on W1 and W2 are then defined as:

L1 = D
−1/2
1 W1D

−1/2
1 , L2 = D

−1/2
2 W2D

−1/2
2 , L = L1 + L2. (16)

The following lemma shows that the block structure in the membership matrix Z can be
recovered by the leading eigenvectors of L.

Proposition 9. Let rank(L) = q, and ΓqΛΓ>q be the eigen-decomposition of L, where
Λ = diag{λ1, . . . , λq} is the diagonal matrix consisting of the nonzero eigenvalues of L
arranged in the order |λ1| ≥ · · · ≥ |λq| > 0. There exists a matrix U ∈ Rq×q such that
Γq = ZU. Furthermore, for any 1 ≤ i, j ≤ p, ziU = zjU if and only if zi = zj, where zi
denotes the i-th row of Z.

Remark 1. (i) Both θν(i),ν(j) and (1 − ην(i),ν(j)) can be regarded as a similarity measure
between nodes i and j. This is due to the fact that the communities in a network are often
formed in the way that the members within the same community are more likely to be
connected with each other, and the members belong to different communities are unlikely
or less likely to be connected. Hence when nodes i and j belong to the same community,
αi,j tends to be large and βi,j tends to be small (see (3)). The converse is true when the
two nodes belong to two different communities.

(ii) As Z is p× q with rank q, it is reasonable to assume rank(L) = q in Proposition 9.
The q columns of Γq are the orthonormal eigenvectors of L corresponding to the q non-zero

10
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eigenvalues. Proposition 9 implies that there are only q distinct rows in the p × q matrix
Γq, and two nodes belong to a same community if and only if the corresponding rows in Γq
are the same. Intuitively the discriminant power of Γq can be understood as follows. For
any unit vector γ = (γ1, · · · , γp)>, it holds that

γ>Lγ = 2−
∑

1≤i<j≤p
αi,j

( γi√
di,1
− γj√

dj,1

)2
−

∑
1≤i<j≤p

(1− βi,j)
( γi√

di,2
− γj√

dj,2

)2
. (17)

For γ being an eigenvector corresponding to the largest (positive) eigenvalue of L, the sum
of the 2nd and the 3rd terms on the RHS (17) is minimized. Thus |γi − γj | is minimized
when αi,j and/or (1− βi,j) are large; noting that di,k = dj,k for k = 1, 2 when nodes i and
j belong to the same community. The eigenvectors corresponding to negative eigenvalues
are capable to identify the so-called heterophilic communities, see pp.1892-3 of Rohe et al.
(2011).

3.2.2 Estimating membership ν(·)

It follows from Proposition 2, (14) and (15) that

P (Xt
ij = 1) = θν(i),ν(j)/(θν(i),ν(j) + ην(i),ν(j)) ≡ ων(i),ν(j), 1 ≤ i < j ≤ p,

provided that X0
ij is initiated with the same marginal distribution. A simple approach

adopted in literature is to apply a community detection method for static stochastic block
models using the averaged data X̄ =

∑
1≤t≤n Xt/n to detect the latent communities charac-

terized by the connection probabilities {ωk,`, 1 ≤ k ≤ ` ≤ q}. We take a different approach

based on estimators {(α̂i,j , β̂i,j), 1 ≤ i < j ≤ p} defined in (12) to identify the clusters
determined by the transition probabilities {(θk,`, ηk,`), 1 ≤ k ≤ ` ≤ q} instead. More pre-
cisely, we propose a new spectral clustering algorithm to estimate Γq based on Proposition
9 above.

Let Ŵ1,Ŵ2 be two p × p matrices with, respectively, α̂i,j , (1 − β̂i,j) as their (i, j)-th

elements for i 6= j, and 0 on the main diagonals. Let D̂1, D̂2 be two p× p diagonal matrices
with, respectively, d̂i,1, d̂i,2 as their (i, i)-th elements, where

d̂i,1 =

p∑
j=1

α̂i,j , d̂i,2 =

p∑
j=1

(1− β̂i,j).

Define two (normalized) Laplacian matrices

L̂1 = D̂
−1/2
1 Ŵ1D̂

−1/2
1 , L̂2 = D̂

−1/2
2 Ŵ2D̂

−1/2
2 . (18)

Perform the eigen-decomposition for the sum of L1 and L2:

L̂ ≡ L̂1 + L̂2 = Γ̂ diag(λ̂1, · · · , λ̂p)Γ̂
>
, (19)

where the eigenvalues are arranged in the order λ̂2
1 ≥ . . . ≥ λ̂2

p, and the columns of the p×p
orthogonal matrix Γ̂ are the corresponding eigenvectors. We call λ̂1, . . . , λ̂q the q leading

11
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eigenvalues of L̂. Denote by Γ̂q the p × q matrix consisting of the first q columns of Γ̂,

which are called the leading eigenvectors of L̂. The spectral clustering applies the k-means
clustering algorithm to the p rows of Γ̂q to obtain the community assignments for the p
nodes ν̂(i) ∈ {1, · · · , q} for i = 1, · · · , p.
Remark 2. Proposition 9 implies that the true memberships can be recovered by the q
distinct rows of Γq. Note that

L̂ = L̂1 + L̂2 ≈ L1 − diag(L1) + L2 − diag(L2) = L− diag(L).

We shall see that the effect of the term diag(L) on the eigenvectors Γq is negligible when
p is large (see for example (A.6) in the proof of Lemma 19 in Appendix A), and hence the
rows of Γ̂q should be slightly perturbed versions of the q distinct rows in Γq.

The following theorem justified the validity of using L̂ for spectral clustering. Note that
‖ · ‖2 and ‖ · ‖F denote, respectively, the L2 and the Frobenius norm of matrices.

Theorem 10. Let conditions (2.5), C1 and C2 hold, and λ−2
q

(√
log(pn)
np + 1

n + 1
p

)
→ 0, as

n, p→∞. Then it holds that

max
i=1,...,p

|λ2
i − λ̂2

i | ≤ ‖L̂L̂− LL‖2 ≤ ‖L̂L̂− LL‖F = Op

(√
log(pn)

np
+

1

n
+

1

p

)
. (20)

Moreover, for any constant B > 0, there exists a constant C > 0 such that the inequality

‖Γ̂q − ΓqOq‖F ≤ 4λ−2
q C

(√
log(pn)

np
+

1

n
+

1

p

)
(21)

holds with probability greater than 1− 16p
[
(pn)−(1+B) + exp{−B√p}

]
, where Oq is a q× q

orthogonal matrix.

It follows from (20) that the leading eigenvalues of L can be consistently recovered by
the leading eigenvalues of L̂. By (21), the leading eigenvectors of L can also be consistently
estimated, subject to a rotation (due to the possible multiplicity of some leading eigenvalues
L). Proposition 9 indicates that there are only q distinct rows in Γq, and, therefore, also
q distinct rows in ΓqOq, corresponding to the q latent communities for the p nodes. This
paves the way for the k-means algorithm stated below. Put

Mp,q = {M ∈ Rp×q : M has q distinct rows}.

The k-means clustering algorithm: Let

(ĉ1, · · · , ĉp)> = arg min
M∈Mp,q

‖Γ̂q −M‖2F .

There are only q distinct vectors among ĉ1, · · · , ĉp, forming the q communities. Theorem
11 below shows that they are identical to the latent communities of the p nodes under

(21) and (22). The latter holds if
√
smaxλ

−2
q C

(√
log(pn)
np + 1

n + 1
p

)
→ 0, where smax =

max{s1, . . . , sq} is the size of the largest community.

12
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Theorem 11. Let (21) hold and

√
1

smax
> 4
√

2λ−2
q C

(√
log(pn)

np
+

1

n
+

1

p

)
. (22)

Then ĉi = ĉj if and only if ν(i) = ν(j), 1 ≤ i, j ≤ p.

Remark 3. By Lemma A.1 of Rohe et al. (2011), the error bound for the standard spectral

clustering algorithm (with n = 1) is Op

(
log p√
p + 1

p

)
, where the term 1

p reflects the bias

caused by the inconsistent estimation of diagonal terms (see equation (A.5) and subsequent
derivations in Rohe et al. (2011)). This bias comes directly from the removal of the diagonal
elements of L, as pointed out in Remark 2 above. Although the algorithm was designed
for static networks, it has often been applied to dynamic networks using 1

n

∑
t Xt in the

place of a single observed network; see, e.g. Bhattacharjee et al. (2020). With some simple
modification to the proof of Lemma A.1 of Rohe et al. (2011), it can be shown that the
error bound is then reduced to

Op

(
log(pn)
√
np

+
1

p

)
, (23)

provided that the observed networks are i.i.d. The error would only increase when the
observations are not independent. On the other hand, our proposed spectral clustering
algorithm for (dependent) dynamic networks entails the error rate specified in (20) and

(21) which is smaller than (23) as long as n is sufficiently large (i.e. (p/n)
1
2 / log(np)→ 0).

Note that we need n to be large enough in relation to p in order to capture the dynamic
dependence of the networks. From the proof of Theorem 11 we can see that left hand side
of (22) is a lower bound for the “signal” strength (c.f. equation (A.17)), and the right hand
side of (22) is an upper bound for the overall estimation error.If we relax the lower bound

for the “signal” strength in (22) to λ−2
q

C
sn,p

(√
log(pn)
np + 1

n + 1
p

)
for some sn,p = o(

√
p), from

(21) we have, there are at most O(s2
n,p) rows in Γ̂q−ΓqOq such that the estimation error is

larger than λ−2
q

C
sn,p

(√
log(pn)
np + 1

n + 1
p

)
. Consequently, under this relaxed lower bound, our

algorithm will still be consistent with a negligible misclassification rate rn,p := Op(p
−1s2

n,p).

3.2.3 Estimation for θk,` and ηk,`

For any 1 ≤ k ≤ ` ≤ q, we define

Sk,l =
{ {(i, j) : 1 ≤ i 6= j ≤ p, ν(i) = k, ν(j) = `} if k 6= l,
{(i, j) : 1 ≤ i < j ≤ p, ν(i) = k = ν(j) = `} if k = l,

(24)

Clearly the cardinality of Sk,` is nk,` = sks` when k 6= ` and nk,` = sk(sk−1)/2 when k = `.

13
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Based on the procedure presented in Section 3.2.2, we obtain an estimated membership
function ν̂(·). Consequently, the MLEs for (θk,`, ηk,`), 1 ≤ k ≤ ` ≤ q, admit the form

θ̂k,` =
∑

(i,j)∈Ŝk,`

n∑
t=1

Xt
i,j(1−Xt−1

i,j )
/∑
(i,j)∈Ŝk,`

n∑
t=1

(1−Xt−1
i,j ), (25)

η̂k,` =
∑

(i,j)∈Ŝk,`

n∑
t=1

(1−Xt
i,j)X

t−1
i,j

/∑
(i,j)∈Ŝk,`

n∑
t=1

Xt−1
i,j , (26)

where

Ŝk,` =
{ {(i, j) : 1 ≤ i 6= j ≤ p, ν̂(i) = k, ν̂(j) = `} if k 6= `,
{(i, j) : 1 ≤ i < j ≤ p, ν̂(i) = ν̂(j) = k} if k = `.

See (12) and also (14).

Theorem 11 implies that the memberships of the nodes can be consistently recovered.
Consequently, the consistency and the asymptotic normality of the MLEs θ̂k,` and η̂k,` can
be established in the same manner as for Propositions 6 and 7. We state the results below.

Let K1 = {(i1, j1), . . . , (im1 , jm1)} and K2 = {(k1, `1), . . . , (km2 , `m2)} be two arbitrary
subsets of {(k, `) : 1 ≤ k ≤ ` ≤ q} with m1,m2 ≥ 1 fixed. Let

ΨK1,K2 = (θi1,j1 , . . . , θim1 ,jm1
, ηk1,`1 , . . . , ηkm2 ,`m2

)′,

and let Ψ̂K1,K2 denote its MLE. Put NK1,K2 = diag(ni1,j1 , . . . , nim1 ,jm1
, nk1,`1 , . . . , nkm2 ,`m2

)
where nk,` is the cardinality of Sk,` defined as in (24).

Theorem 12. Let conditions (2.5), C1 and C2 hold, and
√
smax

λ2q

(√
log(pn)
np + 1

n + 1
p

)
→ 0.

Then it holds that

max
1≤k,`≤q

|θ̂k,` − θk,`| = Op

(√
log q

ns2
min

)
and max

1≤k,`≤q
|η̂k,` − ηk,`| = Op

(√
log q

ns2
min

)
,

where smin = min{s1, . . . , sq}.

Theorem 13. Let the condition of Theorem 12 hold. Then

√
nN

1
2
K1,K2

(Ψ̂K1,K2 −ΨK1,K2)→ N(0, Σ̃K1,K2),

where Σ̃K1,K2 = diag(σ̃11, . . . , σ̃m1+m2,m1+m2) with

σ̃rr =
θir,jr(1− θir,jr)(θir,jr + ηir,jr)

ηir,jr
, 1 ≤ r ≤ m1,

σ̃rr =
ηkr,`r(1− ηkr,`r)(θkr,`r + ηkr,`r)

θkr,`r
, m1 + 1 ≤ r ≤ m1 +m2.
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Finally to prepare for the inference in Section 3.3 below, we introduce some notations.
First we denote ν̂ by ν̂1,n, to reflect the fact that the community clustering was carried
out using the data X1, · · · ,Xn (conditionally on X0). See Section 3.2.2 above. Further we
denote the maximum log likelihood by

l̂(1, n; ν̂1,n) = l({θ̂k,`, η̂k,`}; ν̂1,n) (27)

to highlight the fact that both the node clustering and the estimation for transition proba-
bilities are based on the data X1, · · · ,Xn.

3.3 Inference with a change point

Now we assume that there is a change point τ0 at which both the membership of nodes and
the transition probabilities {θk,`, ηk,`} change. It is necessary to assume n0 ≤ τ0 ≤ n− n0,
where n0 is an integer and n0/n ≡ c0 > 0 is a small constant, as we need enough information
before and after the change in order to detect τ0. We assume that within the time period
[0, τ0], the network follows a stationary model (15) with parameters {(θ1,k,`, η1,k,`) : 1 ≤
k, l ≤ q} and a membership map ν1,τ0(·). Within the time period [τ0 + 1, n] the network
follows a stationary model (15) with parameters {(θ2,k,`, η2,k,`) : 1 ≤ k, l ≤ q} and a mem-
bership map ντ0+1,n(·). Though we assume that the number of communities is unchanged
after the change point, our results can be easily extended to the case that the number of
communities also changes.

We estimate the change point τ0 by the maximum likelihood method:

τ̂ = arg max
n0≤τ≤n−n0

{ l̂(1, τ ; ν̂1,τ ) + l̂(τ + 1, n; ν̂τ+1,n)}, (28)

where l̂(·) is given in (27).
To measure the difference between the two sets of transition probabilities before and

after the change, we put

∆2
F =

1

p2

(
‖W1,1 −W2,1‖2F + ‖W1,2 −W2,2‖2F

)
,

where the four p× p matrices are defined as

W1,1 = (θ1,ν1,τ0 (i),ν1,τ0 (j)), W1,2 = (1− η1,ν1,τ0 (i),ν1,τ0 (j)),

W2,1 = (θ2,ντ0+1,n(i),ντ0 (j)+1,n), W2,2 = (1− η1,ντ0+1,n(i),ντ0+1,n(j)).

Note that ∆F can be viewed as the signal strength for detecting the change point τ0. Let
smax, smin denote, respectively, the largest, and the smallest community size among all
the communities before and after the change. Similar to (16), we denote the normalized
Laplacian matrices corresponding to Wi,j as Li,j for i, j = 1, 2. Let |λi,1| ≥ |λi,2| ≥
. . . ≥ |λi,q| be the absolute nonzero eigenvalues of Li,1 + Li,2 for i = 1, 2, and we denote
λmin = min{|λ1,q|, |λ2,q|}. Now some regularity conditions are in order.

C3. For some constant l > 0, θi,k,`, ηi,k,` > l, and θi,k,` + ηi,k,` ≤ 1 for all i = 1, 2 and
1 ≤ k ≤ ` ≤ q.
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C4. log(np)/
√
p→ 0, and

√
smaxλ

−2
min

(√
log(pn)/np+ 1

n+ 1
p+

log(np)/n+
√

log(np)/(np2)

∆2
F

)
→ 0.

C5.
∆2
F

log(np)/n+
√

log(np)/(np2)
→∞.

Condition C3 is similar to C1. The condition log(np)/
√
p→ 0 in C4 controls the misclassi-

fication rate of the k-means algorithm. Recall that there is a bias term O(p−1) in spectral
clustering caused by the removal of the diagonal of the Laplacian matrix (see Remark 2
above). Intuitively, as p increases, the effect of this bias term on the misclassification rate of
the k-means algorithm becomes negligible. On the other hand, note that the length of the
time interval for searching for the change point in (28) is of order O(n); the log(n) term here
in some sense reflects the effect of the difficulty in detecting the true change point when the
searching interval is extended as n increases. The second condition in C4 is similar to (22),
which ensures that the true communities can be recovered. Condition C5 requires that the
average signal strength ∆2

F = p−2
[
‖W1,1 −W2,1‖2F + ‖W1,2 −W2,2‖2F

]
is of higher order

than log(np)
n +

√
log(np)
np2

for change point detection.

Yudovina et al. (2015) deals with the MLE for a change-point in a network Markov
chain but without a latent community structure. Hence it does not have the complication
to estimate the community memberships in addition. Allowing the membership change in
our setting leads to an extra challenge: in the process of searching for the location of the
change-point, the estimation for the latent communities before or after a specified location
may not be consistent. To overcome this obstacle, we introduce a truncation which breaks
the searching interval into two parts such that the error in the estimated change-point can
be bounded. Bhattacharjee et al. (2020) also allows the membership change. But it assumes
that the networks observed at different times are independent with each other.

Theorem 14. Let conditions C2-C5 hold. Then the following assertions hold.

(i) When ν1,τ0 ≡ ντ0+1,n,

|τ0 − τ̂ |
n

= Op

 log(np)
n +

√
log(np)
np2

∆2
F

×min

{
1,

min
{

1, (n−1p2 log(np))
1
4

}
∆F smin

} .

