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Abstract

Many modern classification algorithms are formulated through the regularized empirical
risk minimization (ERM) framework, where the risk is defined based on a loss function.
We point out that although the loss function in decision theory is non-negative by defini-
tion, the non-negativity of the loss function in ERM is not necessary to be classification-
calibrated and to produce a Bayes consistent classifier. We introduce the leaky hockey
stick loss (LHS loss), the first negatively divergent margin-based loss function. We prove
that the LHS loss is classification-calibrated. When the hinge loss is replaced with the
LHS loss in the ERM approach for deriving the kernel support vector machine (SVM),
the corresponding optimization problem has a well-defined solution named the kernel leaky
hockey stick classifier (LHS classifier). Under mild regularity conditions, we prove that
the kernel LHS classifier is Bayes risk consistent. In our theoretical analysis, we overcome
multiple challenges caused by the negative divergence of the LHS loss that does not exist
in the analysis of the usual kernel machines. For a numerical demonstration, we provide a
computationally efficient algorithm to solve the kernel LHS classifier and compare it to the
kernel SVM on simulated data and fifteen benchmark data sets. To conclude this work, we
further present a class of negatively divergent margin-based loss functions that have similar
theoretical properties to those of the LHS loss. Interestingly, the LHS loss can be viewed
as a limiting case of this family of negatively divergent margin-based loss functions.

Keywords: bayes risk consistency, classification-calibrated, loss function, majorization
minimization principle, margin maximizing

1. Introduction

This paper concerns binary classification, where the task is to predict an unobserved binary
output value y ∈ {−1, 1} based on an observed input vector x ∈ Rp. The classifier is a
mapping from the input space X to {−1, 1} via a classification function f̂ , and the predicted
y value is sgn{f̂(x)}. The decision boundary is the set {x : f̂(x) = 0}. Suppose that data
are generated from some underlying distribution pr(X,Y), and let p(x) = pr(Y = 1 |
X = x). Under the standard 0-1 loss, the optimal classification rule is sgn [p(x)− 1/2]
(a.k.a. Bayes rule). Throughout the paper, we assume that p(X) 6= 1/2 almost surely.
The optimal decision boundary is {x : p(x) = 1/2}. Given training data, {(xi, yi), i =
1, . . . , n}, one aims to develop a classifier that mimics the Bayes rule as closely as possible.
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Extensive research has been devoted to classification, and many classification algorithms
have been developed and widely used in practice, ranging from the classical methods such
as discriminant analysis and logistic regression to modern techniques such as support vector
machines (SVM) (Vapnik, 2013), boosting (Freund et al., 1996), random forests (Breiman,
2001), and deep learning (Goodfellow et al., 2016).

Regularized empirical risk minimization (ERM) is a fundamental framework for design-
ing a new classification algorithm and analyzing its statistical properties. The empirical risk
is defined as

∑n
i=1 L(yif(xi))/n, where L is referred to as a margin-based loss function in

the literature and yf(x) is called the margin per training data point. A classification learn-
ing algorithm is derived by trying to minimize the empirical risk via a regularized method.
Many classification algorithms, such as kernel SVM and 1-norm SVM (Zhu et al., 2003), can
be cast in this framework. Also, boosting can be viewed as minimizing the empirical risk
with an `1 penalty (Rosset et al., 2004). The terms “risk” and “loss function” are borrowed
from the statistical decision theory, where a loss function is naturally non-negative. Note
that the loss function in ERM is used to derive the classifier. In contrast, the loss function
in decision theory is used to measure the theoretical performance of a statistical method.
In classification, the loss for measuring performance is usually the 0-1 loss as previously
stated. In contrast, the loss function in ERM can be far more flexible. For example, SVM
uses the hinge loss, logistic regression uses the logit loss (or the binomial deviance loss), and
AdBoost uses the exponential loss (Hastie et al., 2009; Friedman et al., 2000). All these
loss functions are non-negative, which makes them qualified as loss functions in decision
theory. An interesting question, which has not been asked before in the literature, is: Can
we use a function having negative values in ERM for classification? In the ERM frame-
work, a loss function bounded from below is equivalent to being non-negative because we
can vertically lift the loss function without changing the regularized ERM problem (as a
constant does not affect the minimization). Thus, the real question is whether we could use
a negatively-divergent function in ERM for classification.

In this paper, we provide an affirmative answer and the new function called the leaky
hockey stick loss (LHS loss). The expression of the LHS loss is given in (1) and the picture
of this loss function is displayed in Figure 1. We use the word ‘hockey stick’ because our loss
function resembles it and is continuously differentiable. We use the term ‘leaky’ because
the right side diverges to negative infinity motivated by the name of leaky ReLU.

L(yf) =

{
− log yf, yf > 1,

1− yf, yf ≤ 1,
(1)

Given the training data, the empirical leaky hockey stick risk is
∑n

i=1 L(yif(xi))/n. If
we use the notion from decision theory, the LHS loss should not be called a loss function
as its values diverge to negative infinity as the margin approaches positive infinity. Nev-
ertheless, we still use loss in the name to follow the convention. A positive margin means
the classification is correct. When the margin is larger than one, the LHS loss becomes
negative, meaning that it actually gives a reward. The larger the margin, the bigger the
reward. Intuitively, this sounds reasonable. Of course, we need to provide formal theoretical
and numerical evidence to justify the use of the LHS loss in ERM, which is the main focus
of this paper.
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(a) Hinge loss
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(b) Leaky hockey stick loss

Figure 1: Plot of the hinge loss and the leaky hockey stick loss

There have been many studies on the choice of a loss function in ERM for classifi-
cation. Lin (2004) proposed Fisher consistency which requires any global minimizer of
E[L(Yf(X))] has the same sign as the Bayes rule almost surely. Bartlett et al. (2006) pro-
posed a more-refined classification-calibration condition, requiring that a global minimizer of
E[L(Yf(X)) | X = x] has the same sign as the Bayes rule almost surely. The two conditions
usually coincide for non-negative loss functions, and the two are used as the same condition.
It is often easy to verify these conditions for non-negative convex loss functions. However,
non-negative non-convex loss functions can also satisfy these conditions. A famous example
is ψ-learning loss (Shen et al., 2003). There is no result on whether a negatively-divergent
L can be classification-calibrated or Fisher-consistent. In order to answer this question, we
first need to check whether a global minimizer of E[L(Yf(X))] or E[L(Yf(X)) | X = x] is
well-defined in the sense that the minimizer is finite-valued and the minimum objective is
finite-valued. This technical issue is non-trivial to address when L is negatively-divergent.
For the LHS loss, our analysis reveals that the global minimizer of E[L(Yf(X)) | X = x]
is always well-defined and has the same sign as the Bayes rule, but the global minimizer of
E[L(Yf(X))] may not be well-defined unless some further conditions are imposed.

The fundamental justification for a loss function in ERM for classification is Bayes
consistency. That is, the expected misclassification rate of the resulting classifier converges
to that of the Bayes rule as the sample size increases. When the LHS loss is used in
the ERM approach to derive a classifier, the resulting classifier is named the kernel leaky
hockey stick classifier (LHS classifier). We establish the Bayes consistency of the kernel LHS
classifier, which in turn offers the most important justification for the LHS loss. Therefore,
we can claim that the LHS loss is the first negatively divergent margin loss function for
classification. Bayes consistency has been established for some kernel machines (Zhang,
2004; Steinwart, 2005), but their studies are limited to non-negative loss functions. Their
analyses are not applicable in the case of LHS loss. We use new techniques to prove the
Bayes consistency of the kernel LHS classifier.
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For our theoretical analysis, we overcome multiple challenges caused by the negative
divergence of the LHS loss. For non-negative loss functions, the existence of the global
minimizer and minimum objective value of E[L(Yf(X))] can be checked easily and is crucial
to study Bayes risk consistency. They are used to approximate the misclassification error
of a derived classifier. However, we find out that they may not exist for the LHS loss,
which is technically non-trivial to address. Still, we provide the necessary and sufficient
conditions for the existence through a quantity of X containing negligible information about
the optimal decision boundary. This result tells that the general approach for studying
Bayes risk consistency does not apply to the LHS loss. Instead, we use different quantities
and techniques to approximate the classification error and get the Bayes risk consistency
result for the kernel LHS classifier. Additionally, it is not obvious to prove the existence of
the global solutions to the linear LHS classifier and the kernel LHS classifier different from
using a non-negative loss function. We find a specific compact set and show that a global
minimizer on the set is also an actual global minimizer.

The geometry of SVM is best described in the linear space where its margin maxi-
mization interpretation is clearly shown. Rosset et al. (2003) showed that this geometric
interpretation is shared by a class of non-negative loss functions that vanishes to zero quickly
enough, such as the hinge loss, the exponential loss, and the logit loss. Their result provides
the unified margin maximization view of many popular classification algorithms. However,
their theory does not cover the LHS loss because the LHS loss violates their conditions.
Nevertheless, we show that the linear LHS classifier also has an interesting and new margin
maximization view. This result suggests that the linear LHS classifier and the linear SVM
are different, although their kernel versions approach the same limit (Bayes rule).