(ii) When ν1,τ0 6= ντ0+1,n,

|τ0 − τ̂ |
n

= Op

( log(np)
n +

√
log(np)
np2

∆2
F

×min

1,
min

{
1, (n−1p2 log(np))

1
4

}
∆F smin

+
1

∆2
F

} .

Notice that for τ < τ0, the observations in the time interval [τ + 1, n] are a mixture of
the two different network processes if ν1,τ0 6= ντ0+1,n. In the worst case scenario then, all
q communities can be changed after the change point τ0. This causes the extra estimation
error term 1

∆2
F

in Theorem 14(ii).
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4. Simulations

4.1 Parameter estimation

We generate data according to model (1) in which the parameters αij and βij are drawn
independently from U [0.1, 0.5], 1 ≤ i, j ≤ p. The initial value X0 was simulated according
to (6) with πij = 0.5. We calculate the estimates according to (12). For each setting (with
different p and n), we replicate the experiment 500 times. Furthermore we also calculate the
95% confidence intervals for αij and βij based on the asymptotically normal distributions
specified in Proposition 7, and report the relative frequencies of the intervals covering the
true values of the parameters. There are a few cases with denominators being exactly zero
when evaluating the asymptotic variance. In such cases we follow a traditional approach by
adding a small number n−1× 10−4 to the denominator. This small value is negligible when
the denominators are non-zero. The results are summarized in Table 1.

Table 1: The mean squared errors (MSE) of the estimated parameters in AR(1) network
model (1) and the relative frequencies (coverage rates) of the event that the asymp-
totic 95% confidence intervals cover the true values in a simulation with 500 repli-
cations.

α̂i,j β̂i,j
n p MSE Coverage (%) MSE Coverage (%)
5 100 .130 39.2 .131 39.3
5 200 .131 39.3 .131 39.4
20 100 .038 86.1 .037 86.0
20 200 .037 86.1 .037 86.0
50 100 .012 92.3 .012 92.2
50 200 .011 92..2 .012 92.2
100 100 .005 93.7 .005 93.8
100 200 .005 93.8 .005 93.9
200 100 .002 94.5 .002 94.5
200 200 .002 94.6 .002 94.5

The MSE decreases as n increases, showing steadily improvement in performance. The
coverage rates of the asymptotic confidence intervals are very close to the nominal level
when n ≥ 50. The results hardly change between p = 100 and 200.

4.2 Community Detection

We now consider model (14) with q = 2 or 3 clusters, in which θi,i = ηi,i = 0.4 for
i = 1, · · · , q, and θi,j and ηi,j , for 1 ≤ i, j ≤ q, are drawn independently from U [0.05, 0.25].
For each setting, we replicate the experiment 500 times.

We identify the q latent communities using the newly proposed spectral clustering al-
gorithm based on matrix L̂ = L̂1 + L̂2 defined in (19). For the comparison purpose, we
also implement the standard spectral clustering method for static networks (cf. Rohe et al.
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(2011)) but using the average

X̄ =
1

n

n∑
t=1

Xt (29)

in place of the single observed adjacency matrix. This idea has been frequently used in
spectral clustering for dynamic networks; see, for example, Wilson et al. (2019); Zhao et al.
(2019); Bhattacharjee et al. (2020). We report the normalized mutual information (NMI)
and the adjusted Rand index (ARI): Both metrics take values between 0 and 1, and both
measure the closeness between the true communities and the estimated communities in the
sense that the larger the values of NMI and ARI are, the closer the two sets of communities
are; see Vinh et al. (2010). The results are summarized in Table 2. The newly proposed
algorithm based on L̂ always outperforms the algorithm based on X̄, even when n is as
small as 5. The differences between the two methods are substantial in terms of the scores
of both NMI and ARI. For example when q = 2, p = 100 and n = 5, NMI and ARI are,
respectively, 0.621 and 0.666 for the new method, and they are merely 0.148 and 0.158
for the standard method based on X̄. This is due to the fact that the standard method
uses only the information on πi,j =

αi,j
αi,j+βi,j

, and fails to take the advantage of the AR(1)

structure in which the information on both αi,j and βi,j is available.

After the communities were identified, we estimate θi,j and ηi,j by (25) and (26), respec-
tively. The mean squared errors (MSE) are evaluated for all the parameters. The results
are summarized in Table 3. For the comparison purpose, we also report the estimates based
on the identified communities by the X̄-based clustering. The MSE values of the estimates
based on the communities identified by the new clustering method are always smaller than
those of based on X̄. Noticeably now the estimates with small n such as n = 5 are already
reasonably accurate, as the information from all the nodes within the same community is
pulled together.

5. Illustration with real data

We illustrate the proposed methodology through three real data examples in this section.
More real data analysis can be found in Appendix B.

5.1 RFID sensors data

Contacts between patients, patients and health care workers (HCW) and among HCW rep-
resent one of the important routes of transmission of hospital-acquired infections. Vanhems
et al. (2013) collected records of contacts among patients and various types of HCW in the
geriatric unit of a hospital in Lyon, France, between 1pm on Monday 6 December and 2pm
on Friday 10 December 2010. Each of the p = 75 individuals in this study consented to
wear Radio-Frequency IDentification (RFID) sensors on small identification badges during
this period, which made it possible to record when any two of them were in face-to-face
contact with each other (i.e. within 1-1.5 meters) in every 20-second interval during the
period. This data set is now available in R packages igraphdata and sand.

Following Vanhems et al. (2013), we combine together the recorded information in each
24 hours to form 5 daily networks (n = 5), i.e. an edge between two individuals is equal to
1 if they made at least one contact during the 24 hours, and 0 otherwise. Those 5 networks
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Table 2: Normalized mutual information (NMI) and adjusted Rand index (ARI) of the true
communities and the estimated communities in the simulation with 500 replica-
tions. The communities are estimated by the spectral clustering algorithm (SCA)
based on either matrix L̂ in (19) or matrix X̄ in (29).

SCA based on L̂ SCA based on X̄

q p n NMI ARI NMI ARI

2 100 5 .621 .666 .148 .158
20 .733 .755 .395 .402
50 .932 .938 .572 .584
100 .994 .995 .692 .696

2 200 5 .808 .839 .375 .406
20 .850 .857 .569 .589
50 .949 .953 .712 .722
100 .994 .995 .790 .796

3 100 5 .542 .536 .078 .057
20 .686 .678 .351 .325
50 .931 .929 .581 .562
100 .988 .987 .696 .670

3 200 5 .729 .731 .195 .175
20 .779 .763 .550 .542
50 .954 .952 .726 .711
100 .994 .994 .822 .802

are plotted in Figure 1. We fit the data with stationary AR(1) model (1) and (5). Some
summary statistics of the estimated parameters, according to the 4 different roles of the
individuals, are presented in Table 4, together with the direct relatively frequency estimates
π̃i,j = X̄i,j =

∑5
t=1X

t
i,j/5. We apply the permutation test (13) (with 500 permutations)

to the residuals resulted from the fitted AR(1) model. The P -value is 0.45, indicating no
significant evidence against the stationarity assumption.

Since the original data were recorded for each 20 seconds, they can also be combined
into half-day series with n = 10. Figure 2 presents the 10 half-day networks. We repeat
the above exercise for this new sequence. Now the P -value of the permutation test is 0.008,
indicating the stationary AR(1) model should be rejected for this sequence of 10 networks.
This is intuitively understandable, as people behave differently at the different times during
a day (such as daytime or night). Those within-day nonstationary behaviour shows up in
the data accumulation over every 12 hours, and it disappears in the accumulation over 24
hour periods. Also overall the adjacent two networks in Figure 2 look more different from
each other than the adjacent pairs in Figure 1.

There is no evidence of the existence of any communities among the 75 individuals
in this data set. Our analysis confirms this too. For example the results of the spectral
clustering algorithm based on, respectively, L̂ and X̄ do not corroborate with each other at
all as the NMI is smaller than 0.1.
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Table 3: The mean squared errors (MSE) of the estimated parameters in AR(1) network
models with q communities. The communities are estimated by the spectral clus-
tering algorithm (SCA) based on either matrix L̂ in (19) or matrix X̄ in (29).

SCA based on L̂ SCA based on X̄

q p n θ̂i,j η̂i,j θ̂i,j η̂i,j
2 100 5 .0149 .0170 .0298 .0312

20 .0120 .0141 .0229 .0233
50 .0075 .0083 .0178 .0177
100 .0058 .0061 .0147 .0148

2 200 5 .0099 .0116 .0223 .0248
20 .0093 .0111 .0219 .0248
50 .0068 .0073 .0140 .0145
100 .0061 .0062 .0117 .0118

3 100 5 .0194 .0211 .0318 .0325
20 .0156 .0181 .0251 .0255
50 .0093 .0104 .0193 .0193
100 .0081 .0085 .0163 .0162

3 200 5 .0143 .0162 .0287 .0301
20 .0134 .0156 .0200 .0205
50 .0090 .0093 .0156 .0153
100 .0079 .0083 .0130 .0131

5.2 French high school contact data

Now we consider a contact network data collected in a high school in Marseilles, France
(Mastrandrea et al., 2015). The data are the recorded face-to-face contacts among the stu-
dents from 9 classes during n = 5 days in December 2013, measured by the SocioPatterns
infrastructure. Those are students in the so-called classes preparatoires – a part of the
French post-secondary education system. We label the 3 classes majored in mathematics
and physics as MP1, MP2 and MP3, the 3 classes majored in biology as BIO1, BIO2 and
BIO3, the 2 classes majored in physics and chemistry as PC1 and PC2, and the class ma-
jored in engineering as EGI. The data are available at www.sociopatterns.org/datasets/
high-school-contact-and-friendship-networks/. We
have removed the individuals with missing values, and include the remaining p = 327
students in our clustering analysis based on the AR(1) stochastic block network model (see
Definition 8).

We start the analysis with q = 2. The detected 2 clusters by the spectral clustering
algorithm (SCA) based on either L̂ in (19) or X̄ are reported in Table 5. The two methods
lead to almost identical results: 3 classes majored in biology are in one cluster and the
other 6 classes are in the other cluster. The number of ‘misplaced’ students is 2 and 1,
respectively, by the SCA based on L̂ and X̄. Figure 3 shows that the identified two clusters
are clearly separated from each other across all the 5 days. The permutation test (13) on
the residuals indicates that the stationary AR(1) stochastic block network model seems to
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Table 4: Mean estimated coefficients (standard errors) for the four types of individuals in
RFID data. Status codes: administrative staff (ADM), medical doctor (MED),
paramedical staff, such as nurses or nurses’ aides (NUR), and patients (PAT).

α̂ij
Status ADM NUR MED PAT

ADM .1249 (.2212) .1739 (.2521) .1666 (.2641) .1113 (.2021)
NUR .2347 (.2927) .2398 (.3022) .1922 (.2513)
MED .3594 (.3883) .1264 (.2175)
PAT .0089 (.0552)

β̂ij
Status ADM NUR MED PAT

ADM .1666 (.3660) .2326 (.3883) .2925 (.4235) .2061 (.3798)
NUR .3714 (.4470) .3001 (.4167) .3656 (.4498)
MED .4187 (.3973) .2311 (.4066)
PAT .0198 (.1331)

π̂ij = α̂ij/(α̂ij + β̂ij)

Status ADM NUR MED PAT

ADM .2265 (.3900) .2478 (.3672) .1893 (.3119) .1239 (.2490)
NUR .2488 (.3244) .2729 (.3491) .2088 (.3016)
MED .3310 (.3674) .1398 (.2660)
PAT .0124 (.0928)

π̃i,j = X̄ij

Status ADM NUR MED PAT

ADM .1250 (.3312) .1583 (.3652) .1704 (.3764) .0887 (.2845)
NUR .1854 (.3887) .1730 (.3784) .1542 (.3612)
MED .3901 (.4881) .0927 (.2902)
PAT .0090 (.0946)
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be appropriate for this data set, as the P -value is 0.676. We repeat the analysis for q = 3,
leading to equally plausible results: 3 biology classes are in one cluster, 3 mathematics and
physics classes are in another cluster, and the 3 remaining classes form the 3rd cluster. See
also Figure 4 for the graphical illustration with the 3 clusters. We remark that to avoid the
plot to be overcrowded, only the random selected 25% of nodes in each cluster were used
in Figures 3 and 4.

Table 5: French high school contact network data: the detected clusters by spectral clus-
tering algorithm (SCA) based on either L̂ in (17) or X̄. The number of clusters is
set at q = 2.

SCA based on L̂ SCA based on X̄

Class Cluster 1 Cluster 2 Cluster 1 Cluster 2

BIO1 0 37 1 36
BIO2 1 32 0 33
BIO3 1 39 0 40
MP1 33 0 33 0
MP2 29 0 29 0
MP3 38 0 38 0
PC1 44 0 44 0
PC2 39 0 39 0
EGI 34 0 34 0

To choose the number of clusters q objectively, we define the Bayesian information
criteria (BIC) as follows:

BIC(q) = −2 max log(likelihood) + log{n(p/q)2}q(q + 1).

For each fixed q, we effectively build q(q + 1)/2 models independently and each model has
2 parameters θk,` and ηk,`, 1 ≤ k ≤ ` ≤ q. The number of the available observations
for each model is approximately n(p/q)2, assuming that the numbers of nodes in all the q
clusters are about the same, which is then p/q. Thus the penalty term in the BIC above is∑

1≤k≤`≤q 2 log{n(p/q)2} = log{n(p/q)2}q(q + 1).
Table 6 lists the values of BIC(q) for different q. The minimum is obtained at q = 9,

exactly the number of original classes in the school. Performing the SCA based on L̂
with q = 9, we obtain almost perfect classification: all the 9 original classes are identified
as the 9 clusters with only in total 4 students being placed outside their own classes.
The estimated θi,j and ηi,j , together with their standard errors calculated based on the

asymptotic normality presented in Theorem 13, are reported in Table 7. As θ̂i,j for i 6= j
are very small (i.e. ≤ 0.027), the students from different classes who have not contacted
with each other are unlikely to contact next day. See (14) and (3). On the other hand, as
η̂i,j for i 6= j are large (i.e. ≥ 0.761), the students from different classes who have contacted

with each other are likely to lose the contacts next day. Note that θ̂i,i are greater than θ̂i,j
for i 6= j substantially, and η̂i,i are smaller than η̂i,j for i 6= j substantially. This implies
that the students in the same class are more likely to contact with each other than those
across the different classes.
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Table 6: Fitting AR(1) stochastic block models to the French high school data: BIC values
for different cluster numbers q.

q 2 3 5 7 8 9 10 11

BIC(q) 43624 40586 37726 36112 35224 34943 35002 35120

To apply the variational EM algorithm of Matias and Miele (2017) to analyze this data
set, we use the R package dynsbm. The algorithm is designed to identify time-varying
dynamic stochastic block structure in the sense that both the membership of nodes and the
transition probabilities may vary with time. Furthermore it also identifies the nodes not
belonging to any clusters. The number of the clusters selected by the so-called integrated
classification likelihood criterion is also 9. The identified 9 clusters are always dominated
by the 9 original classes in the school, though they vary from day to day. The number
of the identified students not belonging to any of the 9 clusters was 15, 17, 24, 32 and
28, respectively, in those 5 days. Furthermore the number of the students who were not
put in their own classes was 14, 9, 12, 10 and 12, respectively. The more detailed results
are reported in Appendix B. Those findings are less clear-cut than those obtained from
our method above. This is hardly surprising as Matias and Miele (2017) adopts a general
setting without imposing stationarity.

5.3 Global trade data

Our last example concerns the annual international trades among p = 197 countries between
1950 and 2014 (i.e. n = 65). We define an edge between two countries to be 1 as long as
there exist trades between the two countries in that year (regardless the direction), and 0
otherwise. We take this simplistic approach to illustrate our AR(1) stochastic block model
with a change point. The data used are a subset of the openly available trade data for
205 countries in 1870 – 2014 (Barbieri et al., 2009; Barbieri and Keshk, 2016). We leave
out several countries, e.g. Russia and Yugoslavia, which did not exist for the whole period
concerned.

Setting q = 2, we fit the data with an AR(1) stochastic block model with two clusters.
The P -value of the permutation test for the residuals resulted from the fitted model is
0, indicating overwhelmingly that the stationarity does not hold for the whole period.
Applying the maximum likelihood estimator (28), the estimated change point is at year
1991. Before this change point, the identified Cluster I contains 26 countries, including
the most developed industrial countries such as USA, Canada, UK and most European
countries. Cluster II contains 171 countries, including all African and Latin American
countries, and most Asian countries. After 1991, 41 countries switched from Cluster II
to Cluster I, including Argentina, Brazil, Bulgaria, China, Chile, Columbia, Costa Rica,
Cyprus, Hungary, Israel, Japan, New Zealand, Poland, Saudi Arabia, Singapore, South
Korea, Taiwan, and United Arab Emirates. There was no single switch from Cluster I to II.
Note that 1990 may be viewed as the beginning of the globalization. With the collapse of the
Soviet Union in 1989, the fall of Berlin Wall and the end of the Cold War in 1991, the world
became more interconnected. The communist bloc countries in East Europe, which had
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Table 7: Fitting AR(1) stochastic block models with q = 9 clusters to the French high
school data: the estimation parameters and their standard errors (in parentheses).

Cluster 1 2 3 4 5 6 7 8 9
1 .246 .001 .004 .006 .001 .009 .003 .024 .003

(.008) (.001) (.001) (.001) (.001) (.001) (.001) (.002) (.001)
2 .136 .024 .0018 .001 .007 .001 .001 .027

(.009) (.002) (.001) (.001) (.001) (.000) (.001) (.002)
3 .252 .001 .002 .007 .001 .001 .022

(.011) (.001) (.001) (.001) (.001) (.001) (.002)
4 .234 .020 .001 .024 .002 .001

(.010) (.002) (.001) (.002) (.001) (.001)

θ̂i,j 5 .196 .001 .020 .002 .004
(.008) (.001) (.002) (.000) (.001)

6 .181 .001 .010 .007
(.008) (.001) (.001) (.001)

7 .252 .003 .006
(.009) (.001) (.001)

8 .202 .001
(.006) (.001)

9 .219
(.008)

1 .563 .999 .959 .976 .999 .867 .870 .792 .909
(.015) (.001) (.036) (.098) (.001) (.054) (.001) (.000) (.051)

2 .472 .761 .888 .999 .866 .999 .999 .866
(.024) (.036) (.097) (.001) (.054) (.001) (.000) (.026)

3 .453 .999 .928 .864 .999 .999 .772
(.016) (.000) (.066) (.048) (.000) (.000) (.031)

4 .509 .868 .999 .784 .956 .999
(.017) (.028) (.000) (.029) (.041) (.000)

η̂i,j 5 .544 .999 .929 .842 .935
(.017) (.001) (.021) (.078) (.041)

6 .589 .999 .793 .923
(.019) (.001) (.040) (.036)

7 .480 .999 .814
(.014) (.000) (.051)

8 .504 .999
(.127) (.000)

9 .471
(.014)
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been isolated from the capitalist West, began to integrate into the global market economy.
Trade and investment increased, while barriers to migration and to cultural exchange were
lowered.

Figure 5 presents the average adjacency matrix of the 197 countries before and after
the change point, where the cold blue color indicates small value and the warm red color
indicates large value. Before 1991, there are only 26 countries in Cluster 1. The intensive
red in the small lower left corner indicates the intensive trades among those 26 countries.
After 1991, the densely connected lower left corner is enlarged as now there are 67 countries
in Cluster 1. Note some members of Cluster 2 also trade with the members of Cluster 1,
though not all intensively.

The estimated parameters for the fitted AR(1) stochastic block model with q = 2 clusters
are reported in Table 8. Since estimated values for θ̂1,2, η̂1,2 before and after the change
point are always small, the trading status between the countries across the two clusters are
unlikely to change. Nevertheless θ̂1,2 is 0.154 after 1991, and 0.053 before 1991; indicating
greater possibility for new trades to happen after 1991.

Table 8: Fitting AR(1) stochastic block model with a change point and q = 2 to the Global
trade data: the estimated AR coefficients before and after 1991.

t ≤ 1991 t > 1991

Coefficients Estimates SE Estimates SE

θ1,1 .062 .0092 .046 .0005
θ1,2 .053 .0008 .154 .0013
θ2,2 .023 .0002 .230 .0109
η1,1 .003 .0005 .144 .0016
η1,2 .037 .0008 .047 .0007
η2,2 .148 .0012 .006 .0003

6. Miscellaneous remarks

We proposed in this paper a simple AR(1) setting to represent the dynamic dependence in
network data explicitly. It also facilitates easy inference such as the maximum likelihood
estimation and model diagnostic checking. A new class of dynamic stochastic block models
illustrates the usefulness of the setting in handling more complex underlying structures
including structure breaks due to change points.

Model (1) can be easily extended to higher-order autoregressive forms, e.g. linear AR(2)
model

Xt
i,j = Xt−1

i,j I(εti,j = 1) +Xt−2
i,j I(εti,j = 2) + I(εti,j = 0),

or nonlinear AR(2)

Xt
i,j = Xt−1

i,j I(εti,j = 1) +Xt−1
i,j X

t−2
i,j I(εti,j = 2) + I(εti,j = 0),

where {εti,j , t ≥ 0} a sequence of i.i.d. innovations, and each εti,j takes four possible val-
ues −1, 0, 1, 2. The nonlinear AR(2) above may be particularly appealing for some slowly
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changing networks. Furthermore we can model Xt
i,j based on binary DARMA models of

MacDonald and Zucchini (1997), Section 1.4.

Furthermore, a more fertile exploration is perhaps to tailor the model to incorporate
various stylized features of network data, such as edge sparsity, node heterogeneity, tran-
sitivity and homophily. For example, to model the transitivity (i.e. the individuals with
common friends are likely to become friends), we may let in (2) and (3)

αti,j =
eaU

(t−1)
i,j

1 + eaU
(t−1)
i,j + ebU

(t−1)
i,j

, βti,j =
ebV

(t−1)
i,j

1 + eaU
(t−1)
i,j + ebU

(t−1)
i,j

,

where a, b are unknown parameters, U ti,j =
∑

kX
t
i,kX

t
j,k, and V t

i,j = 0.5
∑

k(X
t
i,k+X

t
j,k)−U ti,j .

The developments in those directions will be reported in some follow-up papers.

On the other hand, dynamic networks with weighted edges may be treated as matrix
time series for which effective modelling procedures have been developed based on various
tensor decompositions (Wang et al., 2019; Chang et al., 2023).
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Appendix: Technical proofs and further real data analysis

A.1 Proof of Proposition 2

Note all Xt
i,j take binary values 0 or 1. Hence

P (X1
i,j = 1) = P (X0

i,j = 1)P (X1
i,j = 1|X0

i,j = 1) + P (X0
i,j = 0)P (X1

i,j = 1|X0
i,j = 0)

=πi,j(1− βi,j) + (1− πi,j)αi,j =
αi,j

αi,j + βi,j
(1− βi,j) +

βi,j
αi,j + βi,j

αi,j =
αi,j

αi,j + βi,j
= πi,j .

Thus L(X1
i,j) = L(X0

i,j). Since all Xt are Erdós-Renyi, L(X1) = L(X0). Condition (5)

ensures that {Xt} is a homogeneous Markov chain. Hence L(Xt) = L(X0) for any t ≥ 1.
This implies the required stationarity.

As E(Xt
i,j) = P (Xt

i,j = 1), and Var(Xt
i,j) = E(Xt

i,j) − {E(Xt
i,j)}2, (8) follows from the

stationarity, (6) and (7).

Note that (1) implies a Yule-Walker equation

γi,j(k) = (1− αi,j − βi,j)γi,j(k − 1), k = 1, 2, · · · , (A.1)

where γi,j(k) = Cov(Xt+k
i,j , Xt

i,j).

Since the networks are all Erdös-Renyi, (9) follows from the Yule-Walker equation (A.1)
immediately, noting ρi,j(k) = γi,j(k)/γi,j(0) and ρi,j(0) = 1. To prove (A.1), it follows from
(1) that for any k ≥ 1,

E(Xt+k
i,j Xt

i,j) = E(Xt+k−1
i,j Xt

i,j)P (εt+ki,j = 0) + P (εt+ki,j = 1)EXt
i,j

= (1− αi,j − βi,j)E(Xt+k−1
i,j Xt

i,j) + α2
i,j/(αi,j + βi,j).

Thus

γi,j(k) = E(Xt+k
i,j Xt

i,j)− (EXt
i,j)

2 = E(Xt+k
i,j Xt

i,j)−
α2
i,j

(αi,j + βi,j)2

= (1− αi,j − βi,j)E(Xt+k−1
i,j Xt

i,j) +
α2
i,j

αi,j + βi,j
(1− 1

αi,j + βi,j
)

= (1− αi,j − βi,j){E(Xt+k−1
i,j Xt

i,j)−
α2
i,j

(αi,j + βi,j)2
} = (1− αi,j − βi,j)γi,j(k − 1).

This completes the proof.

A.2 Proof of Proposition 4

We only prove (11), as (10) follows from (11) immediately. To prove (11), we only need to
show

di,j(k) ≡ P (Xt
i,j 6= Xt+k

i,j ) =
2αi,jβi,j

(αi,j + βi,j)2
{1− (1− αi,j − βi,j)k}, k = 1, 2, · · · . (A.2)
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We Proceed by induction. It is easy to check that (A.2) holds for k = 1. Assuming it also
holds for k ≥ 1, then

di,j(k + 1) = P (Xt
i,j = 0, Xt+k+1

i,j = 1) + P (Xt
i,j = 1, Xt+k+1

i,j = 0)

=P (Xt
i,j = 0, Xt+k

i,j = 1, Xt+k+1
i,j = 1) + P (Xt

i,j = 0, Xt+k
i,j = 0, Xt+k+1

i,j = 1)

+ P (Xt
i,j = 1, Xt+k

i,j = 0, Xt+k+1
i,j = 0) + P (Xt

i,j = 1, Xt+k
i,j = 1, Xt+k+1

i,j = 0)

=P (Xt
i,j = 0, Xt+k

i,j = 1)(1− βi,j) + {P (Xt
i,j = 0)− P (Xt

i,j = 0, Xt+k
i,j = 1)}αi,j

+ P (Xt
i,j = 1, Xt+k

i,j = 0)(1− αi,j) + {P (Xt
i,j = 1)− P (Xt

i,j = 1, Xt+k
i,j = 0)}βi,j

= {P (Xt
i,j = 0, Xt+k

i,j = 1) + P (Xt
i,j = 1, Xt+k

i,j = 0)}(1− αi,j − βi,j) +
2αi,jβi,j
αi,j + βi,j

= di,j(k)(1− αi,j − βi,j) +
2αi,jβi,j
αi,j + βi,j

=
2αi,jβi,j

(αi,j + βi,j)2
{1− (1− αi,j − βi,j)k+1}.

Hence (A.2) also holds for k + 1. This completes the proof.

A.3 Proof of Proposition 5

Proof Note that for any nonempty elements A ∈ Fk0 , B ∈ F∞k+τ , there exist A0 ∈ Fk−1
0 and

B0 ∈ F∞k+τ+1 such that A = A0×{0}, A0×{1}, or A0×{0, 1}, and B = B0×{0}, B0×{1},
or B0×{0, 1}. We first consider the case where B = B0×{xk} and A = A0×{xk+τ} where
xk, xk+τ = 0 or 1. Note that

P (A0, X
k
i,j = xk, B0, X

k+τ
i,j = xk+τ )

= P (B0|Xk+τ
i,j = xk+τ )P (Xk+τ

i,j = xk+τ , A0, X
k
i,j = xk)

= P (B0, X
k+τ
i,j = xk+τ )P (A0, X

k
i,j = xk) ·

P (Xk+τ
i,j = xk+τ |Xk

i,j = xk)

P (Xk+τ
i,j = xk+τ )

= P (B0, X
k+τ
i,j = xk+τ )P (A0, X

k
i,j = xk) ·

P (Xk+τ
i,j = xk+τ , X

k
i,j = xk)

P (Xk+τ
i,j = xk+τ )P (Xk

i,j = xk)

On the other hand, note that

P (Xk+τ
i,j = 1, Xk

i,j = 1)− P (Xk+τ
i,j = 1)P (Xk

i,j = 1) = ρi,j(τ);

P (Xk+τ
i,j = 1, Xk

i,j = 0)− P (Xk+τ
i,j = 1)P (Xk

i,j = 0)

= P (Xk+τ
i,j = 1)− P (Xk+τ

i,j = 1, Xk
i,j = 1)− P (Xk+τ

i,j = 1)[1− P (Xk
i,j = 1)]

= −ρi,j(τ);

P (Xk+τ
i,j = 0, Xk

i,j = 1)− P (Xk+τ
i,j = 0)P (Xk

i,j = 1)

= P (Xk
i,j = 1)− P (Xk+τ

i,j = 1, Xk
i,j = 1)− [1− P (Xk+τ

i,j = 1)]P (Xk
i,j = 1)

= −ρi,j(τ);
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P (Xk+τ
i,j = 0, Xk

i,j = 0)− P (Xk+τ
i,j = 0)P (Xk

i,j = 0)

= P (Xk+τ
i,j = 0)− P (Xk+τ

i,j = 0, Xk
i,j = 1)− P (Xk+τ

i,j = 0)[1− P (Xk
i,j = 1)]

= ρi,j(τ).

Consequently, we have

|P (A0, X
k
i,j = xk, B0, X

k+τ
i,j = xk+τ )− P (A0, X

k
i,j = xk)P (B0, X

k+τ
i,j = xk+τ )|

=

∣∣∣∣∣P (A0, X
k
i,j = xk)P (B0, X

k+τ
i,j = xk+τ )

[
P (Xk+τ

i,j = xk+τ , X
k
i,j = xk)

P (Xk+τ
i,j = xk+τ )P (Xk

i,j = xk)
− 1

]∣∣∣∣∣
≤ ρi,j(τ).

In the case where A = A0×{0, 1} and/or B = B0×{0, 1}, since A and B are nonempty, there
exist integers 0 < k1 < k and/or k2 > k+1, and correspondingly A1 ∈ Fk1−1

0 ×{xk1} and/or
B ∈ F∞k2+τ+1×{xk2+τ} with xk1 , xk2+τ = 0 or 1, such that P (A∩B)−P (A)P (B) = P (A1∩
B1)− P (A1)P (B1). Following similar arguments above we have P (A ∩ B)− P (A)P (B) ≤
ρi,j(τ + k2 − k1) < ρij(τ). We thus proved that αi,j(τ) ≤ ρi,j(τ). The conclusion of Propo-
sition 5 follows from Proposition 2.

A.4 Proof of Proposition 6

We introduce some technical lemmas first.

Lemma 15. For any (i, j) ∈ J , denote Y t
i,j := Xt

i,j(1−X
t−1
i,j ), and let Yt = (Y t

i,j)1≤i,j≤p be
the p×p matrix at time t. Under the assumptions of Proposition 2, we have {Yt, t = 1, 2 . . .}
is stationary such that for any (i, j), (l,m) ∈ J , and t, s ≥ 1, t 6= s,

EY t
i,j =

αi,jβi,j
αi,j + βi,j

, Var(Y t
i,j) =

αi,jβi,j(αi,j + βi,j − αi,jβi,j)
(αi,j + βi,j)2

,

ρYi,j (|t− s|) ≡ Corr(Y t
i,j , Y

s
lm) =

{
−αi,jβi,j(1−αi,j−βi,j)|t−s|−1

αi,j+βi,j−αi,jβi,j if (i, j) = (l,m),

0 otherwise.

Proof Note that Y t
i,j = Xt

i,j(1−X
t−1
i,j ) = (1−Xt−1

i,j )I(εti,j = 1). We thus have:

E(Y t
i,j) = P (Xt−1

i,j = 0)αi,j = (1− EXt−1
i,j )αi,j =

αi,jβi,j
αi,j+βi,j

.

Var(Y t
i,j) = E(Y t

i,j)[1− E(Y t
i,j)] =

αi,jβi,j
αi,j+βi,j

(
1− αi,jβi,j

αi,j+βi,j

)
=

αi,jβi,j(αi,j+βi,j−αi,jβi,j)
(αi,j+βi,j)2

.
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For k = 1 we have E(Y t
i,jY

t+1
i,j ) = E[(1−Xt−1

i,j )Xt
i,j(1−Xt

i,j)X
t+1
i,j ] = 0. For any k ≥ 2,

using the fact that E(Xt
ijX

t+k
ij ) =

αij
(αij+βij)2

{βij(1− αij − βij)k + αij}, we have

E(Y t
i,jY

t+k
i,j ) = E[Xt

i,j(1−Xt−1
i,j )(1−Xt+k−1

i,j )I(εt+ki,j = 1)]

= αi,jE[Xt
i,j(1−Xt−1

i,j )(1−Xt+k−1
i,j )]

= αi,jP (Xt+k−1
i,j = 0|Xt

i,j = 1)P (Xt
i,j = 1|Xt−1

i,j = 0)P (Xt−1
i,j = 0)

=
α2
i,jβi,j

αi,j + βi,j
[1− P (Xt+k−1

i,j = 1|Xt
i,j = 1)]

=
α2
i,jβi,j

αi,j + βi,j

[
1−

E(Xt+k−1
i,j Xt

i,j)

EXt
i,j

]

=
α2
i,jβi,j

αi,j + βi,j

[
1− βi,j(1− αi,j − βi,j)k−1 + αi,j

αi,j + βi,j

]
=

α2
i,jβ

2
i,j [1− (1− αi,j − βi,j)k−1]

(αi,j + βi,j)2
.

Therefore we have for any k ≥ 1,

Cov(Y t
i,j , Y

t+k
i,j ) = E(Y t

i,jY
t+k
i,j )− EY t

i,jEY
t+k
i,j

=
α2
i,jβ

2
i,j [1− (1− αi,j − βi,j)k−1]

(αi,j + βi,j)2
−

α2
i,jβ

2
i,j

(αi,j + βi,j)2

= −
α2
i,jβ

2
i,j(1− αi,j − βi,j)k−1

(αi,j + βi,j)2
.

Consequently, for any |t − s| = 1, 2, . . ., the ACF of the process {Y t
i,j , t = 1, 2 . . .} is given

as:

ρYi,j (|t− s|) = −
α2
i,jβ

2
i,j(1− αi,j − βi,j)|t−s|−1

(αi,j + βi,j)2
· (αi,j + βi,j)

2

αi,jβi,j(αi,j + βi,j − αi,jβi,j)

= −αi,jβi,j(1− αi,j − βi,j)
|t−s|−1

αi,j + βi,j − αi,jβi,j
.

Since the mixing property is hereditary, Y t
i,j is also α-mixing. From Proposition 5 and

Theorem 1 of Merlevède et al. (2009), we obtain the following concentration inequalities:

Lemma 16. Let conditions (2.5) and C1 hold. There exist positive constants C1 and C2

such that for all n ≥ 4 and ε < 1
(logn)(log logn) ,

P

(∣∣∣∣∣n−1
n∑
t=1

Xt
i,j − EXt

i,j

∣∣∣∣∣ > ε

)
≤ exp{−C1nε

2},

P

(∣∣∣∣∣n−1
n∑
t=1

Y t
i,j − EY t

i,j

∣∣∣∣∣ > ε

)
≤ exp{−C2nε

2}.
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Now we are ready to prove Proposition 6.
Proof of Proposition 6:

Let ε = C0

√
log p
n with C2

0C1 > 2 and C2
0C2 > 2. Note that under condition (C2) we have

ε = o
(

1
(logn)(log logn)

)
. Consequently by Lemma 16, Proposition 2 and Lemma 15, we have

P

(∣∣∣∣∣n−1
n∑
t=1

Xt
i,j −

αi,j
αi,j + βi,j

∣∣∣∣∣ > C0

√
log p

n

)
≤ exp{−C2

0C1 log p},

P

(∣∣∣∣∣n−1
n∑
t=1

Y t
i,j −

αi,jβi,j
αi,j + βi,j

∣∣∣∣∣ > C0

√
log p

n

)
≤ exp{−C2

0C2 log p}.

Consequently, with probability greater than 1− exp{−C2
0C1 log p}− exp{−C2

0C2 log p},

αi,jβi,j
αi,j+βi,j

− C0

√
log p
n

βi,j
αi,j+βi,j

+ 1
n + C0

√
log p
n

≤ α̂i,j ≤
αi,jβi,j
αi,j+βi,j

+ C0

√
log p
n

βi,j
αi,j+βi,j

− 1
n − C0

√
log p
n

.