For a numerical demonstration, we develop an efficient algorithm to solve the LHS
classifier. It allows us to compare the LHS classifier to the standard SVM. We do an
extensive comparison of the kernel LHS classifier and the kernel SVM using simulated
data and 15 benchmark data sets from Dua and Graff (2017). The linear LHS classifier
outperforms the linear SVM on 10 out of 15 data sets, and the kernel LHS classifier and
the kernel SVM have more similar performance.

We have implemented the algorithms for the linear and kernel LHS classifiers in the
lhsc package in R, which is available at http://github.com/ohrankwon/lhsc.

The remainder of the paper is organized as follows. In Section 2, we prove that the
LHS loss function is classification-calibrated. In Section 3, we prove that the linear LHS
classifier is well-defined given training data. We provide the dual problem of the linear LHS
classifier. When the data is linearly separable, we show the margin-maximization picture of
the linear LHS classifier and compare it with the margin-maximization picture of the linear
SVM. In Section 4, we consider the kernel LHS classifier in a reproducing kernel Hilbert
space (RKHS). We first prove that the kernel LHS classifier is well-defined on training data.
We then derive an efficient algorithm to solve the kernel LHS classifier. In Section 5, we
establish the Bayes risk consistency of the kernel LHS classifier. Section 6 contains the
numerical results. Concluding remarks are given in Section 7 where we further provide a
class of negatively divergent loss functions that are classification-calibrated and have Bayes
consistency. Technical details and proofs are provided in Appendices.
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2. Classification-calibration Property

Lin (2004) proposed Fisher consistency as a necessary condition on a loss function. It is
defined to be that any global minimizer f̌ (if it exists) of E[L(Yf(X))], generally referred
to as a population minimizer, has the same sign function as the Bayes rule almost surely.
Later, Bartlett et al. (2006) defined classification-calibration. A loss function L is called
classification-calibrated if any global minimizer f̄ (if it exists) of E[L(Yf(X)) | X = x] has
the same sign as the Bayes rule almost surely. For example, the hinge loss is classification-
calibrated, which can be directly shown by Theorem 2 of Bartlett et al. (2006).

An unspoken assumption in those two definitions is the existence of a global minimizer.
When f̄ exists (which can be easily checked) and |E[L(Yf̄(X))]| < ∞, then a population
minimizer f̌ exists. We further see that loss function L is classification-calibrated if and
only if it is Fisher consistent. The ‘if’ statement follows from the fact that any f̄ is also
a population minimizer and the definition of Fisher consistency. The ‘only if’ statement
comes from the fact that E[L(Yf̄(X)) | X] = E[L(Yf̌(X)) | X] almost surely and that for
any δX such that sgn(δX) 6= sgn(p(X) − 1/2), E[L(Yf̄(X)) | X] < E[L(YδX) | X] almost
surely by the definition of classification-calibration.

For a non-negative loss function L, E[L(Yf̄(X))] is always finite. However, the LHS loss
does not guarantee the finiteness of E[L(Yf̄(X))] (see Theorem 4 for further information),
thereby not ensuring the existence of a global minimizer that Fisher consistency implicitly
assumes. Instead, we verify that the LHS loss is classification-calibrated. The LHS loss
is the first negatively divergent loss function proven to satisfy the classification-calibration
property.

Theorem 1 (Classification-calibration) Let L be the LHS loss. For any x such that p(x) ∈
(0, 1), a global minimizer of E[L(Yf(X)) | X = x] uniquely exists and is

f̄(x) =

{
− (1− p(x))(p(x))−1, if p(x) < 1/2,

+ p(x)(1− p(x))−1, if p(x) > 1/2.

Also, sgn{f̄(x)} = f∗(x), where f∗(x) = sgn{p(x)− 1/2} is the Bayes rule.

Remark 1 In general, a global minimizer of E[L(Yf(X)) | X = x] is allowed to take values
±∞ because what matters is only the sign of the minimizer (Lin, 2004). If we allow the
minimum objective to take values ±∞, Theorem 1 can be extended to include p(x) equals
to 0 and 1. It is because if p(x) = 0, then E[L(Yα) | X = x] = L(−α)→ −∞ as α→ −∞.
If p(x) = 1, then E[L(Yf(X)) | X = x] = L(α)→ −∞ as α→∞.

3. Linear Leaky Hockey Stick Classifier

3.1 Existence of a global solution

Theorem 1 offers a justification for the LHS loss with an infinite amount of data. In
applications, the data size is always finite. Thus, we further need to study the properties of
classifiers using the LHS loss. We first examine the linear leaky hockey stick classifier (LHS
classifier) to understand the characteristics of the LHS loss.
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When L is a non-negative continuous loss function, there exists a global minimizer to the
regularized ERM problem. Proving existence is considered well-understood. The sublevel
set of the objective function L of the regularized ERM problem, {βββ : L(βββ) ≤ c}, is compact
for any c ∈ R, and the global minimizer of the continuous objective function on a compact
set must exist by the extreme value theorem.

In contrast, it is not trivial to show the existence of a global minimizer of the linear LHS
classifier. The loss term in the regularized ERM can diverge to negative infinity even though
the LHS loss is convex and training data have finite samples. To show the existence, we
find a specific compact set D of βββ, so that the objective function of the linear LHS classifier
can have a global minimizer on D. Then, we show that the objective value at the global
minimizer on D is always smaller than any objective value on Dc.

Theorem 2 (Existence of global solution) Let (xi, yi) ∈ Rp × {−1,+1} for i = 1, . . . , n be
training data. Suppose there exist i, j with yi = +1 and yj = −1. Then, there exists a global
solution to

minL(β0,βββ) = min
β0,βββ

[
n∑
i=1

L
(
yi(β0 + xTi βββ)

)
/n+ λβββTβββ

]
, (2)

where L is the LHS loss and λ > 0 is a tuning parameter.

Remark 2 (Uniqueness) The minimizer β̂ββ is uniquely determined because the LHS loss is
convex and the `2 regularizer is strictly convex. However, β̂0 may not. Here is an illustrative
example. Let the data be

y1 = −1, y2 = −1, y3 = 1, y4 = 1,

x1 = 1, x2 = −1, x3 = 1, x4 = −1.

Then both (0, 0) and (1, 0) are global minimizers. Non-uniqueness of the intercept term can
also occur in the linear SVM.

3.2 Constrained optimization formulation and its dual

We can reformulate the optimization problem (2) as a constrained optimization problem.
The objective is to maximize a new criterion of margins under the constraints that all data
points lie on the correct side of the hyperplane after being perturbed by slack variables ηis.
The next lemma illustrates this result.

Lemma 1 (Constrained optimization formulation) The linear LHS classifier classifier (2)
can be equally written as sgn(ŵ0 + xT ŵ), where (ŵ0, ŵ

T )T is the solution to

min
w0,w

−
n∑
i=1

log di + C

n∑
i=1

ηi

subject to di = yi(w0 + xTi w) + ηi ≥ 0 ∀i,
ηi ≥ 0 ∀i, and wTw ≤ 1,

(3)

for some tuning parameter C > 0.
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The dual form is presented in the next lemma.

Lemma 2 (The dual problem) Let X be a n × p matrix with ith row xTi , y be a n × 1
vector with ith element yi, and Y be a diagonal matrix with ith diagonal element yi. The
constrained optimization problem (3) has a dual which is

max
σσσ∈Rn

1T logσσσ −
∥∥XTYσσσ

∥∥ subject to 0 < σσσ ≤ C1 and yTσσσ = 0, (4)

where 1 is a n×1 vector with all components being 1 and logσσσ is a vector whose components
are the log of those of σσσ.

The optimality conditions to be a primal and dual optimal solution pair are presented
in (17) in Appendix A. It is straightforward to show the strong duality holds by checking
Slater’s condition. An optimal solution to (4) exists as long as there exist i and j with
yi = +1 and yj = −1 (that is, there are both negative and positive class sample in the
data), which is assumed in Appendix A.5. In Appendix B, we briefly give a geometric
interpretation of the dual problem (4).

From the optimality conditions, if XTYσσσ 6= 0, we can easily recover w0 and w from the
solution to the dual by setting w = XTYσσσ/

∥∥XTYσσσ
∥∥ and w0 = yi/σi − xTi w for some i

with 0 < σi < C. Unlike the SVM whose dual is a simple quadratic programming problem,
the dual of the leaky hockey stick classifier given in (4) is much harder to solve than solving
quadratic programming. As an alternative, we directly solve (2) in Theorem 2. See the
details in section 4.2.