Note that when n and n
log p are large enough such that, 1

n ≤ C0

√
log p
n ≤ l/4, we have

αi,j −
αi,jβi,j
αi,j+βi,j

− C0

√
log p
n

βi,j
αi,j+βi,j

+ 1
n + C0

√
log p
n

≤
2C0αi,j

√
log p
n + C0

√
log p
n

βi,j
αi,j+βi,j

≤ 3l−1C0

√
log p

n
,

and

αi,jβi,j
αi,j+βi,j

+ C0

√
log p
n

βi,j
αi,j+βi,j

− 1
n − C0

√
log p
n

− αi,j ≤
2C0αi,j

√
log p
n + C0

√
log p
n

βi,j
αi,j+βi,j

− l
2

≤ 6l−1C0

√
log p

n
,

Therefore we conclude that when when n and n
log p are large enough,

P

(
|α̂i,j − αi,j | ≥ 6l−1C0

√
log p

n

)
≤ exp{−C2

0C1 log p}+ exp{−C2
0C2 log p}. (A.3)

For any c > 2, the concentration inequalities in Proposition 6 can then be concluded
by setting C0 = max{

√
c/C1,

√
c/C2}. Further, as n, p → ∞, we immediately have

max(i,j)∈J |α̂i,j − αi,j | = Op

(√
log p
n

)
. Convergence of β̂i,j can be proved similarly.

A.5 Proof of Proposition 7

Note that the log-likelihood function for (αi,j , βi,j) is:

l(αi,j , βi,j) = log(αi,j)

n∑
t=1

Xt
i,j(1−Xt−1

i,j ) + log(1− αi,j)
n∑
t=1

(1−Xt
i,j)(1−Xt−1

i,j )

+ log(βi,j)

n∑
t=1

(1−Xt
i,j)X

t−1
i,j + log(1− βi,j)

n∑
t=1

Xt
i,jX

t−1
i,j .
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Our first observation is that, owing to the independent edge formation assumption, all the
(α̂i,j , β̂i,j), (i, j) ∈ J pairs are independent. For each pair (αi,j , βi,j), the score equations of
the log-likelihood function are:

∂l(αi,j , βi,j)

∂αi,j
=

1

αi,j

n∑
t=1

Xt
i,j(1−Xt−1

i,j )− 1

1− αi,j

n∑
t=1

(1−Xt
i,j)(1−Xt−1

i,j ),

=

(
1

αi,j
+

1

1− αi,j

) n∑
t=1

Y t
i,j −

1

1− αi,j

n∑
t=1

(1−Xt
i,j) +O(1),

∂l(αi,j , βi,j)

∂βi,j
=

1

βi,j

n∑
t=1

(1−Xt
i,j)X

t−1
i,j −

1

1− βi,j

n∑
t=1

Xt
i,jX

t−1
i,j

=
1

βi,j

n∑
t=1

Xt−1
i,j +

(
1

βi,j
+

1

1− βi,j

) n∑
t=1

(Y t
i,j −Xt

i,j)

=

(
1

βi,j
+

1

1− βi,j

) n∑
t=1

Y t
i,j −

1

1− βi,j

n∑
t=1

Xt
i,j +O(1).

Clearly, for any 0 < αi,j , βi,j , αi,j+βi,j ≤ 1,
(

1
αi,j

+ 1
1−αi,j ,

1
1−αi,j

)
and

(
1
βi,j

+ 1
1−βi,j ,

−1
1−βi,j

)
are linearly independent. On the other hand, from Proposition 5, Lemma 16 and classi-
cal central limit theorems for weakly dependent sequences (Bradley, 2007; Durrett, 2019),
we have 1√

n

∑n
t=1 Y

t
i,j and 1√

n

∑n
t=1X

t
i,j and any of their nontrivial linear combinations

are asymptotically normally distributed. Consequently, any nontrivial linear combination

of 1√
n

∂l(αi,j ,βi,j)
∂αi,j

, (i, j) ∈ J1 and 1√
n

∂l(αi,j ,βi,j)
∂βi,j

, (i, j) ∈ J2 converges to a normal distri-

bution. By standard arguments for consistency of MLEs, we conclude that (
√
n(α̂i,j −

αi,j),
√
n(β̂i,j − βi,j))

′ converges to the normal distribution with mean 0 and covariance
matrix I(αi,j , βi,j)

−1, where I(αi,j , βi,j) is the Fisher information matrix given as:

I(αi,j , βi,j) =
1

n
E


∑n
t=1X

t
i,j(1−X

t−1
i,j )

α2
i,j

+
∑n
t=1(1−Xt

i,j)(1−X
t−1
i,j )

(1−αi,j)2 0

0
∑n
t=1(1−Xt

i,j)X
t−1
i,j

β2
i,j

+
∑n
t=1X

t
i,jX

t−1
i,j

(1−βi,j)2

 .
Note that

1

n
E

n∑
t=1

Xt
i,j(1−Xt−1

i,j ) =
1

n
E

n∑
t=1

(1−Xt
i,j)X

t−1
i,j =

αi,jβi,j
αi,j + βi,j

,

1

n
E

n∑
t=1

(1−Xt
i,j)(1−Xt−1

i,j ) =
βi,j

αi,j + βi,j
− αi,jβi,j
αi,j + βi,j

=
(1− αi,j)βi,j
αi,j + βi,j

,

1

n
E

n∑
t=1

Xt
i,jX

t−1
i,j =

αi,j(1− βi,j)
αi,j + βi,j

.
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We thus have

I(αi,j , βi,j) =

[
βi,j

αi,j(αi,j+βi,j)
+

βi,j
(αi,j+βi,j)(1−αi,j) 0

0
αi,j

βi,j(αi,j+βi,j)
+

αi,j
(1−βi,j)(αi,j+βi,j)

]

=

[
βi,j

αi,j(αi,j+βi,j)(1−αi,j) 0

0
αi,j

βi,j(αi,j+βi,j)(1−βi,j)

]
.

Consequently, we have[√
n(α̂i,j − αi,j)√
n(β̂i,j − βi,j)

]
→ N

(
0,

[
αi,j(αi,j+βi,j)(1−αi,j)

βi,j
0

0
βi,j(αi,j+βi,j)(1−βi,j)

αi,j

])
.

This together with the independence among the (α̂i,j , β̂i,j), (i, j) ∈ J pairs proves the
proposition.

A.6 Proof of Proposition 9

Denote N = diag{√s1, . . . ,
√
sq}. Note that

L = D
−1/2
1 ZΩ1Z

>D
−1/2
1 + D

−1/2
2 ZΩ2Z

>D
−1/2
2

= ZD̃
−1/2
1 Ω1D̃

−1/2
1 Z> + ZD̃

−1/2
2 Ω2D̃

−1/2
2 Z>

= Z(Ω̃1 + Ω̃2)Z>

= (ZN−1)NΩ̃N(ZN−1)>.

Note that the columns of ZN−1 are orthonormal, we thus have rank(L) = q. Let QΛQ> =
NΩ̃N be the eigen-decomposition of NΩ̃N, we immediately have L = (ZN−1)QΛQ>(ZN−1)>.
Again, since the columns of ZN−1 are orthonormal, we conclude that Γq = ZN−1Q, and
U = N−1Q. On the other hand, note that U is invertible, we conclude that zi,·U = zj,·U
and zi,· = zj,· are equivalent.

A.7 Proof of Theorem 10

The key step is to establish an upper bound for the Frobenius norm ‖L̂L̂ − LL‖F , and
the theorem can be proved by Weyl’s inequality and the Davis-Kahan theorem. We first
introducing some technical lemmas.

Lemma 17. Under the assumptions of Proposition 2, we have, there exists a constant
Cl > 0 such that

Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

(1−Xt−1
i,j )

)
= −Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

Xt−1
i,j

)

=
nαi,jβi,j [2αi,j(1− βi,j) + αi,j + βi,j − 2β2

i,j ]

(αi,j + βi,j)3
+ Ci,j ,

with |Ci,j | ≤ Cl for any Ci,j , (i, j) ∈ J .
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Proof In the following we shall be using the fact that for any 0 ≤ x < 1,
∑n−1

h=1 x
h−1 =

1−xn
1−x = 1

1−x + o(1), and
∑n−1

h=1 hx
h−1 = 1−xn−n(1−x)xn−1

(1−x)2
= O(1). In particular, when

x = 1 − αi,j − βi,j , under condition C1, we have 2l ≤ 1 − x < 1, the O(1) term in will
become bounded uniformly for any (i, j) ∈ J . In what follows, with some abuse of notation,
we shall use Ol(1) to denote a generic constant term with magnitude bounded by a large
enough constant Cl that depends on l only.

Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

(1−Xt−1
i,j )

)
= −Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

Xt−1
i,j

)

= −
n∑
t=1

n∑
s=1

[
E(1−Xt−1

i,j )Xt
i,jX

s−1
i,j −

αi,jβi,j
αi,j + βi,j

· αi,j
αi,j + βi,j

]

= −
n∑
t=1

n∑
s=1

{
αi,j

(αi,j + βi,j)2

[
βi,j(1− αi,j − βi,j)|t−s+1| + αi,j

]
−

α2
i,jβi,j

(αi,j + βi,j)2

}

+

n∑
t=1

n∑
s=1

E(Xt−1
i,j X

t
i,jX

s−1
i,j )

= −
n∑
t=1

n∑
s=1

αi,jβi,j(1− αi,j − βi,j)|t−s+1|

(αi,j + βi,j)2
−
n2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+(2n− 1)E(Xt−1
i,j X

t
i,j) +

∑
s<t

E(Xt−1
i,j X

t
i,jX

s−1
i,j ) +

∑
s>t+1

E(Xt−1
i,j X

t
i,jX

s−1
i,j ). (A.4)

For the first three terms on the right hand side of (A.4), we have

−
n∑
t=1

n∑
s=1

αi,jβi,j(1− αi,j − βi,j)|t−s+1|

(αi,j + βi,j)2
−
n2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+ (2n− 1)E(Xt−1
i,j X

t
i,j)

= − αi,jβi,j
(αi,j + βi,j)2

[
n+

2n(1− αi,j − βi,j)
αi,j + βi,j

]
−
n2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+
2nαi,j

[
βi,j(1− αi,j − βi,j) + αi,j

]
(αi,j + βi,j)2

+Ol(1)

=
3nαi,jβi,j

(αi,j + βi,j)2
− 2nαi,jβi,j

(αi,j + βi,j)3
− 2nαi,jβi,j
αi,j + βi,j

+
2nα2

i,j

(αi,j + βi,j)2
−
n2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+Ol(1).
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For the last two terms on the right hand side of (A.4), we have∑
s<t

E(Xt−1
i,j X

t
i,jX

s−1
i,j ) +

∑
s>t+1

E(Xt−1
i,j X

t
i,jX

s−1
i,j )

=
∑
s<t

P (Xt
i,j = 1|Xt−1

i,j = 1)P (Xt−1
i,j = 1, Xs−1

i,j = 1)

+
∑
s>t+1

P (Xs−1
i,j = 1|Xt

i,j = 1)P (Xt
i,j = 1, Xt−1

i,j = 1)

= (1− βi,j)
∑
s<t

E(Xt−1
i,j X

s−1
i,j ) + (1− βi,j)

∑
s>t+1

E(Xs−1
i,j Xt

i,j)

=
(1− βi,j)αi,j
(αi,j + βi,j)2

n−1∑
h=1

(n− h)[βi,j(1− αi,j − βi,j)h + αi,j ]

+
(1− βi,j)αi,j
(αi,j + βi,j)2

n−1∑
h=2

(n− h)[βi,j(1− αi,j − βi,j)h−1 + αi,j ]

=
(n− 1)2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+
2n(1− βi,j)αi,jβi,j

(αi,j + βi,j)3
+Ol(1).

Consequently, we have

Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

(1−Xt−1
i,j )

)
= −Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

Xt−1
i,j

)

=
3nαi,jβi,j

(αi,j + βi,j)2
− 2nαi,jβi,j

(αi,j + βi,j)3
− 2nαi,jβi,j
αi,j + βi,j

+
2nα2

i,j

(αi,j + βi,j)2
−
n2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+
(n− 1)2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+
2n(1− βi,j)αi,jβi,j

(αi,j + βi,j)3
+Ol(1)

=
3nαi,jβi,j

(αi,j + βi,j)2
− 2nαi,jβi,j

(αi,j + βi,j)3
− 2nαi,jβi,j
αi,j + βi,j

+
2nα2

i,jβi,j

(αi,j + βi,j)2

+
2n(1− βi,j)αi,jβi,j

(αi,j + βi,j)3
+Ol(1)

=
3nαi,jβi,j

(αi,j + βi,j)2
−

2nαi,jβ
2
i,j(1 + αi,j + βi,j)

(αi,j + βi,j)3
+Ol(1).

This proves the lemma.

Lemma 18. (Bias of α̂i,j and β̂i,j) Ket conditions C1, C2 and the assumptions of
Proposition 2 hold. We have

Eα̂i,j − αi,j = −
αi,j [2αi,j(1− βi,j) + αi,j + βi,j − 2β2

i,j ]

n(αi,j + βi,j)βi,j
+
R

(1)
i,j

n
+O(n−2),

Eβ̂i,j − βi,j =
βi,j [2αi,j(1− βi,j) + αi,j + βi,j − 2β2

i,j ]

n(αi,j + βi,j)αi,j
+
R

(2)
i,j

n
+O(n−2),
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where R
(1)
i,j and R

(2)
i,j are constants such that when n is large enough we have 0 ≤ R(1)

i,j , R
(2)
i,j ≤

Rl for some constant Rl and all (i, j) ∈ J .

Proof From Lemma 16 we have, under Condition C2, the event {|n−1
∑n

t=1X
t−1
i,j −πi,j | ≤

(1 − πi,j)/2, 1 ≤ i, j ≤ p} holds with probability larger than 1 − O(n−2). Denote I :=
I(|n−1

∑n
t=1X

t−1
i,j −πi,j | ≤ (1−πi,j)/2, 1 ≤ i, j ≤ p). By expanding 1

1−n−1
∑n
t=1X

t−1
i,j

around

1
1−πi,j , we have

Eα̂i,jI = E
n−1

∑n
t=1X

t
i,j(1−X

t−1
i,j )

n−1
∑n

t=1(1−Xt−1
i,j )

I

=
1

n
E

n∑
t=1

Xt
i,j(1−Xt−1

i,j )

[
1

1− πi,j
+

(n−1
∑n

t=1X
t−1
i,j − πi,j)

(1− πi,j)2
+
∞∑
k=2

(n−1
∑n

t=1X
t−1
i,j − πi,j)k

(1− πi,j)k+1

]
I.

Write R
(1)
i,j := E

∑n
t=1X

t
i,j(1−X

t−1
i,j )

(∑∞
k=2

(n−1
∑n
t=1X

t−1
i,j −πi,j)

k

(1−πi,j)k+1

)
I. By Taylor series with

Lagrange remainder we have there exist random scalars rti,j ∈ [n−1
∑n

t=1X
t−1
i,j , πi,j ] such

that

R
(1)
i,j = E

n∑
t=1

Xt
i,j(1−Xt−1

i,j )

(
(n−1

∑n
t=1X

t−1
i,j − πi,j)2

(1− rti,j)3

)
I > 0.

On the other hand, note that

∞∑
k=2

|n−1
∑n

t=1X
t−1
i,j − πi,j |k

(1− πi,j)k+1
I ≤

(
n−1

n∑
t=1

Xt−1
i,j − πi,j

)2 ∞∑
k=0

1

(1− πi,j)32k

=

(
n−1

n∑
t=1

Xt−1
i,j − πi,j

)2
2

(1− πi,j)3
.

Therefore,

R
(1)
i,j ≤ E

n∑
t=1

( ∞∑
k=2

|n−1
∑n

t=1X
t−1
i,j − πi,j |k

(1− πi,j)k+1

)
I

≤ V ar

(
1√
n

n∑
t=1

Xt−1
ij

)
2

(1− πi,j)3

=
2

(1− πi,j)3
V ar(Xt

ij)

[
1 +

2

n

n−1∑
h=1

(n− h)ρij(h)

]

=
2

(1− πi,j)3
· αijβij

(αij + βij)2

[
1 +

2

n

n−1∑
h=1

(n− h)(1− αij − βij)h
]

=
2

(1− πi,j)3
· αijβij

(αij + βij)2

[
1 +

2(1− αij − βij)
αij + βij

+O(n−1)

]
=

2

(1− πi,j)4πi,j
· 2− αij − βij

αij + βij
+O(n−1).
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Again, since 0 < l ≤ αi,j , βi,j , αi,j + βi,j ≤ 1 holds for all (i, j) ∈ J , we conclude that there

exists a constant Rl such that R
(1)
i,j ≤ Rl. Together with Lemma 17, we have

Eα̂i,j = Eα̂i,jI + Eα̂i,j(1− I)

= E
1

n

n∑
t=1

Xt
i,j(1−Xt−1

i,j )

[
1

1− πi,j
+

(n−1
∑n

t=1X
t−1
i,j − πi,j)

(1− πi,j)2

]
I +

R
(1)
i,j

n
+ Eα̂i,j(1− I)

= αi,j +
Cov(

∑n
t=1 Y

t
i,j ,
∑n

t=1X
t
i,j)

n2(1− πi,j)2
+
R

(1)
i,j

n
+O(n−2)

= αi,j −
αi,j [2αi,j(1− βi,j) + αi,j + βi,j − 2β2

i,j ]

n(αi,j + βi,j)βi,j
+
R

(1)
i,j

n
+O(n−2).

Similarly, write R
(2)
i,j := E

∑n
t=1X

t
i,j(1 − Xt−1

i,j )
(∑∞

k=2

(n−1
∑n
t=1X

t−1
i,j −πi,j)

k

(−1)kπk+1
i,j

)
I ′ where

I ′ := I{|n−1
∑n

t=1(1−Xt
i,j)X

t−1
i,j | ≤ πi,j/2}. We have,

Eβ̂i,j = E
n−1

∑n
t=1(1−Xt

i,j)X
t−1
i,j

n−1
∑n

t=1X
t−1
i,j

= E
1

n

n∑
t=1

(1−Xt
i,j)X

t−1
i,j

[ 1

πi,j
−

(n−1
∑n

t=1X
t−1
i,j − πi,j)

π2
i,j

+

∞∑
k=2

(n−1
∑n

t=1X
t−1
i,j − πi,j)k

(−1)kπk+1
i,j

]
I ′ + Eβ̂i,j(1− I ′)

= βi,j −
Cov(

∑n
t=1 Y

t
i,j ,
∑n

t=1X
t
i,j −Xn

i,j +X0
i,j)

n2π2
i,j

+
R

(2)
i,j

n
+O(n−2)

= βi,j +
βi,j [2αi,j(1− βi,j) + αi,j + βi,j − 2β2

i,j ]

n(αi,j + βi,j)αi,j
+
R

(2)
i,j

n
+O(n−2).

Here in the second last step we have used the fact that En−1(X0
i,j −Xn

i,j)(n
−1
∑n

t=1X
t−1
i,j −

πi,j) = O(n−2), and in the last step we have used the fact that

n−2E

n∑
t=1

Xt
i,j(1−Xt−1

i,j )(Xn
i,j −X0

i,j)

= n−2E

[
n∑
t=1

Xt−1
i,j X

t
i,jX

0
i,j −

n∑
t=1

Xt−1
i,j X

t
i,jX

n
i,j

]
+ n−2[E(Xn

i,j)
2 − E(Xn

i,jX
0
i,j)]

= n−2
[ n∑
t=1

P (Xt
i,j = 1|Xt−1

i,j = 1)P (Xt−1
i,j = 1|X0

i,j = 1)P (X0
i,j = 1)

−
n∑
t=1

P (Xn
i,j = 1|Xt

i,j = 1)P (Xt
i,j = 1|Xt−1

i,j = 1)P (Xt−1
i,j = 1)

]
+O(n−2)

= O(n−2)
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On one hand, similar to R
(1)
i,j , we can show that when n is large enough, there exists a Rl

such that R
(2)
i,j ≤ Rl for any (i, j) ∈ J .

Lemma 18 implies that the bias of the MLEs is of order O(n−1). The bound Rl here
also implies that the O(n−1) order of the bias holds uniformly for all (i, j) ∈ J .

Lemma 19. Let conditions (2.5), C1 and C2 hold. For any constant B > 0, there exists a
large enough constant C > 0 such that

(A.5)

P

{
‖L̂1L̂1 − L1L1‖F ≥ C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 8p

[
(pn)−(1+B) + exp{−B√p}

]
,

P

{
‖L̂2L̂2 − L2L2‖F ≥ C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 8p

[
(pn)−(1+B) + exp{−B√p}

]
,

P

{
‖L̂1L̂2 − L1L2‖F ≥ C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 8p

[
(pn)−(1+B) + exp{−B√p}

]
,

P

{
‖L̂2L̂1 − L2L1‖F ≥ C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 8p

[
(pn)−(1+B) + exp{−B√p}

]
.

Proof We only prove the first inequality in (A.5) here as the other three inequalities can
be proved similarly. Denote

L̃1 := L1 − diag(L1) = D
−1/2
1 [W1 − diag(W)1] D

−1/2
1 ,

and for any 1 ≤ i, j ≤ p we denote the (i, j)th element of L̃1L̃1 − L1L1 as δi,j . Corre-

spondingly, for any ` = 1, . . . , p, we define d̃`,1 := d`,1 − α`,`. We first evaluate the error
introduced by removing the diag(L1) term. With some abuse of notation, let α̃i,j = αi,j
for 1 ≤ i 6= j ≤ p and α̃i,i = 0 for i = 1, . . . , p. We have W − diag(W) = (α̃i,j)1≤i,j≤p.
Therefore,

|δi,j | =

∣∣∣∣∣
p∑

k=1

α̃i,kα̃k,j

dk,1
√
di,1dj,1

−
p∑

k=1

αi,kαk,j

dk,1
√
di,1dj,1

∣∣∣∣∣ ≤ αi,iαi,j

di,1
√
di,1dj,1

+
αi,jαj,j

dj,1
√
di,1dj,1

≤ 2

(p− 1)2l2
.

Consequently, we have

‖L̂1L̂1 − L1L1‖2F = ‖(L̂1L̂1 − L̃1L̃1) + (L̃1L̃1 − L1L1)‖2F
≤ 2

[
‖L̂1L̂1 − L̃1L̃1‖2F + ‖L̃1L̃1 − L1L1‖2F

]
= 2‖L̂1L̂1 − L̃1L̃1‖2F + 2

∑
1≤i,j≤p

δ2
i,j

≤ 2‖L̂1L̂1 − L̃1L̃1‖2F +
8p2

(p− 1)4l4
. (A.6)
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Next, we derive the asymptotic bound for ‖L̂1L̂1 − L̃1L̃1‖2F .

For any 1 ≤ i, j ≤ p, we denote the (i, j)th element of L̂1L̂1−L̃1L̃1 as ∆i,j . By definition
we have,

∆i,j =
∑

1≤k≤p
k 6=i,j

 α̂i,kα̂k,j

d̂k,1

√
d̂i,1d̂j,1

−
αi,kαk,j

dk,1
√
di,1dj,1

 ,

where d̂`,1 =
∑p

k=1 α̂`,k and d`,1 =
∑p

k=1 α`,k for l = 1, . . . , p. Note that α̂i,1, . . . , α̂i,p are
independent. Denote σ2

i,k := V ar(α̂i,k), and τ2
i :=

∑p
k=1 σ

2
i,k. Similar to the proofs of

Lemma 17 we can show that, when n is large enough, their exists a constant Cσ > (2l)−1

and cσ := l(1 − l) such that cσn
−1 ≤ σ2

i,k ≤ Cσn
−1 for any (i, j) ∈ J . Consequently,

τ2
i ' O(n−1p). On the other hand, from Lemma 18 we know that there exists a large

enough constant Cα > 0 such that |Eα̂i,j − αi,j | ≤ Cα
n for all (i, j) ∈ J , and consequently,

|Ed̂`,1−d`,1|
p ≤ |Ed̂`,1−d̃`,1|p + 1

p <
Cα
n + 1

p for any l = 1, . . . , p. We next break our proofs into
three steps:

Step 1. Concentration of p−1d̂`,1.

Note that |α̂`,j | ≤ 1. By Bernstein’s inequality (Bennett, 1962; Lin and Bai, 2011) we
have, for any constant Cd > 0:

P

(
|d̂`,1 − d`,1|

p
≥ Cd

√
log(pn)

np
+
Cα
n

+
1

p

)

≤ P

(
|d̂`,1 − E(d̂`,1)|

p
≥ Cd

√
log(pn)

np
+
Cα
n

+
1

p
−
|E(d̂`,1)− d`,1|

p

)

≤ P

(
|d̂`,1 − E(d̂`,1)|

p
≥ Cd

√
log(pn)

np

)

≤ 2 exp

{
−

√
pC2

dn
−1 log(pn)

2(
√
pCσ/n+ aCd

√
log(pn)/n)

}

= 2 exp

{
−

√
pC2

dn
−1 log(pn)

2(
√
pCσ/n+ Cde(6l−1 + Cα)

√
log n/(C3n)

√
log(pn)/n)

}
. (A.7)

When
√
pCσ/n > Cde(6l

−1 + Cα)
√

log n/(C3n)
√

log(pn)/n), for any constant B > 0, by

choosing Cd > 2
√

(B + 1)Cσ, (A.7) reduces to

P

(
|d̂`,1 − d`,1|

p
≥ Cd

√
log(pn)

np
+
Cα
n

+
1

p

)

≤ 2 exp

{
−
√
pC2

dn
−1 log(pn)

4
√
pCσ/n

}
< 2(pn)−(B+1). (A.8)
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When
√
pCσ/n ≤ Cde(6l−1 + Cα)

√
log n/(C3n)

√
log(pn)/n, by choosing Cd = 4Be(6l−1 +

Cα)/
√
C3, (A.7) reduces to

P

(
|d̂`,1 − d`,1|

p
≥ Cd

√
log(pn)

np
+
Cα
n

+
1

p

)

≤ 2 exp

{
−

√
pC2

dn
−1 log(pn)

4Cde(6l−1 + Cα)
√

log n/(C3n)
√

log(pn)/n

}
≤ 2 exp {−B√p} . (A.9)

From (A.7), (A.8) and (A.9) we conclude that for any B > 0, by choosing Cd to be large
enough, we have,

P

(
max
l=1,...,p

|d̂`,1 − d`,1|
p

≥ Cd

√
log(pn)

np
+
Cα
n

+
1

p

)
≤ 2p

[
(pn)−(1+B) + exp{−B√p}

]
. (A.10)

Step 2. Concentration of ∆i,j .
Using the fact that α̂k,k = 0 for k = 1, . . . , p, we have,

∆i,j =

p∑
k=1

 α̂i,kα̂k,j

d̂k,1

√
d̂i,1d̂j,1

−
α̂i,kα̂k,j

dk,1
√
di,1dj,1

+
∑

1≤k≤p
k 6=i,j

(
α̂i,kα̂k,j

dk,1
√
di,1dj,1

−
αi,kαk,j

dk,1
√
di,1dj,1

)
.

We next bound the two terms on the right hand side of the above inequality. For the first
term, denote ek := (d̂k,1−dk,1)/p. From (A.10) we have there exists a large enough constant
CB such that

P

{
max

k=1,...,p
|ek| ≤ CB

(√
log(pn)

np
+

1

n
+

1

p

)}
≥ 1− 2p

[
(pn)−(1+B) + exp{−B√p}

]
.

Denote the event

{
maxk=1,...,p |ek| ≤ CB

(√
log(pn)
np + 1

n + 1
p

)}
as EB. Under EB, we have,

when n and p are large enough,
√
p−1dk,1 + ek =

√
p−1dk,1 + ek/(2

√
p−1dk,1) +O(e2

k), and
hence there exists a large enough constant Cl,B > 0 such that for any 1 ≤ i, j ≤ p,∣∣∣∣∣∣ α̂i,kα̂k,j

d̂k,1

√
d̂i,1d̂j,1

−
α̂i,kα̂k,j

dk,1
√
di,1dj,1

∣∣∣∣∣∣
≤

∣∣∣p−1dk,1
√
p−1di,1p−1dj,1 − (p−1dk,1 + ek)

√
(p−1di,1 + ei)(p−1dj,1 + ej)

∣∣∣
p2(p−1dk,1 + ek)

√
(p−1di,1 + ei)(p−1dj,1 + ej)p−1dk,1

√
p−1di,1p−1dj,1

= O(p−2(|ei|+ |ej |+ |ek|))

≤
Cl,B
p2

(√
log(pn)

np
+

1

n
+

1

p

)
.
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Consequently, we have, under EB,∣∣∣∣∣∣
p∑

k=1

 α̂i,kα̂k,j

d̂k,1

√
d̂i,1d̂j,1

−
α̂i,kα̂k,j

dk,1
√
di,1dj,1

∣∣∣∣∣∣ ≤ Cl,B
p

(√
log(pn)

np
+

1

n
+

1

p

)
. (A.11)

For the second term, note that for any 1 ≤ i, j ≤ p and k 6= i, j,

|Eα̂i,kα̂k,j − αi,kαk,j |
= |E(α̂i,k − αi,k)(α̂k,j − αk,j) + E(α̂i,k − αi,k)αk,j + Eαi,k(α̂k,j − αk,j)|

≤ |E(α̂i,k − αi,k)(α̂k,j − αk,j)|+
2Cα
n
. (A.12)

When i 6= j, by Lemma 18 and the fact that α̂i,k and α̂k,j are independent (since k 6= i, j),
we have |Eα̂i,kα̂k,j − αi,kαk,j | ≤ Cl,1n

−1 for some large enough constant Cl,1 > 0. Using
the same arguments for obtaining (A.10), we have, there exists a large enough constant
Dl,B > 0 such that when n and p are large enough,

P

 max
1≤i 6=j≤p

∣∣∣∣∣∣∣∣
∑

1≤k≤p
k 6=i,j

(
α̂i,kα̂k,j

dk,1
√
di,1dj,1

−
αi,kαk,j

dk,1
√
di,1dj,1

)∣∣∣∣∣∣∣∣ ≥
Dl,B

p

(√
log(pn)

np
+

1

n
+

1

p

)
≤ 2p

[
(pn)−(1+B) + exp{−B√p}

]
. (A.13)

Denote the event

{
max

1≤i 6=j≤p

∣∣∣∣∑1≤k≤p
k 6=i,j

(
α̂i,kα̂k,j

dk,1
√
di,1dj,1

− αi,kαk,j

dk,1
√
di,1dj,1

)∣∣∣∣ ≤ Dl,B
p

(√
log(pn)
np + 1

n + 1
p

)}
as AB. From (A.11) and (A.13) we conclude that, when n and p are large enough,

P

{
max

1≤i 6=j≤p
|∆i,j | >

Cl,B +Dl,B

p

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ P (EcB) + P (AcB)

< 4p
[
(pn)−(1+B) + exp{−B√p}

]
. (A.14)

When i = j, by applying Lemma 18 and (A.3) to (A.12), we have, there exists a large
enough constant Cl,2 > 0, such that

|Eα̂i,kα̂k,i − αi,kαk,i| ≤ Cl,2
(

log(pn)

n
+

1

n
+

1

p

)
.

Consequently, similar to (A.14), we have, there exists a large enough constant Cl,3 > 0,
such that

P

{
max
1≤i≤p

|∆i,i| >
Cl,3
p

(√
log(pn)

np
+

log(pn)

n
+

1

p

)}
< 4p

[
(pn)−(1+B) + exp{−B√p}

]
.(A.15)

Step 3. Proof of the first inequality in (A.5).
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Note that ‖L̂1L̂1−L̃1L̃1‖F =
√∑

1≤i,j≤p ∆2
i,j ≤ pmax1≤i 6=j≤p |∆i,j |+

√
pmax1≤i≤p |∆i,i|.

From (A.6), (A.14), (A.15) and the fact that 1√
p

(√
log(pn)
np + log(pn)

n + 1
p

)
= o

(√
log(pn)
np + 1

n + 1
p

)
we immediately have that there exists a large enough constant C > 0 such that when n and
p are large enough,

P

{
‖L̂1L̂1 − L1L1‖F ≥ C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 8p

[
(pn)−(1+B) + exp{−B√p}

]
.

This proves the first inequality in (A.5).

Lemma 20. Let conditions (2.5), C1 and C2 hold. For any constant B > 0, there exists a
large enough constant C > 0 such that

(A.16)

P

{
‖L̂L̂− LL‖F ≥ 4C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 16p

[
(pn)−(1+B) + exp{−B√p}

]
.

Proof

Note that from the triangle inequality we have

‖L̂L̂− LL‖F
= ‖(L̂1 + L̂2)(L̂1 + L̂2)− (L1 + L2)(L1 + L2)‖F
= ‖(L̂1L̂1 − L1L1) + (L̂1L̂2 − L1L2) + (L̂2L̂1 − L2L1) + (L̂2L̂2 − L2L2)‖F
≤ ‖L̂1L̂1 − L1L1‖F + ‖L̂1L̂2 − L1L2‖F + ‖L̂2L̂1 − L2L1‖F + ‖L̂2L̂2 − L2L2‖F .

Together with Lemma 19 we immediately conclude that (A.16) hold.

Proof of Theorem 10

From Weyl’s inequality and Lemma 20, we have,

max
i=1,...,p

|λ2
i − λ̂2

i | ≤ ‖L̂L̂− LL‖2 ≤ ‖L̂L̂− LL‖F = Op

(√
log(pn)

np
+

1

n
+

1

p

)
.

(21) is a direct result of the Davis-Kahan theorem (Rohe et al., 2011; Yu et al., 2015)
theorem and Lemma 20.

A.8 Proof of Theorem 11

Recall that Γq = ZU where U is defined as in the proof of Proposition 9. For any 1 ≤ i 6=
j ≤ n such that zi 6= zj , we need to show that ‖ziUOq−zjUqOq‖2 = ‖ziU−zjU‖2 is large
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enough, so that the perturbed version (i.e. the rows of Γ̂q) is not changing the clustering
structure.

Denote the ith row of ΓqOq and Γ̂q as γi and γ̂i, respectively, for i = 1, . . . , p. No-
tice that from the proof of Proposition 9, we have UU> = N−1QQ>N−1 = N−2 =
diag{s−1

1 , . . . , s−1
q }. Consequently, for any zi 6= zj , we have:

‖γi − γj‖2 = ‖ziUOq − zjUqOq‖2 = ‖ziU− zjU‖2 ≥
√

2

smax
. (A.17)

We first show that zi 6= zj implies ĉi 6= ĉj . Notice that ΓqOq ∈ Mp,q. Denote Ĉ =

(ĉ1, · · · , ĉp)>. By the definition of Ĉ we have

‖ΓqOq − Ĉ‖2F ≤ ‖Γ̂q − Ĉ‖2F + ‖Γ̂q − ΓqOq‖2F ≤ 2‖Γ̂q − ΓqOq‖2F . (A.18)

Suppose there exist i, j ∈ {1, . . . , p} such that zi 6= zj but ĉi = ĉj . We have

‖ΓqOq − Ĉ‖2F ≥ ‖ziUOq − ĉi‖22 + ‖zjUOq − ĉj‖22 ≥ ‖ziUOq − zjUOq‖22. (A.19)

Combining (A.17), (21), (A.18) and (A.19), we have:

√
2

smax
≤ ‖ΓqOq − Ĉ‖F ≤

√
2‖Γ̂q − ΓqOq‖F ≤ 4

√
2λ−2

q C

(√
log(pn)

np
+

1

n
+

1

p

)
.

We have reach a contradictory with (22). Therefore we conclude that ĉi 6= ĉj .

Next we show that if zi = zj we must have ĉi = ĉj . Assume that there exist 1 ≤
i 6= j ≤ p such that zi = zj and ĉi 6= ĉj . Notice that from the previous conclusion
(i.e., that different zi implies different ĉi), since there are q distinct rows in Z, there are
correspondingly q different rows in Ĉ. Consequently for any zi = zj , if ĉi 6= ĉj there must

exist a k 6= i, j such that zi = zj 6= zk and ĉj = ĉk. Let Ĉ∗ be Ĉ with the jth row replaced
by ĉi. We have

‖Γ̂q − Ĉ∗‖2F − ‖Γ̂q − Ĉ‖2F
= ‖γ̂j − ĉi‖22 − ‖γ̂j − ĉk‖22
= ‖γ̂j − γj + γi − ĉi‖22 − ‖γ̂j − γj + γi − γk + γk − ĉk‖22
≤ ‖γ̂j − γj + γi − ĉi‖22 + ‖γ̂j − γj + γk − ĉk‖22 − ‖γi − γk‖22

≤ 2‖Γ̂q − ΓqOq‖2F + ‖ΓqOq − Ĉ‖2F −
2

smax

≤ 4

{
4λ−2

q C

(√
log(pn)

np
+

1

n
+

1

p

)}2

− 2

smax

< 0.