3.3 Geometric picture

The standard SVM has a well-known geometric interpretation when the training data are
linearly separable, i.e., when there exists w̄ such that mini yix

T
i w̄ > 0. In such a separable

case, it finds a decision boundary that maximizes the margin. Rosset et al. (2003) discussed
a family of loss functions that share the same margin picture as that of SVM. Specifically,
they investigated for which loss functions the solution of the regularized ERM,

β̂ββλ = arg min
βββ

n∑
i=1

L(yix
T
i βββ) + λ‖βββ‖qq, (5)

where q ≥ 1, converges to the margin maximizer as the regularizer disappears. They found
that if a loss function is non-negative and vanishes quickly enough to 0, then as λ → 0,
every convergent point of β̂ββλ/‖β̂ββλ‖q is

arg max
‖w‖q=1

min yiw
Txi. (6)

The family of loss functions covers the hinge loss, the exponential loss, and the logit loss.
Their result provides a unified view of popular classification algorithms in that they converge
to the same solution provided the same regularizer. For example, Boosting, 1-norm SVM
(Zhu et al., 2003), and `1 penalized logistic regression give the same classifier at the limit.

Interestingly, the LHS loss violates their sufficient condition, and we find that the LHS
loss optimizes a different margin at the limit. Still, the convergent point finds the separating
hyperplane that perfectly separates the data.
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Theorem 3 Assume training data, {(xi, yi)}ni=1, are separable, i.e., there exists w̄ such

that mini yix
T
i w̄ > 0 with ‖w̄‖q = 1, q ≥ 1. Let β̂ββλ be the solutions to (5) with the LHS

loss and the `q regularizer. Then, as λ→ 0, any convergence point of β̂ββλ/‖β̂ββλ‖q maximizes
the product of the positive part of margins,

n∏
i=1

yix
T
i w1{yixTi w ≥ 0},

where 1(·) is the indicator function. If the maximizer is unique, we can conclude that

β̂ββλ/‖β̂ββλ‖q → arg max
‖w‖q=1

n∏
i=1

yix
T
i w1{yixTi w ≥ 0}. (7)

We visualize the two separating hyperplanes defined in (6) and (7) using data gen-
erated from the following model. Suppose that X ∈ R2 in each class is from the mix-
ture of three Gaussian distributions that X ∼

∑n
i=1N(µ−i , 0.6 · I)/3 if y = −1 and X ∼∑3

i=1N(µ+i , 0.6 · I)/3 if y = +1, where I is an identity matrix. We randomly generate
µ−i , i = 1, 2, 3, from N

(
(1.8,−1.8)T , I

)
and µ+i , i = 1, 2, 3, from N

(
(−1.8, 1.8)T , I

)
. In each

plot in Figure 2, we generate ten samples from each distribution and see the data are sepa-
rable. Since the generating distribution is known, the optimal decision boundary (solid line
in Figure 2) can be calculated exactly. Figure 2 (a)-(d) show the decision boundary of the
new margin maximizer defined in (7) (long-dashed line), along with that of the standard
margin maximizer defined in (6) (dashed line). The two boundaries are similar to each
other in (a) and (b), while they are noticeably different in (c) and (d).

4. Kernel Leaky Hockey Stick Classifier

4.1 Formulation

In practice, the linear LHS classifier could be restrictive when the Bayes rule is highly
nonlinear. To obtain a nonlinear classifier boundary with the LHS loss, we consider a
nonparametric approach in a reproducing kernel Hilbert space (RKHS) by following the
statistical derivation of the kernel SVM (Hastie et al., 2009).

Let HK be the RKHS generated by a positive definite kernel K. We define the kernel
LHS classifier as the classifier sgn{α̂0 + ĥ(x)}, where (α̂0, ĥ) is the solution to

min
α0∈R
h∈HK

(
n∑
i=1

L (yi(α0 + h(xi))) /n+ λ ‖h‖2HK

)
. (8)

While (8) is defined over an infinite dimensional space, it can be shown by the representer
theorem (Wahba, 1990) that the solution is finite-dimensional and has the form,

ĥ(x) =

n∑
i=1

α̂iK(x,xi), and thus ||ĥ||2HK =
n∑
i=1

n∑
j=1

K(xi,xj)α̂iα̂j . (9)
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Figure 2: Decision boundaries of the optimal Bayes rule along with separating hyperplanes
defined in (6) and (7) which are labelled as SVM margin and LHS classifier margin, respec-
tively.

We note that the representer theorem holds irrespective of whether a loss function is non-
negative or negatively divergent. In light of (9), (8) reduces to

min
α0,ααα
LK(α0,ααα) = min

α0,ααα

[
n∑
i=1

L
(
yi(α0 + KT

i ααα)
)
/n+ λαααTKααα

]
, (10)

where K is the kernel matrix that [K]ij = K(xi,xj) and Ki is the ith column of K.

Remark 3 (Existence of global solution and uniqueness) Let (xi, yi) ∈ Rp × {−1,+1} for
i = 1, . . . , n be training data. Suppose there exist i, j with yi = +1 and yj = −1. Then a
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global solution to the kernel LHS classifier (10) exists. The proof is omitted since it can
be easily deduced from Theorem 2. ĥ is uniquely determined because the formulation (8) is
strictly convex in h, but α̂0 may not. Again, this is also the case for the kernel SVM.

4.2 Algorithm

There are well-known optimization methods for the standard kernel SVM and the `2-
regularized kernel logistic regression (KLR). The kernel SVM can be reformulated as a
quadratic programming problem, and its dual problem can be solved efficiently by se-
quential minimal optimization (SMO). For KLR, the Newton-Raphson iteration method
is commonly used, which leads to iterative weighted least squares. However, these methods
are insufficient when the loss is switched to the LHS loss. We consider the dual problem
for our method in Lemma 2, but we find that it is not easy to solve, unlike the dual of
the kernel SVM. Therefore, we focus on solving (10). On the other hand, the Newton-
Raphson algorithm is not applicable here because the LHS loss is not twice differentiable.
In this subsection, we develop an algorithm to solve the kernel LHS classifier based on the
Majorization-minimization (MM) principle (Hunter and Lange, 2004) thanks to a quadratic
upper bound of the LHS loss introduced later in Lemma 3. Our algorithm iteratively up-
dates the solution with an explicit and consistent step size for each tuning parameter λ. We
further introduce an efficient computational technique to search solutions for a sequence of
λs.

To simplify the notation, let θθθ = (α0,ααα
T )T . Let θ̃θθ = (α̃0, α̃αα

T )T be the current value.
First, we construct QK(θθθ | θ̃θθ) which majorizes the objective function LK(θθθ) by a quadratic
function (Böhning and Lindsay, 1988).

Lemma 3 The LHS loss L has a quadratic upper bound,

L(u) ≤ L(ũ) + L′(ũ)(u− ũ) + (u− ũ)2/2, u, ũ ∈ R,

and the equality holds only when u = ũ.

Let z̃ be an n× 1 vector with ith element yiL
′{yi(α̃0 + KT

i α̃αα)}/n. By Lemma 3, we have

LK(θθθ) =
n∑
i=1

L{yi(α0 + KT
i ααα)}/n+ λαααTKααα

≤
n∑
i=1

L{yi(α̃0 + KT
i α̃αα)}/n+ λαααTKααα

+

(
1T z̃
Kz̃

)T (
α0 − α̃0

ααα− α̃αα

)
+

1

2n

(
α0 − α̃0

ααα− α̃αα

)T (
n 1TK

K1 KK

)(
α0 − α̃0

ααα− α̃αα

)
=

n∑
i=1

L{yi(α̃0 + KT
i α̃αα)}/n+ λα̃ααTKα̃αα

+ γ̃TK

(
α0 − α̃0

ααα− α̃αα

)
+

1

2n

(
α0 − α̃0

ααα− α̃αα

)T
PK,λ

(
α0 − α̃0

ααα− α̃αα

)
= QK(θθθ | θ̃θθ),

where

γ̃K =

(
1T z̃

Kz̃ + 2λKα̃αα

)
and PK,λ =

(
n 1TK

K1 KK + 2nλK

)
.

10



Leaky Hockey Stick Loss

The equality holds only if θθθ = θ̃θθ. Second, we update θθθ by the minimizer of(
α0

ααα

)
= arg min

α0,ααα
QK(θθθ | θθθm) =

(
α̃0

α̃αα

)
− nP−1K,λγ̃K. (11)

In practice, λ is unknown, and we rely on cross-validation to select the best λ. From
a sequence of λ values such that λ1, . . . , λM , we choose the optimal value which minimizes
the cross-validation error. The kernel LHS classifier would be computed on a sequence of
λ values and, of course, P−1K,λ has to be repeatedly evaluated for each λ. Unfortunately,
inverting a matrix M times would be expensive, as the inversion of a n × n matrix costs
O(n3) operations.

We further introduce a computational technique that only needs to invert a matrix once.
Compute the eigen decomposition K = UΛUT and invert PK,λ blockwise as follows.

P−1K,λ =

(
n 1TUΛUT

UΛUT1 UΠK,λU
T

)−1
= gK

(
1
−vK

)(
1 −vTK

)
+

(
0 0T

0 UΠ−1K,λU
T

)
,

(12)

where ΠK,λ = Λ2 + 2nλΛ, gK = 1/(n − 1TUΛΠ−1K,λΛUT1), and vK = UΛΠ−1K,λU
T1.