Again, we reach a contradiction and so we conclude that if zi = zj we must have ĉi = ĉj .
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A.9 Proof of Theorem 13

Note that from Theorem 11, we have the memberships can be recovered with probability
tending to 1, i,e, P (ν̂ 6= ν)→ 0. On the other hand, given ν̂ = ν, we have, the log likelihood
function of (θk,`, ηk,`), 1 ≤ k ≤ ` ≤ q, is

l({θk,`, ηk,`}; ν) =
∑

(i,j)∈Sk,l

n∑
t=1

{
Xt
i,j(1−Xt−1

i,j ) log θk,` + (1−Xt
i,j)(1−Xt−1

i,j ) log(1− θk,`)

+(1−Xt
i,j)X

t−1
i,j log ηk,` +Xt

i,jX
t−1
i,j log(1− ηk,`)

}
.

Using the same arguments as in the proof of Proposition 7, we can conclude that when

ν̂ = ν,
√
nN

1
2
J1,J2

(Ψ̂K1,K2 − ΨK1,K2) → N(0, Σ̃K1,K2). Let Y ∼ N(0, Σ̃K1,K2). For any

Y ⊂ Rm1+m2 , let Φ(Y) := P (Y ∈ Y), we have:

|P (
√
nN

1
2
K1,K2

(Ψ̂K1,K2 −ΨK1,K2) ∈ Y)−Φ(Y)|

≤ P (ν̂ 6= ν) + |P (
√
nN

1
2
K1,K2

(Ψ̂K1,K2 −ΨK1,K2) ∈ Y|ν̂ = ν)−Φ(Y)|
= o(1).

This proves the theorem.

A.10 Proof of Theorem 14

Without loss of generality, we consider the case where τ ∈ [n0, τ0], as the convergence rate
for τ ∈ [τ0, n−n0] can be similarly derived. The idea is to break the time interval [n0, τ0] into

two consecutive parts: [n0, τn,p] and [τn,p, τ0], where τn,p =
⌊
τ0−κn∆−2

F

[
log(np)
n +

√
log(np)
np2

]⌋
for some large enough κ > 0. Here b·c denotes the least integer function. We shall show
that when τ ∈ [n − n0, τn,p], in which ν̂τ+1,n might be inconsistent in estimating ντ0+1,n,
we have supτ∈[n0,τn,p][Mn(τ) −Mn(τ0)] < 0 in probability. Hence arg maxτ∈[n0,τ0] Mn(τ) =
arg maxτ∈[τn,p,τ0] Mn(τ) holds in probability. On the other hand, when τ ∈ [τn,p, τ0], we shall
see that the membership maps can be consistently recovered, and hence the convergence
rate can be obtained using classical probabilistic arguments. For simplicity, we consider
the case where ν1,τ0 = ντ0+1,n = ν first, and modification of the proofs for the case where
ν1,τ0 6= ντ0+1,n will be provided subsequently.

A.10.1 Change point estimation with ν1,τ0 = ντ0+1,n = ν.

We first consider the case where the membership structures remain unchanged, while the
connectivity matrices before/after the change point are different. Specifically, we assume
that ν1,τ0 = ντ0+1,n = ν for some ν, and (θ1,k,`, η1,k,`) 6= (θ2,k,`, η2,k,`) for some 1 ≤ k ≤ l ≤ q.
For brevity, we shall be using the notations Sk,l, sk, smin and nk,` defined as in Section 3,
and introduce some new notations as follows:

Define

θτ2,k,` =

τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

θ2,k,`η2,k,`
θ2,k,`+η2,k,`

τ0−τ
n−τ

η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

η2,k,`
θ2,k,`+η2,k,`

, ητ2,k,` =

τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

θ2,k,`η2,k,`
θ2,k,`+η2,k,`

τ0−τ
n−τ

θ1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

θ2,k,`
θ2,k,`+η2,k,`

.
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Clearly when τ = τ0 we have θτ02,k,` = θ2,k,` and ητ02,k,` = η2,k,`.
Correspondingly, we denote the MLEs as

θ̂τ1,k,` =
∑

(i,j)∈Ŝτ1,k,`

τ∑
t=1

Xt
i,j(1−Xt−1

i,j )
/ ∑
(i,j)∈Ŝτ1,k,`

τ∑
t=1

(1−Xt−1
i,j ),

η̂τ1,k,` =
∑

(i,j)∈Ŝτ1,k,`

τ∑
t=1

(1−Xt
i,j)X

t−1
i,j

/ ∑
(i,j)∈Ŝτ1,k,`

τ∑
t=1

Xt−1
i,j ,

θ̂τ2,k,` =
∑

(i,j)∈Ŝτ2,k,`

n∑
t=τ+1

Xt
i,j(1−Xt−1

i,j )
/ ∑
(i,j)∈Ŝτ2,k,`

n∑
t=τ+1

(1−Xt−1
i,j ),

η̂τ2,k,` =
∑

(i,j)∈Ŝτ2,k,`

n∑
t=τ+1

(1−Xt
i,j)X

t−1
i,j

/ ∑
(i,j)∈Ŝτ2,k,`

n∑
t=τ+1

Xt−1
i,j ,

where Ŝτ1,k,` and Ŝτ2,k,` are defined in a similar way to Ŝk,` (cf. Section 3.2.3), based on the

estimated memberships ν̂1,τ and ν̂τ+1,n, respectively.
Denote

Mn(τ) := l({θ̂τ1,k,`, η̂τ1,k,`}; ν̂1,τ ) + l({θ̂τ2,k,`, η̂τ2,k,`}; ν̂τ+1,n),

M(τ) := El({θ1,k,`, η1,k,`}; ν1,τ ) + El({θτ2,k,`, ητ2,k,`}; ντ+1,n).

We first evaluate several terms in (i)-(v), and all these results will be combined to obtain
the error bound in (vi). In particular, (vi) states that as a direct result of (v), we can focus
on the small neighborhood of [τn,p, τ0] when searching for the estimator τ̂ . Further, the
inequality (A.38) transforms the error bound for τ0 − τ̂ into the error bounds of the terms
that we derived in (i)-(iv).
(i) Evaluating M(τ)−M(τ0).
Note that τ0 = arg maxn0≤τ≤n−n0 M(τ), and for any τ ∈ [n0, τ0],

M(τ)−M(τ0) = El({θ1,k,`, η1,k,`}; ν1,τ ) + El({θτ2,k,`, ητ2,k,`}; ντ+1,n)

−El({θ1,k,`, η1,k,`}; ν1,τ0)− El({θ2,k,`, η2,k,`}; ντ0+1,n)

= El({θτ2,k,`, ητ2,k,`}; ντ+1,τ0)− El({θ1,k,`, η1,k,`}; ντ+1,τ0)

+El({θτ2,k,`, ητ2,k,`}; ντ0+1,n)− El({θ2,k,`, η2,k,`}; ντ0+1,n).

Recall that

l({θk,`, ηk,`}; ν) =
∑

1≤k≤`≤q

∑
(i,j)∈Sk,l

n∑
t=1

{
Xt
i,j(1−Xt−1

i,j ) log θk,`

+(1−Xt
i,j)(1−Xt−1

i,j ) log(1− θk,`) + (1−Xt
i,j)X

t−1
i,j log ηk,` +Xt

i,jX
t−1
i,j log(1− ηk,`)

}
.

By Taylor expansion and the fact that the partial derivative of the expected likelihood
evaluated at the true values equals zero we have, there exist θ∗k,` ∈ [θ1,k,`, θ

τ
2,k,`], η

∗
k,` ∈
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[η1,k,`, η
τ
2,k,`], 1 ≤ k ≤ ` ≤ q, such that

El({θτ2,k,`, ητ2,k,`}; ντ+1,τ0)− El({θ1,k,`, η1,k,`}; ντ+1,τ0)

= −1

2

∑
1≤k≤`≤q

nk,`(τ0 − τ)

{
θ1,k,`η1,k,`

θ1,k,` + η1,k,`

(θτ2,k,` − θ1,k,`

θ∗k,`

)2
+

(1− θ1,k,`)η1,k,`

θ1,k,` + η1,k,`

(θτ2,k,` − θ1,k,`

1− θ∗k,`

)2

+
θ1,k,`η1,k,`

θ1,k,` + η1,k,`

(ητ2,k,` − η1,k,`

η∗k,`

)2
+

(1− η1,k,`)θ1,k,`

θ1,k,` + η1,k,`

(ητ2,k,` − η1,k,`

1− η∗k,`

)2
}

≤ −C1(τ0 − τ)
∑

1≤k≤`≤q
nk,`[(θ1,k,` − θ2,k,`)

2 + (η1,k,` − η2,k,`)
2]

≤ −C1(τ0 − τ)
[
‖W1,1 −W2,1‖2F + ‖W1,2 −W2,2‖2F

]
,

for some constant C1 > 0. Here in the first step we have used the fact that for any

(i, j) ∈ Sk,` and t ≤ τ0, EXt
i,j(1 − Xt−1

i,j ) = EXt−1
i,j (1 − Xt

i,j) =
θ1,k,`η1,k,`
θ1,k,`+η1,k,`

, E(1 −

Xt
i,j)(1 − Xt−1

i,j ) =
(1−θ1,k,`)η1,k,`
θ1,k,`+η1,k,`

, and EXt
i,jX

t−1
i,j =

(1−η1,k,`)θ1,k,`
θ1,k,`+η1,k,`

. Similarly, there exist

θ†k,` ∈ [θ2,k,`, θ
τ
2,k,`], η

†
k,` ∈ [η2,k,`, η

τ
2,k,`], 1 ≤ k ≤ ` ≤ q, such that

El({θτ2,k,`, ητ2,k,`}; ντ0+1,n)− El({θ2,k,`, η2,k,`}; ντ0+1,n)

= −1

2

∑
1≤k≤`≤q

nk,`(n− τ0)

{
θ2,k,`η2,k,`

θ2,k,` + η2,k,`

(θτ2,k,` − θ2,k,`

θ†k,`

)2
+

(1− θ2,k,`)η2,k,`

θ2,k,` + η2,k,`

(θτ2,k,` − θ2,k,`

1− θ†k,`

)2

+
θ2,k,`η2,k,`

θ2,k,` + η2,k,`

(ητ2,k,` − η2,k,`

η†k,`

)2
+

(1− η2,k,`)θ2,k,`

θ2,k,` + η2,k,`

(ητ2,k,` − η2,k,`

1− η†k,`

)2
}

≤ −C ′2(n− τ0)
∑

1≤k≤`≤q

nk,`(τ0 − τ)2

(n− τ)2
[(θ1,k,` − θ2,k,`)

2 + (η1,k,` − η2,k,`)
2]

≤ −C2(τ0 − τ)2

n− τ
[
‖W1,1 −W2,1‖2F + ‖W1,2 −W2,2‖2F

]
,

for some constants C ′2, C2 > 0. Consequently, we conclude that there exists a constant
C3 > 0 such that for any n0 ≤ τ ≤ τ0, we have

M(τ)−M(τ0) ≤ −C3(τ0 − τ)
[
‖W1,1 −W2,1‖2F + ‖W1,2 −W2,2‖2F

]
. (A.20)

(ii) Evaluating supτ∈[τn,p,τ0] P (ν̂(τ) 6= ν).

Let ν̂(τ) be either ν̂1,τ or ν̂τ+1,n. Note that the membership maps of the networks be-
fore/after τ remain to be ν. From Theorems 10 and 11, we have, under conditions C2-C4,
for any constant B > 0, there exists a large enough constant CB such that

sup
τ∈[τn,p,τ0]

P (ν̂(τ) 6= ν) ≤ CB(τ0 − τn,p)p[(pn)−(B+1) + exp{−B√p}].

Note that by choosingB to be large enough, we have p(τ0−τn,p)(pn)−(B+1) = o

(√
(τ0−τn,p) log(np)

n2s2min

)
.

On the other hand, the assumption that log(np)√
p → 0 in condition C4 implies pn

√
(τ0−τn,p)s2min

log(np) =
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o(exp{B√p}) for some large enough constantB. Consequently, we have (τ0−τn,p)p exp{−B√p} =

o

(√
(τ0−τn,p) log(np)

n2s2min

)
, and hence we conclude that supτ∈[τn,p,τ0] P (ν̂(τ) 6= ν) = o

(√
(τ0−τn,p) log(np)

n2s2min

)
.

(iii) Evaluating supτ∈[τn,p,τ0][Mn(τ)−M(τ)] when ν̂(τ) = ν.

From (ii) we have with probability greater than 1 − o

(√
(τ0−τn,p) log(np)

n2s2min

)
, ν̂(τ) = ν for

all τ ∈ [τn,p, τ0]. For simplicity, in this part we assume that Ŝτ1,k,` = Ŝτ2,k,` = Sk,l (or

equivalently ν̂1,τ = ν̂τ+1,n = ν) holds for all 1 ≤ k ≤ ` ≤ q and τn,p ≤ τ ≤ τ0 without
indicating that this holds in probability.

Denote

g1,i,j(θ, η; τ) =
τ∑
t=1

{
Xt
i,j(1−Xt−1

i,j ) log θ

+(1−Xt
i,j)(1−Xt−1

i,j ) log(1− θ) + (1−Xt
i,j)X

t−1
i,j log η +Xt

i,jX
t−1
i,j log(1− η)

}
,

and

g2,i,j(θ, η; τ) =
n∑

t=τ+1

{
Xt
i,j(1−Xt−1

i,j ) log θ

+(1−Xt
i,j)(1−Xt−1

i,j ) log(1− θ) + (1−Xt
i,j)X

t−1
i,j log η +Xt

i,jX
t−1
i,j log(1− η)

}
.

When ν̂ = ν, we have,

(A.21)

Mn(τ)−M(τ)

=
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ) +

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ̂
τ
2,k,`, η̂

τ
2,k,`; τ)

−E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)− E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

=
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ) +

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ̂
τ
2,k,`, η̂

τ
2,k,`; τ)

−
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)−
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

+
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ) +
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

−E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)− E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

Note that {θ̂τ1,k,`, η̂τ1,k,`} is the maximizer of
∑

1≤k≤`≤q
∑

(i,j)∈Sk,` g1,i,j(θk,`, ηk,`; τ). Ap-

plying Taylor’s expansion we have, there exist random scalars θ−k,` ∈ [θ̂τ1,k,`, θ1,k,`], η
−
k,` ∈
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[η̂τ1,k,`, η1,k,`] such that∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ)−

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)

≤ 1

2

∑
1≤k≤`≤q

nk,`τ

{(θ1,k,` − θ̂τ1,k,`
θ−k,`

)2
+
(θ1,k,` − θ̂τ1,k,`

1− θ−k,`

)2
+
(η1,k,` − η̂τ1,k,`

η−k,`

)2
+
(η1,k,` − η̂τ1,k,`

1− η−k,`

)2
}
.

On the other hand, when ν̂ = ν, similar to Proposition 6 and Theorem 12, we can show that
for anyB > 0, there exists a large enough constant C− such that max1≤k≤`≤q,τ∈[τn,p,τ0] |θ̂τ1,k,`−

θ1,k,`| ≤ C−
√

log(np)
ns2min

, and max1≤k≤`≤q,τ∈[τn,p,τ0] |η̂τ1,k,`−η1,k,`| = C−
√

log(np)
ns2min

hold with prob-

ability greater than 1−O((np)−B). Consequently, we have, when ν̂ = ν, there exits a large
enough constant C4 > 0 such that∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ)−

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)

≤ C4τ
∑

1≤k≤`≤q
nk,`

log(np)

ns2
min

≤ C4τp
2 log(np)

ns2
min

. (A.22)

Similarly, we have there exists a large enough constant C5 > 0 such that with probability
greater than 1−O((np)−B),∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ̂
τ
2,k,`, η̂

τ
2,k,`; τ)−

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

≤ C5(n− τ)p2 log(np)

ns2
min

. (A.23)

On the other hand, similar to Lemma 16, there exists a constant C6 > 0 such that with
probability greater than 1−O((np)−B),

(A.24)∣∣∣∣∣∣
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)− E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)

∣∣∣∣∣∣
≤ C6τp

2

√
log(np)

τp2
,

and

(A.25)∣∣∣∣∣∣
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)− E

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

∣∣∣∣∣∣
≤ C6(n− τ)p2

√
log(np)

(n− τ)p2
.
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Combining (A.21), (A.22), (A.23), (A.24) and (A.25) we conclude that when ν̂ = ν, there
exists a large enough constant C0 > 0 such that with probability greater than 1−O((np)−B),

(A.26)

sup
τ∈[τn,p,τ0]

|Mn(τ)−M(τ)| ≤ C0np
2

{
log(np)

ns2
min

+

√
log(np)

np2

}
= O

(
np2

√
log(np)

ns2
min

)
.

(iv) Evaluating E supτ∈[τn,p,τ0] |Mn(τ)−M(τ)−Mn(τ0) + M(τ0)|.
Notice that when ν̂ = ν,

Mn(τ)−M(τ)−Mn(τ0) + M(τ0)

=
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ) +

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ̂
τ
2,k,`, η̂

τ
1,k,`; τ)

−E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)− E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

−
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ0
1,k,`, η̂

τ0
1,k,`; τ0)−

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ̂
τ0
2,k,`, η̂

τ0
2,k,`; τ0)

+E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ0) + E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ2,k,`, η2,k,`; τ0)

Note that

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ)− g1,i,j(θ̂

τ0
1,k,`, η̂

τ0
1,k,`; τ0)− E[g1,i,j(θ1,k,`, η1,k,`; τ)− g1,i,j(θ1,k,`, η1,k,`; τ0)]

=

τ∑
t=1

{
Xt
i,j(1−Xt−1

i,j ) log
θ̂τ1,k,`

θ̂τ01,k,`

+ (1−Xt
i,j)(1−Xt−1

i,j ) log
1− θ̂τ1,k,`
1− θ̂τ01,k,`

+(1−Xt
i,j)X

t−1
i,j log

η̂τ1,k,`
η̂τ01,k,`

+Xt
i,jX

t−1
i,j log

1− η̂τ1,k,`
1− η̂τ01,k,`

}
−

τ0∑
t=τ+1

{
Xt
i,j(1−Xt−1

i,j ) log θ̂τ01,k,`

+(1−Xt
i,j)(1−Xt−1

i,j ) log(1− θ̂τ01,k,`) + (1−Xt
i,j)X

t−1
i,j log η̂τ01,k,` +Xt

i,jX
t−1
i,j log(1− η̂τ01,k,`)

}

+E

τ0∑
t=τ+1

{
Xt
i,j(1−Xt−1

i,j ) log θ1,k,` + (1−Xt
i,j)(1−Xt−1

i,j ) log(1− θ1,k,`)

+(1−Xt
i,j)X

t−1
i,j log η1,k,` +Xt

i,jX
t−1
i,j log(1− η1,k,`)

}
.

When sum over all (i, j) ∈ Sk,` and 1 ≤ k ≤ ` ≤ q, the last two terms in the above inequality
can be bounded similar to (A.22) and (A.24), with τ replaced by τ0− τ . For the first term,
with some calculations we have there exists a constant c1 > 0 such that with probability
larger than 1−O(np)−B),

sup
1≤k≤`≤q

∣∣∣θ̂τ1,k,` − θ̂τ01,k,`

∣∣∣ ≤ c1

√
τ0 − τ
τ0

√
log(np)

ns2
min

, (A.27)

sup
1≤k≤`≤q

∣∣∣η̂τ1,k,` − η̂τ01,k,`

∣∣∣ ≤ c1

√
τ0 − τ
τ0

√
log(np)

ns2
min

.
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Brief derivations of (A.27) are provided in Section A.10.3. Consequently, similar to (A.26),
we have there exists a large enough constant c2 > 0 such that∣∣∣∣∣ ∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

[
g1,i,j(θ̂

τ
1,k,`, η̂

τ
1,k,`; τ)− g1,i,j(θ̂

τ0
1,k,`, η̂

τ0
1,k,`; τ0)

]

−E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

[
g1,i,j(θ1,k,`, η1,k,`; τ)− g1,i,j(θ1,k,`, η1,k,`; τ0)

]∣∣∣∣∣
≤ c2p

2

√
(τ0 − τ) log(np)

s2
min

. (A.28)

Here in the last step we have used the fact that τ0 ' O(n),
√

log(np)
p2

≤
√

log(np)
s2min

, and

(τ0−τ) log(np)
ns2min

= o
(√

(τ0−τ) log(np)
s2min

)
. Similarly, note that,

(A.29)

g2,i,j(θ̂
τ
2,k,`, η̂

τ
2,k,`; τ)− g2,i,j(θ̂

τ0
2,k,`, η̂

τ0
2,k,`; τ0)− E[g2,i,j(θ

τ
2,k,`, η

τ
2,k,`; τ)− g2,i,j(θ2,k,`, η2,k,`; τ0)]

=
n∑

t=τ0+1

{
Xt
i,j(1−Xt−1

i,j )

[
log

θ̂τ2,k,`

θ̂τ02,k,`

− log
θτ2,k,`
θ2,k,`

]
+ (1−Xt

i,j)(1−Xt−1
i,j ) ·

[
log

1− θ̂τ2,k,`
1− θ̂τ02,k,`

− log
1− θτ2,k,`
1− θ2,k,`

]
+Xt

i,j(1−Xt−1
i,j )

[
log

η̂τ2,k,`
η̂τ02,k,`

− log
ητ2,k,`
η2,k,`

]
+Xt

i,jX
t−1
i,j

[
log

1− η̂τ2,k,`
1− η̂τ02,k,`

− log
1− ητ2,k,`
1− η2,k,`

]}
+ [g2,i,j(θ

τ
2,k,`, η

τ
2,k,`; τ0)− g2,i,j(θ2,k,`, η2,k,`; τ0)]

−E[g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ0)− g2,i,j(θ2,k,`, η2,k,`; τ0)] +

τ0∑
t=τ+1

{
Xt
i,j(1−Xt−1

i,j ) log θ̂τ2,k,`

+(1−Xt
i,j)(1−Xt−1

i,j ) log(1− θ̂τ2,k,`) + (1−Xt
i,j)X

t−1
i,j log η̂τ2,k,` +Xt

i,jX
t−1
i,j log(1− η̂τ2,k,`)

}

−E
τ0∑

t=τ+1

{
Xt
i,j(1−Xt−1

i,j ) log θτ2,k,` + (1−Xt
i,j)(1−Xt−1

i,j ) log(1− θτ2,k,`)

+(1−Xt
i,j)X

t−1
i,j log ητ2,k,` +Xt

i,jX
t−1
i,j log(1− ητ2,k,`)

}
:= I + II − III + IV − V.

For II−III, from Lemma 16 and the fact that
∣∣∣θτ2,k,` − θ2,k,`

∣∣∣ ≤ c3(τ0−τ)
n−τ , and

∣∣∣ητ2,k,` − η2,k,`

∣∣∣ ≤
c3(τ0−τ)
n−τ for some large enough constant c3, we have there exists a large enough constant

c4 > 0 such that with probability greater than 1−O((np)−B),

(A.30)∣∣∣∣∣∣
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

(II − III)

∣∣∣∣∣∣ ≤ c4p
2 τ0 − τ
n− τ

√
log(np)

τ0p2
= o

(
p2

√
(τ0 − τ) log(np)

s2
min

)
.
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When sum over all (i, j) ∈ Sk,` and 1 ≤ k ≤ ` ≤ q, the IV −V term can be bounded similar
to (A.22) and (A.24), with τ replaced by τ0− τ , i.e., there exist a constant c5 > 0 such that
with probability greater than 1−O((np)−B),∣∣∣∣∣∣

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

(IV − V )

∣∣∣∣∣∣ ≤ c5p
2

[
(τ0 − τ) log(np)

ns2
min

+
√
τ0 − τ

√
log(np)

p2

]

= O

(
p2

√
(τ0 − τ) log(np)

s2
min

)
. (A.31)

Lastly, similar to (A.27), we can show that there exists a constant c6 > 0 such that with
probability larger than 1−O(np)−B),

sup
1≤k≤`≤q

∣∣∣∣∣log
θ̂τ2,k,`
θτ2,k,`

− log
θ̂τ02,k,`

θ2,k,`

∣∣∣∣∣ ≤ c6

√
τ0 − τ
n

√
log(np)

ns2
min

, (A.32)

sup
1≤k≤`≤q

∣∣∣∣∣log
η̂τ2,k,`
ητ2,k,`

− log
η̂τ02,k,`

η2,k,`

∣∣∣∣∣ ≤ c6

√
τ0 − τ
n

√
log(np)

ns2
min

.

A brief proof of (A.32) is provided in Section A.10.3. Consequently, we can show that there
exists a constant c7 > 0 such that with probability larger than 1−O(np)−B),∣∣∣∣∣ ∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

[
g2,i,j(θ̂

τ
2,k,`, η̂

τ
2,k,`; τ)− g2,i,j(θ̂

τ0
2,k,`, η̂

τ0
2,k,`; τ0)

]

−E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

[
g2,i,j(θ

τ
2,k,`, η

τ
2,k,`; τ)− g2,i,j(θ2,k,`, η2,k,`; τ0)

]∣∣∣∣∣
≤ c7p

2

√
(τ0 − τ) log(np)

s2
min

. (A.33)

Now combining (A.28) and (A.33) and the probability for ν̂ 6= ν in (ii), we conclude
that there exists a constant C0 > 0 such that

E sup
τ∈[τn,p,τ0]

|Mn(τ)−M(τ)−Mn(τ0) + M(τ0)|

≤ C0np
2

{√
(τ0 − τn,p) log(np)

n2s2
min

+ o

(√
(τ0 − τn,p) log(np)

n2s2
min

)}

≤ 2C0p
2

√
(τ0 − τn,p) log(np)

s2
min

. (A.34)

(v) Evaluating supτ∈[n0,τn,p][Mn(τ)−Mn(τ0)].
In this part we consider the case when τ ∈ [n−n0, τn,p]. We shall see that supτ∈[n0,τn,p][Mn(τ)−
Mn(τ0)] < 0 in probability and hence arg maxτ∈[n0,τ0] Mn(τ) = arg maxτ∈[τn,p,τ0] Mn(τ) holds
in probability. Note that for any τ ∈ [n− n0, τn,p],

Mn(τ)−Mn(τ0) = Mn(τ)−M(τ)−Mn(τ0) + M(τ0)− [M(τ0)−M(τ)]. (A.35)
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Given ν̂1,τ and ν̂τ+1,n, we define an intermediate term

M∗n(τ) := l({θ−τ,k,`, η
−
τ,k,`}; ν̂

1,τ ) + l({θ∗τ,k,`, η∗τ,k,`}; ν̂τ+1,n).

where

θ−τ,k,` =

∑
(i,j)∈Ŝτ1,k,`

θ1,ν(i),ν(j)η1,ν(i),ν(j)
θ1,ν(i),ν(j)+η1,ν(i),ν(j)∑

(i,j)∈Ŝτ1,k,`
η1,ν(i),ν(j)

θ1,ν(i),ν(j)+η1,ν(i),ν(j)

, η−τ,k,` =

∑
(i,j)∈Ŝτ1,k,`

θ1,ν(i),ν(j)η1,ν(i),ν(j)
θ1,ν(i),ν(j)+η1,ν(i),ν(j)∑

(i,j)∈Ŝτ1,k,`
θ1,ν(i),ν(j)

θ1,ν(i),ν(j)+η1,ν(i),ν(j)

,

and

θ∗τ,k,` =

∑
(i,j)∈Ŝτ2,k,`

[
(τ0−τ)θ1,ν(i),ν(j)η1,ν(i),ν(j)
θ1,ν(i),ν(j)+η1,ν(i),ν(j)

+
(n−τ0)θ2,ν(i),ν(j)η2,ν(i),ν(j)
θ2,ν(i),ν(j)+η2,ν(i),ν(j)

]
∑

(i,j)∈Ŝτ2,k,`

[
(τ0−τ)η1,ν(i),ν(j)

θ1,ν(i),ν(j)+η1,ν(i),ν(j)
+

(n−τ0)η2,ν(i),ν(j)
θ2,ν(i),ν(j)+η2,ν(i),ν(j)

] ,

η∗τ,k,` =

∑
(i,j)∈Ŝτ2,k,`

[
(τ0−τ)θ1,ν(i),ν(j)η1,ν(i),ν(j)
θ1,ν(i),ν(j)+η1,ν(i),ν(j)

+
(n−τ0)θ2,ν(i),ν(j)η2,ν(i),ν(j)
θ2,ν(i),ν(j)+η2,ν(i),ν(j)

]
∑

(i,j)∈Ŝτ2,k,`

[
(τ0−τ)θ1,ν(i),ν(j)

θ1,ν(i),ν(j)+η1,ν(i),ν(j)
+

(n−τ0)θ2,ν(i),ν(j)
θ2,ν(i),ν(j)+η2,ν(i),ν(j)

] .

We have

Mn(τ)−M(τ) = Mn(τ)− EM∗n(τ) + EM∗n(τ)−M(τ).

Note that the expected log-likelihood E
∑

1≤i≤j≤p g1,i,j(α1,i,j , β1,i,j , τ) is maximized at α1,i,j =
θ1,ν(i),ν(j), β1,i,j = η1,ν(i),ν(j), and E

∑
1≤i≤j≤p g2,i,j(α2,i,j , β2,i,j , τ) is maximized at α2,i,j =

θτ,ν(i),ν(j), β2,i,j = ητ,ν(i),ν(j), we have

EM∗n(τ)−M(τ) ≤ 0.

On the other hand, notice that given ν̂, {θ−τ,k,`, η
−
τ,k,`} is the maximizer of El({θk,`, ηk,`}; ν̂1,τ )

and {θ∗τ,k,`, η∗τ,k,`} is the maximizer of El({θk,`, ηk,`}; ν̂τ+1,n). Similar to (A.26), there exists

a large enough constant C7 > 0 such that with probability greater than 1−O((np)−B),

sup
τ∈[n0,τn,p]

|Mn(τ)− EM∗n(τ)| ≤ C7np
2

{
log(np)

n
+

√
log(np)

np2

}
.

Consequently we have, with probability greater than 1−O((np)−B),

sup
τ∈[n0,τn,p]

[
Mn(τ)−M(τ)

]
≤ C7np

2

{
log(np)

n
+

√
log(np)

np2

}
. (A.36)

We remark that since the membership structure ν̂τ+1,n can be very different from the
original ν, the smin in (A.26) is simply replaced by the lower bound 1, and hence the upper
bound in (A.36) is independent of ν̂1;τ and ν̂τ+1,n.
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Combining (A.35), (A.36), (A.20), (A.26) (with τ = τ0), and choosing κ > 0 to be large
enough, we have with probability greater than 1−O((np)−B),

sup
τ∈[n0,τn,p]

[
Mn(τ)−Mn(τ0)

]
≤ C7np

2

{
log(np)

n
+

√
log(np)

np2

}
+ C0np

2

{
log(np)

ns2
min

+

√
log(np)

np2

}
−C3(τ0 − τn,p)

[
‖W1,1 −W2,1‖2F + ‖W1,2 −W2,2‖2F

]
< 0.

Consequently we have,

(A.37)

P

(
arg max
τ∈[n0,τ0]

[
Mn(τ)−Mn(τ0)

]
= arg max

τ∈[τn,p,τ0]

[
Mn(τ)−Mn(τ0)

])
≥ 1−O((np)−B).

(vi) Error bound for τ0 − τ̂ .

One of the key steps in the proof of (v) is to compare Mn(τ), the estimated log-
likelihood evaluated under the MLEs at a searching time point τ , with M(τ), the max-
imized expected log-likelihood at time τ . The error between Mn(τ) and M(τ), which is

of order Op

(
np2
(

log(np)
n +

√
log(np)
np2

))
reflects the noise level. On the other hand, the

signal is captured by M(τ0) − M(τ) = O(|τ0 − τ |p2∆2
F ), i.e., the difference between the

maximized expected log-likelihood evaluated at the true change point τ0 and the maxi-
mized expected log-likelihood evaluated at the searching time point τ . Consequently, when

|τ0−τ |p2∆2
F > κ

[
np2
(

log(np)
n +

√
log(np)
np2

)]
for some large enough constant κ > 0, we are able

to claim that |τ0− τ̂ | ≤ |τ0−τ | = Op

(
n∆−2

F

[
log(np)
n +

√
log(np)
np2

])
. By further deriving the es-

timation errors for any τ in the neighborhood of τ0 with radius O
(

∆−2
F

[
log(np)
n +

√
log(np)
np2

])
,

we obtained a better bound based on Markov’s inequality (see (A.38) below).

From (A.37) we have for any 0 < ε ≤ τ0 − τn,p,

P (τ0 − τ̂ > ε) ≤ P
(

sup
τ∈[τn,p,τ0−ε]

Mn(τ)−Mn(τ0) ≥ 0

)
+O((np)−B).
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Note that from (i) and (iv) we have

P

(
sup

τ∈[τn,p,τ0−ε]
Mn(τ)−Mn(τ0) ≥ 0

)
(A.38)

≤ P

(
sup

τ∈[τn,p,τ0−ε]

[
(Mn(τ)−M(τ)−Mn(τ0) + M(τ0))− (M(τ0)−M(τ))

]
≥ 0

)
≤ P

(
sup

τ∈[τn,p,τ0−ε]
|Mn(τ)−M(τ)−Mn(τ0) + M(τ0)| ≥ C3εp

2∆2
F

)
≤

E supτ∈[τn,p,τ0−ε]
∣∣Mn(τ)−M(τ)−Mn(τ0) + M(τ0)

∣∣
C3εp2∆2

F

≤
2C0p

2

√
(τ0−τn,p) log(np)

s2min

C3εp2∆2
F

.

We thus conclude that τ0 − τ̂ = Op

(
∆−2
F

√
(τ0−τn,p) log(np)

s2min

)
. By the definition of τn,p and

condition C5 we have,

∆−2
F

√
(τ0 − τn,p) log(np)

s2
min

= O

(
τ0 − τn,p

∆F

√
log(np)

ns2
min

[
log(np)

n
+

√
log(np)

np2

]−1/2)
.

Consequently, we conclude that

τ0 − τ̂ = Op

(τ0 − τn,p) min

{
1,

min
{

1, (n−1p2 log(np))
1
4

}
∆F smin

} .

A.10.2 Change point estimation with ν1,τ0 6= ντ0+1,n.

We modify steps (i)-(v) to the case where ν1,τ0 6= ντ0+1,n.
With some abuse of notations, we put W1,1 = (α1,i,j)p×p with α1,i,j = θ1,ν1,τ0 (i),ν1,τ0 (j),

W1,2 = (1 − β1,i,j)p×p with β1,i,j = η1,ν1,τ0 (i),ν1,τ0 (j), W2,1 = (α2,i,j)p×p with α2,i,j =
θ2,ντ0+1,n(i),ντ0+1,n(j), and W2,2 = (1 − β2,i,j)p×p with β2,i,j = η2,ντ0+1,n(i),ντ0+1,n(j). Simi-
lar to previous proofs we define

Mn(τ) :=
∑

1≤i≤j≤p
g1,i,j(α̂

τ
1,i,j , β̂

τ
1,i,j , τ) +

∑
1≤i≤j≤p

g2,i,j(α̂
τ
2,i,j , β̂

τ
2,i,j , τ),

M(τ) := E
∑

1≤i≤j≤p
g1,i,j(α1,i,j , β1,i,j , τ) + E

∑
1≤i≤j≤p

g2,i,j(α
τ
2,i,j , β

τ
2,i,j , τ),

where

ατ2,i,j =

τ0−τ
n−τ

α1,i,jβ1,i,j
α1,i,j+β1,i,j

+ n−τ0
n−τ

α2,i,jβ2,i,j
α2,i,j+β2,i,j

τ0−τ
n−τ

β1,i,j
α1,i,j+β1,i,j

+ n−τ0
n−τ

β2,i,j
α2,i,j+β2,i,j

,

βτ2,i,j =

τ0−τ
n−τ

α1,i,jβ1,i,j
α1,i,j+β1,i,j

+ n−τ0
n−τ

α2,i,jβ2,i,j
α2,i,j+β2,i,j

τ0−τ
n−τ

α1,i,j

α1,i,j+β1,i,j
+ n−τ0

n−τ
α2,i,j

α2,i,j+β2,i,j

,
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and

α̂τ1,i,j = θ̂τ1,ν̂1,τ (i),ν̂1,τ (j), β̂τ1,i,j = η̂τ1,ν̂1,τ (i),ν̂1,τ (j),

α̂τ2,i,j = θ̂τ2,ν̂τ+1,n(i),ν̂τ+1,n(j), β̂τ2,i,j = η̂2
τ,ν̂τ+1,n(i),ν̂τ+1,n(j).