Replacing P−1K,λ with (12), we see that the right-hand side of (11) becomes(
α0

ααα

)
=

(
α̃0

α̃αα

)
− n

{
gK
(
1T z̃− vTKK(z̃ + 2λα̃αα)

)( 1
−vK

)
+

(
0

UΠ−1K,λΛUT (z̃ + 2λα̃αα)

)}
,

and the operation cost is reduced to O(n2).

Remark 4 We defer the algorithm of the linear LHS classifier to Appendix C as we take
a similar procedure. The code for the linear and kernel LHS classifier is available from the
authors upon request.

5. Bayes Risk Consistency

In this section, we establish the Bayes risk consistency of the kernel LHS classifier, which,
in our view, provides the most important justification for this new loss function.

Let f̂n be a classification function of the kernel LHS classifier with sample size n,

f̂n = argmin
f∈HK

[
n∑
i=1

L (yif(xi)) /n+ λn||f ||2HK

]
, (13)

and f∗ be the Bayes rule. Let the expected misclassification rate of a classification function
f̂ be denoted as R(f̂) = pr[Y 6= sgn{f̂(X)}]. We say the kernel LHS classifier is Bayes risk
consistent if R(f̂n)→ R(f∗) in probability.

When a loss function L is non-negative and classification-calibrated, Bartlett et al.
(2006) showed that for any measureable function f̂ , R(f̂)−R(f∗) can be bounded in terms
of E[L(Yf̂(X))]−E[L(Yf̄(X))], where f̄(x) is a global minimizer of E[L(Yf(X)) | X = x].

11
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It implies that if we obtain f̂n such that E[L(Yf̂n(X))] − E[L(Yf̄(X))] is small, then the
misclassification rate of f̂n is close to that of the Bayes rule. It extends Zhang (2004)’s result
under weaker conditions. Zhang (2004) gave a comparable result for a convex loss function
satisfying certain conditions and used the leave-one-out analysis to obtain estimation error
resulting from using a finite sample size on kernel methods. It allows us to establish the
Bayes risk consistency of a class of kernel machines equipped with the hinge loss, logistic
regression loss, and exponential loss.

This general approach does not apply to the LHS loss because it implicitly assumes
E[L(Yf̄(X))] is finite, which is ensured when the loss function is non-negative. The analysis
for the LHS loss is more involved. To study when E[L(Yf̄(X))] is finite and not finite, we
introduce g(δ) = pr(p(X)(1 − p(X)) ≤ δ/2(1 − δ/2)). Intuitively, for a small δ, g(δ) can
be understood as the probability of the random variable X having a negligible amount of
information about the optimal decision boundary.

Assumption 1 There exists δ′ such that g is continuous on (0, δ′).

Assumption 1 is mild as it is satisfied as long as the set of points at which the cumulative
distribution functions of X|Y = 1 and X|Y = 0 are discontinuous is countable. Assumption
1 may not satisfy otherwise. An example that the assumption is violated is when pr(X =
x|Y = 0) ∝ 1/x2 and pr(X = x|Y = 1) ∝ 1/x3 with x taking a value in N.

Theorem 4 Consider the underlying distribution satisfying Assumption 1. Let L be the
LHS loss and f̄(x) is defined in Theorem 1. E[L

(
Yf̄(X)

)
] is finite if and only if∫ δ′

0
δ−1g(δ)dδ <∞.

It turns out that E[L(Yf̄(X))] is finite if and only if g(δ) satisfies the certain condition,
as shown in Theorem 4. Unlike a non-negative loss function, E[L(Yf̄(X))] is not always
finite for the LHS loss. One example that E[L(Yf̄(X))] does not exist is when P({X :
p(X) = 0 or 1}) > 0, that is, when there is a non-zero probability of X having no label
noise. E[L(Yf̄(X))] exists when g(δ) is bounded above by δ up to a constant as δ → 0.

Remark 5 It is also necessary to prove E[L(Yf̂n(X))] is finite before further theoretical
discussion. Define B = supx,yK(x,y) < ∞ for any x,y. By the representer theorem and

the first-order optimality condition, we see f̂n(x) = −
∑n

i=1 L
′(yif̂n(xi))yiK(xi,x)/(2nλn),

assuming that K is invertible. It indicates |f̂n| ≤ 1
2λn

B, and thus E[L(Yf̂(X))] is finite.

This result motivates us to devise a different upper bound by considering the amount
of available information in x. We adopt the same bound when the information in x is
relatively large and attempt a different bound otherwise.

Lemma 4 Let f∗ be the Bayes rule and f̂n be the equation (13). Then for any 0 < δ ≤ 1,

R(f̂n)−R(f∗) ≤ pr[sgn{f∗(X)} 6= sgn{f̂n(X)} and p(X)(1− p(X)) ≤ δ/2 · (1− δ/2)]

+ E{X:p(X)(1−p(X))>δ/2·(1−δ/2)}

[
L(Yf̂n(X))− L(Yf̄(X))

]
,

where L is the LHS loss function.

12
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If we can find a sequence of δn such that the bound in the above lemma converges to
0, the Bayes risk consistency can be shown. We consider the kernel K that is universal
(Steinwart, 2001) so that the corresponding RKHS can be rich enough. Let C(X ) be the
space of continuous bounded functions on a compact domain X . A continuous kernel K on
a X is defined as universal if HK is dense in C(X ), i.e., for every function g ∈ C(X ) and
every ε > 0, there exists a function f ∈ HK with ‖f − g‖∞ ≤ ε. For example, the Gaussian
kernel is universal.

Theorem 5 (Bayes risk consistency) Assume Assumption 1 and that − log(δ)g(δ) → 0
as δ → 0. Suppose that the input space X is compact and HK is the RKHS induced by a
universal kernel K on X . If 0 < infx,y∈X K(x,y) < supx,y∈X K(x,y) <∞, and as n→∞,

λn → 0 and λ−1n+1 − λ−1n → 0, then R(f̂n)−R(f∗)→ 0 in probability.

6. Numeric Examples

This section compares the LHS classifier and the standard SVM in terms of classification
accuracy. Such a comparison will directly show the impact of using the LHS loss. Also, the
SVM is one of the best classification algorithms in an extensive numerical study conducted
by Fernández-Delgado et al. (2014). Therefore, as long as the LHS classifier is similar to or
better than the kernel SVM in terms of classification accuracy, which implies that the LHS
classifier is a worthy new classifier in that it gives a reasonable performance, we can claim
that it is valid to use a negatively divergent loss to get a classification learning algorithm. In
practice, we recommend trying both methods and using cross-validation to pick the better
one for a given data set.

6.1 Simulation

We first compare the LHS classifier to the SVM on simulated data. A mixture Gaus-
sian model is used for the simulation. Let µµµ+ = (1, . . . , 1,−1, . . . ,−1)T ∈ Rp and µµµ− =
(−1, . . . ,−1, 1, . . . , 1)T ∈ Rp where both have half of their components as 1s and the other
half as −1s. We draw µ+k and µ−k , k = 1, . . . ,K from

µ+k ∼ N
(
µµµ+, Ip×p

)
if k ≤ 2K/3, µ+k ∼ N

(
µµµ−, Ip×p

)
if k > 2K/3,

and µ−k ∼ N
(
µµµ−, Ip×p

)
if k ≤ 2K/3, µ−k ∼ N

(
µµµ+, Ip×p

)
if k > 2K/3.

Given µ+k and µ−k , let (X,Y) be a random pair such that pr(Y = −1) = pr(Y = +1) = 1/2
and X ∈ Rp with

X | (Y = −1) ∼
K∑
k=1

N(µ−k , σ
2Ip×p)/K, and X | (Y = +1) ∼

K∑
k=1

N(µ+k , σ
2Ip×p)/K,

so that the model can have a highly nonlinear optimal decision boundary.

Sampling from the above distribution can also be illustrated using label flipping. Firstly,
generate samples with the positive class from

∑10
k=1N(m+

k , σ
2Ip×p)/K with each m+

k drawn
from N(µµµ+, Ip×p). Each sample would be from one of N(mk, σ

2), k = 1, . . .K, with an equal
probability. Next, if the sample is from N(m+

k , σ
2) for some k > 2K/3, flip the label into the

13
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n Kernel
Misclassification rate (%)

LHS Classifier SVM

Example 1: K = 3, p = 2, Bayes error: 11.13%

50
Linear 34.63 (0.05) 34.35 (0.05)

Gaussian 17.11 (0.04) 17.29 (0.04)

90
Linear 33.16 (0.05) 32.80 (0.05)

Gaussian 14.40 (0.04) 15.13 (0.04)

200
Linear 31.62 (0.05) 31.43 (0.05)

Gaussian 12.80 (0.03) 13.21 (0.03)

900
Linear 30.65 (0.05) 30.72 (0.05)

Gaussian 11.47 (0.03) 11.50 (0.03)

Example 2: K = 10, p = 2, Bayes error: 11.51%

50
Linear 40.37 (0.05) 40.78 (0.05)

Gaussian 23.84 (0.04) 24.13 (0.04)

90
Linear 39.72 (0.05) 40.46 (0.05)

Gaussian 18.79 (0.04) 19.62 (0.04)

200
Linear 38.00 (0.05) 38.58 (0.05)

Gaussian 15.45 (0.04) 16.38 (0.04)

900
Linear 37.12 (0.05) 38.11 (0.05)

Gaussian 12.66 (0.03) 13.00 (0.03)

Example 3: K = 3, p = 30, Bayes error: 13.48%

50
Linear 32.87 (0.05) 32.95 (0.05)

Gaussian 31.36 (0.05) 30.97 (0.05)

90
Linear 28.80 (0.05) 29.17 (0.05)

Gaussian 26.39 (0.04) 26.70 (0.04)

200
Linear 25.26 (0.04) 25.68 (0.04)

Gaussian 22.61 (0.04) 22.79 (0.04)

900
Linear 22.42 (0.04) 22.50 (0.04)

Gaussian 18.07 (0.04) 18.02 (0.04)

Table 1: Misclassification rates, averaged by 100 runs, under mixture Gaussian distributed
data. The standard error is given in parentheses.
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negative class. Similarly, draw negative class samples from
∑10

k=1N(m−k , σ
2Ip×p)/K with

each m−k drawn from N(µµµ−, Ip×p), and then flip the label if the sample is from N(µ−k , σ
2)

for some k > 2K/3.
We consider K = 3, p = 2, σ = 1/

√
10 with the Bayes error 11.13% in Example 1;

K = 10, p = 2, σ = 1/
√

50 with the Bayes error 11.51% in Example 2; and K = 3,
p = 10, σ = 1/

√
10 with the Bayes error 13.48% in Example 3. We vary sample size

n = 50, 90, 200, 900. We consider both linear classifiers and Gaussian kernel classifiers and
select the best λ among 100 λ-values by five-fold cross-validation. We compute the SVM
classifier by the R package kernlab. The simulations are repeated 100 times under the
above setting. We summarize the average of misclassification rates with the corresponding
standard error in Table 1.

We have several observations from Table 1. First, the SVM and the LHS classifier
are comparable in general. The Gaussian LHS classifier slightly outperforms the Gaussian
SVM in Example 1, and the linear LHS classifier consistently outperforms the linear SVM
in Example 2 and Example 3. Second, the misclassification rates of both the Gaussian LHS
classifier and Guassin SVM get closer to the Bayes error rate as the sample size increases,
although the convergence is relatively slower for more complicated models.

6.2 Real data examples

We examine the performance of the LHS classifier compared to SVM on 15 data sets from
the University of California at Irvine Machine Learning Repository (Dua and Graff, 2017).
These data sets have various combinations of sample size and dimension. We randomly
sample 2/3 observations as the training set to fit and tune each model with a five-fold cross-
validation for selecting an optimal λ from 100 λ-values. The remaining 1/3 of observations
is set as the test set for calculating the misclassification rate. We repeat this process 100
times and report the average misclassification rates with the corresponding standard errors
in Table 2. For both algorithms, the maximum iteration number is set to 10, 000.

For these real data example, the computational time averaged by three repetitions is
also compared. The timing is based on a standard PC with 2.9 GHz Dual-Core Intel Core
i5 processor and 8GB of memory.

When comparing the linear LHS classifier and the linear SVM, we observe that the
linear LHS classifier outperforms the linear SVM on ten data sets. When comparing the
kernel classifiers, the Gaussian LHS classifier outperforms the kernel SVM on six data sets.

Regarding computational time, the LHS classifier is advantageous compared to SVM.
The linear LHS classifier is much faster than the linear SVM on all data sets. The Gaussian
LHS classifier is also much faster than the kernel SVM on thirteen out of fifteen data sets. In
the cases where the Gaussian LHS classifier is slower may be because a substantial amount
of time is required when λ is very close to zero.

7. Concluding Remarks

In this paper, we have introduced the first negatively divergent loss function named the
LHS loss for margin-based classification. Despite some technical difficulties brought by
the negative divergence of the loss function, we have proved the classification-calibration
property of the LHS loss and established the Bayes risk consistency of the leaky kernel

15



Kwon and Zou

Dataset n p Kernel
LHS Classifier SVM

Error (%) Time (s) Error (%) Time (s)

Arrhythmia 68 233
Linear 21.39 (0.84) 0.48 21.39 (0.85) 10.08

Gaussian 20.13 (0.82) 2.18 21.78 (0.85) 10.23

Australian 690 14
Linear 13.59 (0.23) 0.35 13.62 (0.23) 344.94

Gaussian 13.89 (0.23) 2.34 13.61 (0.23) 11.96

Banknote 1372 4
Linear 1.07 (0.05) 6.84 1.08 (0.05) 10.41

Gaussian 0.44 (0.03) 25.49 0.01 (0.00) 11.68

Biodeg 1055 41
Linear 13.56 (0.18) 6.13 13.23 (0.18) 652.33

Gaussian 12.23 (0.17) 23.87 12.28 (0.17) 26.03

Bupa 345 6
Linear 31.59 (0.77) 0.06 31.79 (0.77) 18.35

Gaussian 31.16 (0.77) 0.38 31.34 (0.77) 4.26

Chess 3196 36
Linear 2.82 (0.05) 41.41 3.25 (0.05) 69.64

Gaussian 1.70 (0.04) 239.25 0.93 (0.03) 152.53

cle:Heart 297 13
Linear 16.15 (0.37) 0.11 15.85 (0.37) 3.31

Gaussian 16.47 (0.37) 0.36 16.31 (0.37) 3.92

Hepatitis 80 19
Linear 14.44 (0.67) 0.16 16.19 (0.70) 3.21

Gaussian 13.59 (0.65) 2.84 13.89 (0.66) 3.09

Hungarian 261 10
Linear 17.69 (0.41) 0.08 18.52 (0.41) 3.35

Gaussian 18.69 (0.42) 0.26 17.90 (0.41) 3.74

LSVT 126 310
Linear 14.31 (0.53) 0.60 16.69 (0.57) 20.86

Gaussian 15.10 (0.55) 15.62 16.07 (0.56) 27.86

Musk 475 166
Linear 17.08 (0.30) 2.30 16.85 (0.30) 26.82

Gaussian 10.48 (0.24) 4.11 8.29 (0.22) 62.61

Parkinsons 195 22
Linear 15.25 (0.40) 0.16 14.14 (0.43) 9.40

Gaussian 11.68 (0.40) 1.72 9.06 (0.35) 5.85

Sonar 208 60
Linear 23.39 (0.51) 0.61 25.10 (0.52) 8.73

Gaussian 17.36 (0.45) 0.91 15.65 (0.43) 8.09

Spectf 80 22
Linear 30.07 (0.87) 0.13 31.19 (0.88) 5.00

Gaussian 26.74 (0.84) 0.14 28.04 (0.85) 7.79

Vertebral 310 6
Linear 14.88 (0.35) 0.14 15.18 (0.35) 14.38

Gaussian 16.81 (0.37) 1.14 15.83 (0.36) 6.69

Table 2: Misclassification rates averaged by 100 runs and computation time averaged by 3
runs on 15 data sets from the University of California at Irvine Machine Learning Repository.
The standard error is given in parentheses. The computational time includes tuning the
parameters.
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SVM. We further have provided numeric evidence to show that the linear and kernel LHS
classifier is at least as competitive as the usual linear and kernel SVM. All of these provide a
full justification for using such a loss function for margin-based classification. A by-product
of our theory offers a complementary result to Rosset et al. (2003).

At a high level, this paper aims to change the conventional view of the loss function
used for deriving a learning algorithm in classification. Before this paper, the loss function
is usually borrowed from the loss function in decision theory which should be non-negative.
We carefully examine the LHS loss and find that the non-negativity is unnecessary to get
to the learning algorithm. Although the LHS classifier is as competitive as the SVM in the
settings we analyzed, this is only used to justify the validity of our approach. We hope
this paper will stimulate more interest in the study of negatively divergent loss functions in
machine learning.

Before ending, we provide some further discussions on the proposed method.

7.1 Non-likelihood method

Owing to its margin-maximization view, the SVM was largely regarded as a non-likelihood
based method, in contrast to the logistic regression. Later, Franc et al. (2011) interpreted
the linear SVM as the maximum likelihood estimator (MLE) of an appropriate likelihood
function. They considered a class of the probability density function (pdf) in the form:

p(x, y; τ,w) = C(τ) · exp

(
−1

2
L
(
yxT (τw)

))
· h(x), (x, y) ∈ Rp × {−1,+1}, (14)

where L is the hinge loss, τ > 0, w is the unit vector satisfying wTw = 1, C(τ) is a
normalization constant, and h(x) ≥ 0 is a piece-wise continuous and integrable function
which ensures that C(τ) does not depend on w. Note that p(x, y; τ,w) is a well-defined pdf
following from the non-negativity of the hinge loss. Then, they showed that the normalized
solution to (5) with the hinge loss and the `2 regularizer is equivalent to the MLE of w
from (14) for some τ > 0. So, by (14), the SVM cannot be completely separated from the
likelihood approach.