Note that the definition of M(τ) here is now slightly different from the previous defi-
nition in that the ατ2,i,j and βτ2,i,j will generally be different from θτ

2,ντ0+1,n(i),ντ0+1,n(j)
and

ητ
2,ντ0+1,n(i),ντ0+1,n(j)

, unless ν1,τ0 = ντ0+1,n. We first of all point out the main difference we

are facing in the case where ν1,τ0 6= ντ0+1,n. Consider a detection time τ ∈ [τn,p, τ0]. In
the case where ν̂1,τ = ν̂τ+1,n = ν, we have ατ2,i,j = θτ2,k,` for all (i, j) ∈ Sk,`, and we have

|θ̂τ2,k,` − θτ2,k,`| = Op

(√
log(np)
ns2min

)
for all 1 ≤ k ≤ ` ≤ q, or equivalently, |α̂τ2,i,j − θτ2,ν(i),ν(j)| =

Op

(√
log(np)
ns2min

)
for all 1 ≤ i ≤ j ≤ p. However, when ν̂1,τ = ν1,τ0 ν̂τ+1,n = ντ0+1,n but

ν1,τ0 6= ντ0+1,n, the order of the estimation error becomes Op

(√
log(np)
ns2min

+ τ0−τ
n

)
. Here τ0−τ

n

is a bias terms brought by the fact that ν̂1,τ 6= ν̂τ+1,n. The main issue is that the the
following terms from the definition of θ̂τ2,k,`:∑

(i,j)∈Ŝτ2,k,`

τ0∑
t=τ+1

Xt
i,j(1−Xt−1

i,j ),
∑

(i,j)∈Ŝτ2,k,`

τ0∑
t=τ+1

(1−Xt−1
i,j ),

are no longer unbiased estimators (subject to a normalization) of the following corresponding
terms in the definition of θτ2,k,`:

θ1,k,`η1,k,`

θ1,k,` + η1,k,`
,

θ1,k,`,

θ1,k,` + η1,k,`
.

The proof of (i) does not involve any parameter estimators and hence can be established
similarly.

For (ii), note that |α̂τ2,i,j −α2,i,j | ≤ |α̂τ2,i,j −ατ2,i,j |+O
(
τ0−τ
n

)
holds for all 1 ≤ i < j ≤ p,

where the O
(
τ0−τ
n

)
is independent of i, j. This implies that when estimating the α2,i,j , we

have introduced a bias term O
(
τ0−τ
n

)
by including the τ0 − τ samples before the change

point. From the proofs of Lemma 19, and condition C4, we conclude that (ii) hold for
ν̂τ+1,n.

For (iii), replacing the order of the error bound for θ̂+
τ,k,` and θ̂+

τ,k,` from
√

log(np)
ns2min

to√
log(np)
ns2min

+ τ0−τ
n , we have there exists a large enough constant C0 > 0 such that

sup
τ∈[τn,p,τ0]

|Mn(τ)−M(τ)| ≤ C0np
2

{
log(np)

ns2
min

+

√
log(np)

np2
+

(τ0 − τn,p)2

n2

}

= O

(
np2

{√
log(np)

ns2
min

+
(τ0 − τn,p)2

n2

})
.

For (iv), the error bounds related to g1,i,j(·, ·; ·) remain unchanged. Note that the

decomposition (A.29) still holds with θτ2,k,`, η
τ
2,k,` replaced be ατ2,i,j , β

τ
2,i,j and θ̂τ2,k,`, η̂

τ
2,k,`
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replaced be α̂τ2,i,j , β̂
τ
2,i,j . The bound for (A.30) still holds owing to the fact that |ατ2,i,j −

α2,i,j | = O
(
τ0−τ
n

)
and |βτ2,i,j − β2,i,j | = O

(
τ0−τ
n

)
. The bound for (A.31) would become

O

(
p2
√

(τ0−τ) log(np)
s2min

+
(τ0−τn,p)2

n2

)
. Notice that similar to (A.32), we have with probability

larger than 1−O((np)−B),

sup
1≤i≤j≤p

∣∣∣∣∣log
α̂τ2,i,j
ατ2,i,j

− log
α̂τ02,k,`

α2,k,`

∣∣∣∣∣ = O

(√
τ0 − τ
n

√
log(np)

ns2
min

+
τ0 − τ
n

)
,

sup
1≤i≤j≤p

∣∣∣∣∣log
β̂τ2,i,j
βτ2,i,j

− log
β̂τ02,k,`

β2, k, `

∣∣∣∣∣ = O

(√
τ0 − τ
n

√
log(np)

ns2
min

+
τ0 − τ
n

)
.

Consequently, we have

E sup
τ∈[τn,p,τ0]

|Mn(τ)−M(τ)−Mn(τ0) + M(τ0)| ≤ C0p
2

{√
(τ0 − τn,p) log(np)

s2
min

+ (τ0 − τn,p)

}
.

By noticing that {α1,i,j , β1,i,j , α
τ
2,i,j , β

τ
2,i,j} is the maximizer of M(τ), we conclude that

(v) also holds. Consequently, for (vi), we have

P

(
sup

τ∈[τn,p,τ0−ε]
Mn(τ)−Mn(τ0) ≥ 0

)
≤
C0p

2

√
(τ0−τn,p) log(np)

s2min
+ C0p

2(τ0 − τn,p)

C3εp2∆2
F

.

Consequently, we conclude that

τ0 − τ̂ = Op

(τ0 − τn,p) min

{
1,

min
{

1, (n−1p2 log(np))
1
4

}
∆F smin

+
1

∆2
F

} .

A.10.3 Proofs of (A.27) and (A.32) when ν̂ = ν

For (A.27), note that

(A.39)∣∣∣θ̂τ1,k,` − θ̂τ01,k,`

∣∣∣ =

∣∣∣∣∣
∑

(i,j)∈Sk,`
∑τ

t=1X
t
i,j(1−X

t−1
i,j )∑

(i,j)∈Sk,`
∑τ

t=1(1−Xt−1
i,j )

−
∑

(i,j)∈Sk,`
∑τ0

t=1X
t
i,j(1−X

t−1
i,j )∑

(i,j)∈Sk,`
∑τ0

t=1(1−Xt−1
i,j )

∣∣∣∣∣ .
Similar to Lemma 16, we can show that for any constant B > 0, there exists a large enough
constant B1 such that with probability larger than 1−O((np)−(B+2)),∣∣∣∣∣∣ 1

τnk,`

∑
(i,j)∈Sk,`

τ∑
t=1

(1−Xt−1
i,j )−

η1,k,`

θ1,k,` + η1,k,`

∣∣∣∣∣∣ ≤ B1

√
log(np)

τnk,`
,

∣∣∣∣∣∣ 1

τnk,`

∑
(i,j)∈Sk,`

τ∑
t=1

Xt
i,j(1−Xt−1

i,j )−
η1,k,`

θ1,k,` + η1,k,`

∣∣∣∣∣∣ ≤ B1

√
log(np)

τnk,`
,
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and

1

τ(τ0 − τ)n2
k,`

∣∣∣∣∣
[ ∑

(i,j)∈Sk,`

τ∑
t=1

Xt
i,j(1−Xt−1

i,j )

][ ∑
(i,j)∈Sk,`

τ0∑
t=τ+1

(1−Xt−1
i,j )

]

−
[ ∑

(i,j)∈Sk,`

τ0∑
t=τ+1

Xt
i,j(1−Xt−1

i,j )

][ ∑
(i,j)∈Sk,`

τ∑
t=1

(1−Xt−1
i,j )

]∣∣∣∣∣ ≤ B1

√
log(np)

(τ0 − τ)nk,`
.

Plug these into (A.39) we have with probability larger than 1−O((np)−(B+2)),∣∣∣θ̂τ1,k,` − θ̂τ01,k,`

∣∣∣ ≤ c0τ(τ0 − τ)n2
k,`

τ0τn2
k,`

√
log(np)

(τ0 − τ)nk,`
≤ c0

√
τ0 − τ
τ0

√
log(np)

nk,`
,

for some constant c0 > 0. Since τ0 ' O(n), and nk,` ≥ s2
min, we conclude that there exists

a constant c1 > 0 such that with probability larger than 1−O(np)−B),

sup
1≤k≤`≤q

∣∣∣θ̂τ1,k,` − θ̂τ01,k,`

∣∣∣ ≤ c1

√
τ0 − τ
τ0

√
log(np)

ns2
min

.

For (A.32), note that

log
θ̂τ2,k,`
θτ2,k,`

− log
θ̂τ02,k,`

θ2,k,`

= log

1
nk,`(n−τ)

∑
(i,j)∈Sk,`

∑n
t=τ+1X

t
i,j(1−X

t−1
i,j )

τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

η2,k,`η2,k,`
θ2,k,`+η2,k,`

− log

∑
(i,j)∈Sk,`

∑n
t=τ0+1X

t
i,j(1−X

t−1
i,j )

nk,`(n− τ0) · η2,k,`η2,k,`
θ2,k,`+η2,k,`

− log

1
nk,`(n−τ)
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t=τ+1(1−Xt−1

i,j )

τ0−τ
n−τ

η1,k,`
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+ n−τ0
n−τ
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+ log

∑
(i,j)∈Sk,`

∑n
t=τ0+1(1−Xt−1

i,j )

nk,`(n− τ0) · η2,k,`
θ2,k,`+η2,k,`

.

It suffices to establish a bound for

∆τ0,τ :=

1
nk,`(n−τ)

∑
(i,j)∈Sk,`

∑n
t=τ+1X

t
i,j(1−X

t−1
i,j )

τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

η2,k,`η2,k,`
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−
∑

(i,j)∈Sk,`
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t
i,j(1−X

t−1
i,j )

nk,`(n− τ0) · η2,k,`η2,k,`
θ2,k,`+η2,k,`

.

Note that for any B > 0, there exists a large enough constant B2 such that with probability
greater than 1−O((np)−(B+2)),

|∆τ0,τ | ≤

∣∣∣∣∣
1

nk,`(n−τ)
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∑τ0
t=τ+1

[
Xt
i,j(1−X

t−1
i,j )− θ1,k,`η1,k,`

θ1,k,`+η1,k,`

]
τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

η2,k,`η2,k,`
θ2,k,`+η2,k,`

∣∣∣∣∣
+

∣∣∣∣∣
 1

nk,`(n−τ)

τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

η2,k,`η2,k,`
θ2,k,`+η2,k,`

−
1

nk,`(n−τ0)
η2,k,`η2,k,`
θ2,k,`+η2,k,`

 ∑
(i,j)∈Sk,`

n∑
t=τ0+1

[
Xt
i,j(1−Xt−1

i,j )

−
θ2,k,`η2,k,`

θ2,k,` + η2,k,`

]∣∣∣∣∣
≤ B2

τ0 − τ
n− τ

√
log(np)

(τ0 − τ)nk,`
+B2

τ0 − τ
n− τ

√
log(np)

(n− τ0)nk,`
.

65



Jiang, Li and Yao

(A.32) then follows by noticing that τ0−τ
n−τ

√
log(np)

(n−τ0)nk,`
= o
(
τ0−τ
n−τ

√
log(np)

(τ0−τ)nk,`

)
.

Appendix B: Real data analysis

B.1 French high school contact data (cont.)

The more details of the data analysis in Section 5.2 are presented below.

We now compare the dynamic stochastic block model method in Matias and Miele (2017)
which is implemented in an R package dynsbm. We note that the model in Matias and Miele
(2017) allows the membership probabilities and the transition parameters to vary over time.

We use the dynsbm package to analyze the same French high school contact data as we
reported in the main text. The function selection.dynsbm can automatically select the
number of clusters by maximizing the so-called integrated classification likelihood (ICL)
criterion. Figure 6 shows that the optimal cluster number is selected to be 9 using ICL for
this data set. This agrees with our findings reported in the main text when using the BIC
selection criterion. We then compare the detected clusters from dynsbm with the actual
class types in Table 9 at all the five time points.

We may notice that dynsbm method reserves one group as “0” for subjects with no edges
(the absence nodes). Our algorithm, in comparison, is not affected by those subjects.

The grouping results from dynsbm method is quite stable over the five time points. Such
results lend support to our method which assumes the constant cluster structure over time.
Furthermore, our clustering results, shown in Table 10, appear to be more accurate and
agree more closely to the true grouping (class types) for this data analysis.

Another practical advantage of our method is its relatively short computing time. Using
a computer with Intel(R) Core(TM) i7-10875H CPU and 32.0 GB RAM, we need to spend
0.36 and 252.39 seconds to obtain the community detection results with our method and
dynsbm method, respectively.

B.2 Enron email data

The Enron email dataset contains approximately 500,000 emails generated by employees
of the Enron Corporation. It was obtained by the Federal Energy Regulatory Commission
during its investigation of Enron’s collapse. The data file was published at https://www.

cs.cmu.edu/~./enron/.

Rastelli et al. (2018) developed a latent stochastic block model for directed dynamic
network data. They applied their methods for the Enron email data. To compare with
their results, we used data for all the emails exchanged from January 2000 to March 2002
(n = 27) between the Enron members. The number of nodes in our analysis is 184 (which
is different from Rastelli et al. (2018) where they have kept 148 subjects).

Using our spectral clustering algorithm for the whole network data and using the BIC,
we obtain the best number of cluster is 13. Rastelli et al. (2018) used the exact ICL criterion
and found 17 clusters but 4 groups seem to be extremely small or just contain inactive nodes.
Their algorithm is for directed graph and also assume time-varying membership. It seems
our results are still quite close to Rastelli et al. (2018). Similar to their analysis, we can
see that there is a high degree of heterogeneity with 13 different clusters for this data set.
When applying dynsbm package on this data the optimal number of cluster is only 6.
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Figure 6: Integrated classification likelihood (ICL) and log-likelihood corresponding to dif-
ferent cluster numbers for French high school data.
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Table 9: Clusters for French high school data by using the model in Matias and Miele
(2017).

Detected clusters
Class types 0 1 2 3 4 5 6 7 8 9

t = 1
BIO1 1 0 35 0 0 0 0 0 1 0
BIO2 1 0 0 0 0 1 0 0 31 0
BIO3 0 0 0 0 0 0 40 0 0 0
MP1 3 30 0 0 0 0 0 0 0 0
MP2 3 0 0 0 0 26 0 0 0 0
MP3 2 0 0 31 0 5 0 0 0 0
PC1 4 0 0 0 0 5 0 0 0 35
PC2 0 0 0 0 0 1 0 38 0 0
EGI 1 0 0 0 32 1 0 0 0 0
t = 2
BIO1 0 0 36 0 0 0 0 0 1 0
BIO2 4 0 0 0 0 0 0 0 29 0
BIO3 1 0 0 0 0 0 39 0 0 0
MP1 0 31 0 0 0 2 0 0 0 0
MP2 2 0 0 0 0 27 0 0 0 0
MP3 1 0 0 34 0 3 0 0 0 0
PC1 3 0 0 0 0 2 0 0 0 39
PC2 3 0 0 0 0 1 0 35 0 0
EGI 3 0 0 0 31 0 0 0 0 0
t = 3
BIO1 5 0 31 0 0 0 0 0 1 0
BIO2 2 0 0 0 0 0 0 0 31 0
BIO3 3 0 0 0 0 0 37 0 0 0
MP1 0 27 0 0 0 6 0 0 0 0
MP2 1 0 0 0 0 28 0 0 0 0
MP3 0 0 0 36 0 2 0 0 0 0
PC1 6 0 0 0 0 2 0 0 0 36
PC2 4 0 0 0 0 0 0 35 0 0
EGI 3 0 0 0 30 1 0 0 0 0
t = 4
BIO1 2 0 35 0 0 0 0 0 0 0
BIO2 3 0 0 0 0 0 0 0 30 0
BIO3 7 0 0 0 0 0 33 0 0 0
MP1 1 28 0 0 0 4 0 0 0 0
MP2 1 1 0 0 0 27 0 0 0 0
MP3 4 0 0 34 0 0 0 0 0 0
PC1 4 0 0 0 0 3 0 0 0 37
PC2 4 0 0 0 0 0 0 35 0 0
EGI 6 0 0 0 26 2 0 0 0 0
t = 5
BIO1 3 0 33 0 0 0 0 0 1 0
BIO2 2 0 0 0 0 0 0 0 31 0
BIO3 5 0 0 0 0 0 35 0 0 0
MP1 1 26 0 0 0 6 0 0 0 0
MP2 4 0 0 0 0 25 0 0 0 0
MP3 3 0 0 33 0 2 0 0 0 0
PC1 4 0 0 0 0 2 0 0 0 38
PC2 3 0 0 0 0 0 0 36 0 0
EGI 3 0 0 0 30 1 0 0 0 0

68



AR Networks

Table 10: Detected clusters for the French high school data by using our method.
Detected clusters

Class types 1 2 3 4 5 6 7 8 9
BIO1 0 0 1 0 0 0 0 0 36
BIO2 0 1 32 0 0 0 0 0 0
BIO3 0 1 0 0 39 0 0 0 0
MP1 33 0 0 0 0 0 0 0 0
MP2 0 1 0 28 0 0 0 0 0
MP3 0 0 0 0 0 38 0 0 0
PC1 0 44 0 0 0 0 0 0 0
PC2 0 0 0 0 0 0 0 39 0
EGI 0 0 0 0 0 0 34 0 0

Next we considered the change point analysis. Using our binary segmentation methods,
we detect one change point at October 2001 which is exactly the month corresponding to
the disclosure of Enron bankruptcy (see the log-likelihood functions plotted in Figure 7).
This again agrees with the empirical findings in Rastelli et al. (2018).

Figure 7: Log-likelihood functions corresponding to different change points in time for En-
ron email data.
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