If we try to replace the hinge loss with the leaky hockey stick loss in (14), we do not
end up with a proper distribution function, as exp

(
−1

2L
(
yxT (τw)

))
is not bounded and

thereby not integrable. Therefore, the leaky hockey stick classifier is even farther away from
the likelihood approach than the SVM.

7.2 A family of negatively divergent loss functions

The leaky hockey stick (LHS) loss is not the only negatively divergent margin-based loss
function for classification. It is the first one we discovered and studied. During the revision,
we find a family of negatively divergent loss functions which share similar properties to the
LHS loss.

We define a negatively divergent loss functions Lr as follows: with r ∈ (1,∞),

Lr(yf) =

{
r
(
1− (yf)1/r

)
, yf > 1,

1− yf, yf ≤ 1.
(15)
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Figure 3: Plot of other negatively divergent margin-based loss functions. The gray diagonal
reference line is when y = 1− x.

Figure 3 illustrates (15) for various r values. Note the LHS loss is (15) with r diverging to
∞.

The next theorem shows that the loss function (15) is classification calibrated, saying
that minimizing the loss (15) results in the Bayes rule in population.

Theorem 6 (Classification-calibration) For any x such that p(x) ∈ (0, 1), a global mini-
mizer of E[Lr(Yf(X)) | X = x] uniquely exists and is

− {(1− p(x))/p(x)}r/(r−1), if p(x) < 1/2,

and + {p(x)/(1− p(x))}r/(r−1), if p(x) > 1/2.

Note that sgn{f̄(x)} = f∗(x), where f∗ is the Bayes rule.

We define f̂n as the classification function based on another negatively divergent loss
function L (15) with sample size n,

f̂n = argmin
f∈HK

[
n∑
i=1

Lr (yif(xi)) /n+ λn||f ||2HK

]
. (16)

Theorem 7 (Bayes risk consistency) Assume Assumption 1 and that g(δn)(r−1)/rδ2/(1−r) →
0 as δ → 0. Suppose that the input space X is compact and HK is the RKHS induced by a
universal kernel K on X . If 0 < infx,y∈X K(x,y) < supx,y∈X K(x,y) <∞, and as n→∞,

λn → 0 and λ−1n+1 − λ−1n → 0, then R(f̂n) − R(f∗) → 0 in probability, where f̂n is defined
in (16) and f∗ is the Bayes rule.
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Appendix A. Proofs

A.1 Proof of Theorem 1

Fix x and let α = f(x). We have

E[L(Yα)|X = x] = p(x)L(α) + {1− p(x)}L(−α)

=


p(x)(− logα) + (1− p(x))(1 + α), if α > 1,

p(x)(1− α) + {1− p(x)}(1 + α), if − 1 ≤ α ≤ 1,

p(x)(1− α) + (1− p(x))(− log(−α)), if α < −1.

If 0 < p(x) < 1, the global minimizer exists because E[L(Yα)|X = x] is coercive:

E[L(Yα)|X = x]→∞ as |α| → ∞.

The derivative of E[L(Yα)|X = x] with respect to α is

∂

∂α
E[L(Yα)|X = x] =


−p(x) 1

α + {1− p(x)}, if α > 1,

−p(x) + {1− p(x)}, if − 1 ≤ α ≤ 1,

−p(x)− {1− p(x)} 1α , if α < −1.

∂
∂αE[L(Yα)|X = x] = 0 holds if and only if

f̄(x) = α =

{
− 1−p(x)

p(x) , if p(x) < 1
2 ,

+ p(x)
1−p(x) , if p(x) > 1

2 .

α is the unique minimizer because E[L(Yα)|X = x] is convex.

A.2 Proof of Theorem 2

Let (β̂0, β̂ββ) be any minimizer if it exists. Without loss of generality, let’s say that p+ ≥ p−
where p+ = #{i : yi = +1}/n > 0 and p− = #{i : yi = −1}/n > 0. Assume that,∥∥∥(β̂0 β̂̂β̂βT )T

∥∥∥2 > C2
1 + C2

2 ,

where,

C1 =

(
p+
p−

+
1
√
p−

+
maxi ||xi||

2
√
λp−

)2

> 1,

and C2 =
maxi ||xi||

λ
+

√
C1

λ
.
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Since |L(a)− L(b)| ≤ |a− b| for any a, b ∈ R,

L
(
yi(β0 + xTi βββ)

)
≥ L(yiβ0)− |yixTi βββ|
≥ L(yiβ0)− ||xi|| · ||βββ||
≥ L(yiβ0)−max

i
||xi|| · ||βββ||.

Then, we have

L(β0,βββ) ≥ 1

n

n∑
i=1

L(yiβ0)−max
i
||xi|| · ||βββ||+ λ||βββ||2

=
1

n

n∑
i=1

L(yiβ0) + λ

(
‖βββ‖ − maxi ||xi||

2λ

)2

− λ
(

maxi ||xi||
2λ

)2

.

(Case 1) Suppose that β̂20 ≤ C2
1 . It implies that ||β̂ββ||2 > C2

2 and we obtain that,

L(β̂0, β̂ββ) ≥ 1

n

n∑
i=1

L(yiβ̂0) + λ

(
||β̂ββ|| − maxi ||xi||

2λ

)2

− λ
(

maxi ||xi||
2λ

)2

≥ 1

n

n∑
i=1

(1− yiβ̂0) + λ

(
||β̂ββ|| − maxi ||xi||

2λ

)2

− λ
(

maxi ||xi||
2λ

)2

> (1− |β̂0|) + λ

(
C2 −

maxi ||xi||
2λ

)2

− λ
(

maxi ||xi||
2λ

)2

≥ 1− C1 + λ

(
maxi ||xi||

2λ
+

√
C1

λ

)2

− λ
(

maxi ||xi||
2λ

)2

> 1 = L(0,000),

which is a contradiction. The third inequality is because ||β̂ββ|| > C2 >
maxi ||xi||2

2λ .
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(Case 2) Suppose β̂20 > C2
1 (> 1). log |β̂0| is bounded by log |β̂0| ≤ |β̂0|−1|β̂0|1/2

. Then we obtain

that,

L(β̂0, β̂ββ) ≥ 1

n

n∑
i=1

L(yiβ̂0) + λ

(
||β̂ββ|| − maxi ||xi||

2λ

)2

− λ
(

maxi ||xi||
2λ

)2

≥ p+ · (− log |β̂0|) + p− · (1 + |β̂0|)− λ
(

maxi ||xi||
2λ

)2

≥ p+ ·

(
−|β̂0| − 1

|β̂0|1/2

)
+ p− · (1 + |β̂0|)− λ

(
maxi ||xi||

2λ

)2

≥ −p+|β̂0|1/2 + p−|β̂0| − λ
(

maxi ||xi||
2λ

)2

= p−

(
|β̂0|1/2 −

1

2

p+
p−

)2

− p−
(

1

2

p+
p−

)2

− maxi ||xi||2

4λ

> p−

(
C

1/2
1 − 1

2

p+
p−

)2

− p−
(

1

2

p+
p−

)2

− maxi ||xi||2

4λ

= p−

(
1

2

p+
p−

+
1
√
p−

+
maxi ||xi||

2
√
λp−

)2

− p−
(

1

2

p+
p−

)2

− maxi ||xi||2

4λ

> 1 = L(0,000),

which is a contradiction.

Therefore, we can conclude that,

∥∥∥(β̂0 β̂̂β̂βT )T
∥∥∥2 ≤ C2

1 + C2
2 .

Eventually, (2) is equivalent to minimizing a continuous function over a non-empty compact
region. Therefore, there exists a global minimizer.

A.3 Proof of Lemma 1

We start from the formulation (3), and show that this can be equally written as sgn(β̂0 +

xT β̂ββ), where (β̂0, β̂ββT )T is the solution to (2).

Let G(ηi) = − log
(
yi(w0 + xTi w) + ηi

)
+Cηi. Then the objective function of (3) can be

written as
∑n

i=1G(ηi). We minimize it over ηi. Since

G′(ηi) = − 1

yi(w0 + xTi w) + ηi
+ C = 0 ⇒ 1

yi(w0 + xTi w) + ηi
=

1

C

and G′′(ηi) =
1(

yi(w0 + xTi w) + ηi
)2 > 0,
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if yi(w0 + xTi w) > 1
C , η∗i = 0 is the minimizer and otherwise, η∗i = 1

C − yi(w0 + xTi w) is the
minimizer. By plugging in the minimizer η∗i into

∑n
i=1G(ηi), (3) can be written as

min
w0,w

n∑
i=1

L̃
(
yi(w0 + xTi w)

)
subject to wTw ≤ 1,

where L̃(v) =

{
− log v v > 1/C

logC + 1− Cv v ≤ 1/C.

To simplify, let

L(u) = L̃(u/C)− logC =

{
− log u u > 1

1− u u ≤ 1.

By setting β0 = C · w0 and βββ = C ·w, we have

n∑
i=1

L̃
(
yi(w0 + xTi www)

)
=

n∑
i=1

L
(
C · yi(w0 + xTi www)

)
+ n logC

=
n∑
i=1

L
(
yi(β0 + xTi βββ)

)
+ n logC

and

wTw ≤ 1 ⇔ βββTβββ ≤ C2,

which proves Lemma 1.

A.4 Proof of Lemma 2

The Lagrangian function of (3) is

L(w0,w, ηi, αi, γi, λ)

= −
n∑
i=1

log di + C
n∑
i=1

ηi −
n∑
i=1

αidi −
n∑
i=1

γiηi + λ(wTw − 1)

= −
n∑
i=1

log
(
yi(w0 + xTi w) + ηi

)
+ C

n∑
i=1

ηi −
n∑
i=1

αi
(
yi(w0 + xTi w) + ηi

)
−

n∑
i=1

γiηi + λ(wTw − 1),

with Lagrange multipliers αi ≥ 0, γi ≥ 0, and λ ≥ 0. The optimality conditions say
that (w0,w, ηi, αi, γi, λ) is an optimal solution-Lagrange multiplier pair if and only if the
following four groups of conditions hold:

(Lagrangian optimality)

∂L

∂w0
= −

n∑
i=1

yi
di
−

n∑
i=1

αiyi = 0,

∂L

∂w
= −

n∑
i=1

yixi
di
−

n∑
i=1

αiyixi + 2λw = 0,

and
∂L

∂ηi
= − 1

di
+ C − αi − γi = 0.
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(Dual feasibility) αi ≥ 0, γi ≥ 0, and λ ≥ 0.
(Complementary slackness) αidi = αi

(
yi(w0 + xTi w) + ηi

)
= 0, and γiηi = 0.

(Primal feasibility) di = yi(w0 + xTi w) + ηi ≥ 0, ηi ≥ 0, and wTw = 1.
The Complementary slackness implies that αi = 0 for all i. The Lagrangian optimality

can be re-written as
n∑
i=1

yi
di

= 0, 2λw =
n∑
i=1

yixi
di

, and C − γi =
1

di
,

and then we get

C

n∑
i=1

ηi = n− 2λwTw, and wTw =
1

4λ2

 n∑
i=1

n∑
j=1

(C − γi)(C − γj)yiyjxTi xj

 .

Then, the dual problem becomes

max
γi

n∑
i=1

log(C − γi) + n−

√√√√ n∑
i=1

n∑
j=1

(C − γi)(C − γj)yiyjxTi xj

subject to 0 ≤ γi < C, and
n∑
i=1

yi(C − γi) = 0.

By setting σi = C − γi, the Lemma 2 holds.
To organize, the optimality conditions to be a primal and dual optimal solution pair are

the following:
σidi = 1, YTσσσ = 0,

0 < σi ≤ C, ηi ≥ 0, (C − σi)ηi = 0, wTw ≤ 1,

Either XTYσσσ = 0 or w = XTYσσσ/
∥∥XTYσσσ

∥∥
,

(17)

where σi is the ith element of σσσ.

A.5 Proof of the existence of the solution to (4)

Assume that there exist i, j with yi = +1 and yj = −1. Let D(σ) = 1T logσσσ −
∥∥XTYσσσ

∥∥
and Fσ = {σ ∈ Rn|0 < σ ≤ C1 and yTσ = 0}. As Fσ 6= ∅, there exists σ̃ ∈ Fσ.
Consider the set S = {σ ∈ Fσ|D(σ) ≥ D(σ̃)}, and note that S ⊆ S̃ = {σ ∈ Fσ|1T logσσσ ≥
D(σ̃)}. For any σ ∈ S̃, σjC

n−1 ≥ Πn
i=1σi ≥ exp(D(σ̃)) for all j, and thereby σj ≥

exp(D(σ̃))/Cn−1 for all j. By Weierstrass’s theorem, the problem min{D(σ)|σ ∈ Fσ ∩
{σ|σ ≥ exp(D(σ̃))/Cn−1 · 1}} has at least one global solution. The set of global solutions
to the problem max{D(σ)|σ ∈ Fσ ∩ {σ|σ ≥ exp(D(σ̃))/Cn−1 · 1}} is a global solution to
max{D(σ)|σ ∈ Fσ}.

A.6 Lemma 5 and its proof

We introduce Lemma 5 which is used to prove Lemma 6 and Theorem 3. Lemma 5 says
that as λ goes to 0, the size of β̂ββλ must diverge to minimize the regularized problem (5)
since the LHS loss is a strictly decreasing function.
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Lemma 5 Assume the data {xi, yi}ni=1 is separable, i.e., ∃w̄ s.t. m̄ := mini yix
T
i w̄ > 0

with ‖w̄‖q = 1. Then ‖β̂ββλ‖q →∞ as λ→ 0.

Proof Fix λ0 > 0. For any ε > 1,

min
βββ

n∑
i=1

L(yiβββ
Txi) +

λ0
ε
‖βββ‖qq ≤

n∑
i=1

L(yi(ε
1/qw̄)Txi) + λ0‖w̄‖qq.

This indicates that as ε→∞,

min
βββ

n∑
i=1

L(yiβββ
Txi) +

λ0
ε
‖βββ‖qq → −∞.

In other words, as λ→ 0,

min
βββ

n∑
i=1

L(yiβββ
Txi) + λ‖βββ‖qq → −∞,

which implies that
∑n

i=1 L(yiβ̂ββ
T

λxi)→ −∞ as λ→ 0. Therefore ‖β̂ββλ‖q must diverge.

A.7 Lemma 6 and its proof

It is not trivial whether the LHS loss prefers a separating decision boundary over a non-
separating one because it has a negatively divergent property. Lemma 6 shows that the
linear decision boundary defined by ŵλ (or β̂ββλ) perfectly separates training data into two
classes when λ is small.

Lemma 6 Assume the data {xi, yi}ni=1 are separable, i.e., ∃w̄ s.t. m̄ = mini yix
T
i w̄ > 0

with ‖w̄‖q = 1. Then, there exists δ0 such that for any λ < δ0, 1 ≤ min yix
T
i β̂ββλ.

Proof Let 1/q + 1/r = 1. By Lemma 5, there exists δ0 such that for any λ < δ0,

‖β̂ββλ‖q ≥ max

{
1

m̄
,
(maxi ‖xi‖r)n−1

m̄n
,

1

maxi ‖xi‖r

}
.
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Suppose by contradiction that there exists λ0 such that λ0 < δ0 but 1 > ykx
T
k β̂ββλ0 for some

k. Then,

n∑
i=1

L
(
yix

T
i β̂ββλ0

)
>

n∑
i=1,i 6=k

L
(
yix

T
i β̂ββλ0

)
≥

n∑
i=1,i 6=k

− log
(
yix

T
i β̂ββλ0

)
1{yixTi β̂ββλ0>1}

≥
n∑

i=1,i 6=k
− log

(
max
i
‖xi‖r‖β̂ββλ0‖q

)
1{yixTi β̂ββλ0>1}

≥ − (n− 1) log(max
i
‖xi‖r)− (n− 1) log(‖β̂ββλ0‖q)

≥ − n log(m̄)− n log(‖β̂ββλ0‖q) = −n log(min
i
yix

T
i w̄ · ‖β̂ββλ0‖q)

≥
n∑
i=1

L
(
yix

T
i w̄‖β̂ββλ0‖q

)
,

where the third inequality is by Hölder’s inequality, the fourth inequality is because
maxi ‖xi‖r‖β̂ββλ0‖q ≥ 1, and the fifth inequality is because m̄n‖β̂ββλ0‖q ≥ (maxi ‖xi‖r)n−1.
This contradicts with

n∑
i=1

L
(
yix

T
i β̂ββλ0

)
≤

n∑
i=1

L
(
yix

T
i w̄‖β̂ββλ0‖q

)
.

A.8 Proof of Theorem 3

Let w∗ be a convergence point of β̂ββλ
‖β̂ββλ‖q

as λ→ 0, with ‖w∗‖q = 1. Then there is a sequence

{λi} such that
β̂ββ(λj)

‖β̂ββ(λj)‖q
→ w∗ as λi → 0. Assume by contradiction that w̃ is ‖w̃‖q = 1 and

0 ≤ m∗ =

n∏
i=1

yix
T
i w∗1{yixTi w∗>0} < m̃ =

n∏
i=1

yix
T
i w̃1{yixTi w̃>0}.

By the continuity of the product of lq margins in w, there exist ε > 0 and δ > 0, such that

n∏
i=1

yiw
Txi1{yixTi w>0} < m̃− ε, ∀w ∈ Nw∗ := {w : ‖w‖q = 1, ‖w −w∗‖q < δ}.
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There exists j such that
β̂ββλj

‖β̂ββλj ‖q
∈ Nw∗ and λj < δ0 where δ0 is from Lemma 6. Then we

have
n∑
i=1

L
(
yix

T
i w̃‖β̂ββλj‖q

)
≤ −n log(‖β̂ββλj‖q)−

n∑
i=1

log(yix
T
i w̃)

<− n log(‖β̂ββλj‖q)−
n∑
i=1

log(yix
T
i β̂ββλj/‖β̂ββλj‖q) =

n∑
i=1

L
(
yix

T
i β̂ββλj

)
,

where the second inequality is because
β̂ββλj

‖β̂ββλj ‖q
∈ Nw∗ and 1 ≤ min yix

T
i β̂ββλj by Lemma 6.

Therefore w∗ is not a convergence point of β̂ββλ
‖β̂ββλ‖q

, which is a contradiction.

Since ‖ β̂ββλ
‖β̂ββλ‖q

‖q = 1, the convergence points exist. If the product of lq margins-maximizing

separating hyper-plane is unique, then we can conclude that

β̂ββλ

‖β̂ββλ‖q
→ arg max

‖w‖q=1

n∏
i=1

yiw
Txi1{yixTi w>0}.

A.9 Proof of Lemma 3

Let v(a) = a2

2 − L(a). v is strictly convex by its second order condition since,

0 < v′′(a) = 1− L′′(a) =

{
1 if a ≤ 1

1− 1
a2

if a > 1.

Then its first order condition,

v(u) > v(ũ) + v′(ũ)(u− ũ) ∀u, ũ ∈ R, u 6= ũ,

directly implies Lemma 3.

A.10 Proof of Theorem 4

Given X = x, we have that

E[L(Yf̄(x))|X = x] = p(x)L{f̄(x)}+ {1− p(x)}L{−f̄(x)}

=

p(x)L
(
−1−p(x)

p(x)

)
+ {1− p(x)}L

(
1−p(x)
p(x)

)
if p(x) ≤ 1

2

p(x)L
(

p(x)
1−p(x)

)
+ {1− p(x)}L

(
− p(x)

1−p(x)

)
if p(x) > 1

2

=

p(x)
(

1 + 1−p(x)
p(x)

)
+ {1− p(x)}

(
− log 1−p(x)

p(x)

)
if p(x) ≤ 1

2

p(x)
(
− log p(x)

1−p(x)

)
+ {1− p(x)}

(
1 + p(x)

1−p(x)

)
if p(x) > 1

2

=

1 + {1− p(x)}
(
− log 1−p(x)

p(x)

)
if p(x) ≤ 1

2

p(x)
(
− log p(x)

1−p(x)

)
+ 1 if p(x) > 1

2

= 1− 1

2
· (1 + |2p(x)− 1|) · log

(
1
2 (1 + |2p(x)− 1|)
1
2 (1− |2p(x)− 1|)

)
.

26



Leaky Hockey Stick Loss

The last equality is because

1

2
{1− |2p(x)− 1|} =

{
p(x) if p(x) ≤ 1

2

1− p(x) if p(x) > 1
2 ,

and
1

2
{1 + |2p(x)− 1|} =

{
1− p(x) if p(x) ≤ 1

2

p(x) if p(x) > 1
2 .

Let a(x) = |2p(x)− 1|. We see that

E[L(Yf̄(X))] = E[p(X)L(f̄(X)) + (1− p(X))L(−f̄(X))]

= E

[
1− 1

2
(1 + a(X)) log

1 + a(X)

1− a(X)

]
.

Since 0 ≤ a(x) ≤ 1 and 1 ≤ 1+a(x)
1−a(x) for any x,

1− E
[
log

1 + a(X)

1− a(X)

]
≤ E[Yf̄(X)] ≤ 1− 1

2
E

[
log

1 + a(X)

1− a(X)

]
,

which indicates that E[L(Yf̄(X))] is finite if and only if E
[
log 1+a(X)

1−a(X)

]
is finite.

Note that g(δ) = P(|2p(X)− 1| ≥ 1− δ) = P(p(X) ≤ δ/2 or p(X) ≥ 1− δ/2). Because,

E

[
log

1 + a(X)

1− a(X)

]
=

∫ ∞
0

P

(
log

1 + a(X)

1− a(X)
≥ t
)
dt =

∫ ∞
0

P

(
a(X) ≥ 1− 2

1 + et

)
dt

=

∫ ∞
0

g

(
2

1 + et

)
dt =

∫ log 2−δ′
δ′

0
g

(
2

1 + et

)
dt+

∫ ∞
log 2−δ′

δ′

g

(
2

1 + et

)
dt,

and g(δ) ≤ 1, E
[
log 1+a(X)

1−a(X)

]
is finite if and only if

∫∞
log 2−δ′

δ′
g
(

2
1+et

)
dt is finite.

Also, because,∫ δ′

0
g(u)

1

u
du ≤

∫ ∞
log 2−δ′

δ′

g

(
2

1 + et

)
dt =

∫ δ′

0
g(u)

2

u(2− u)
du ≤ 2

2− δ′

∫ δ′

0
g(u)

1

u
du,

∫∞
log 2−δ′

δ′
g
(

2
1+et

)
dt is finite if and only if

∫ δ′
0 g(u) 1

udu is finite.

A.11 Proof of Lemma 4

Note that g(δ) = P(|2p(X) − 1| ≥ 1 − δ) = P(p(X) ≤ δ/2 or p(X) ≥ 1 − δ/2). As
R(f) = E{X:f(X)≥0}[1− p(X)] + E{X:f(X)≤0}[p(X)], we have that

R(f̂n)−R(f∗)

= E{X:f̂n(X)≥0, f∗(X)<0} [1− 2p(X)] + E{X:f̂n(X)<0, f∗(X)≥0} [2p(X)− 1]

= E{X:f̂n(X)f∗(X)≤0}|2p(X)− 1|

= E{X:f̂n(X)f∗(X)≤0,|2p(X)−1|≥1−δ}|2p(X)− 1|+ E{X:f̂n(X)f∗(X)≤0,|2p(X)−1|<1−δ}|2p(X)− 1|

≤ P(f̂n(X)f∗(X) ≤ 0, |2p(X)− 1| ≥ 1− δ) + E{X:f̂n(X)f∗(X)≤0, |2p(X)−1|<1−δ}|2p(X)− 1|.

27



Kwon and Zou

Let ζ{f̄ ,x} = E[L(Yf̄(x))|X = x]. Referring to the proof of Theorem 4, we have that

ζ{f̄ ,x} = 1− 1

2
· (1 + |2p(x)− 1|) · log

(
1
2 (1 + |2p(x)− 1|)
1
2 (1− |2p(x)− 1|)

)
.

We define γ(a) for a ∈ [0, 1) as

γ(a) = 1−

[
1− 1

2
· (1 + a) · log

(
1
2 (1 + a)
1
2 (1− a)

)]
.

Notice that γ(0) = 0 and

γ′(a) =
1

2
+

1

2

(
1 + a

1− a
+ log

1 + a

1− a

)
≥ 1.

This implies that γ(a) ≥ a for a ∈ [0, 1). Thus, for any x such that |2p(x) − 1| < 1, if we
let a = |2p(x)− 1|, we have

1− ζ{f̄ ,x}= γ(|2p(x)− 1|) ≥ |2p(x)− 1|.

Therefore,

R(f̂n)−R(f∗) ≤ P(f̂n(X)f∗(X) ≤ 0, |2p(X)− 1| ≥ 1− δ)
+ E{X:f̂n(X)f∗(X)≤0, |2p(X)−1|<1−δ}[1− ζ{f̄ ,X}].

The convexity of L and f̂n(x)f∗(x) ≤ 0 imply that

ζ(f̂n,x) ≥ L{(2p(x)− 1)f̂n(x)} ≥ L(0) = 1.

We conclude that

R(f̂n)−R(f∗) ≤ P(f̂n(X)f∗(X) ≤ 0, |2p(X)− 1| ≥ 1− δ)
+ E{X:f̂n(X)f∗(X)≤0, |2p(X)−1|<1−δ}[ζ{f̂n,X} − ζ{f̄ ,X}]

≤ P(f̂n(X)f∗(X) ≤ 0, |2p(X)− 1| ≥ 1− δ)
+ E{X:|2p(X)−1|<1−δ}[ζ{f̂n,X} − ζ{f̄ ,X}] (by the definition of f̄)

= P(f̂n(X)f∗(X) ≤ 0, |2p(X)− 1| ≥ 1− δ)
+ E{X:|2p(X)−1|<1−δ}[L{Yf̂n(X)} − L{Yf̄(X)}].

A.12 Lemma 7 and its proof

We introduce a lemma before proving Theorem 5.

Lemma 7 Suppose the input space X is compact and HK is the RKHS induced by a uni-
versal kernel K on X . For any δ ∈ (0, 1] and ε > 0, there exists f̄ε ∈ HK such that
supx∈X |f̄ε(x)| ≤ 2−δ

δ + ε
2 and∣∣E [1 {|2p(X)− 1| < 1− δ}

{
L(Yf̄ε(X))− L(Yf̄(X))

}]∣∣ < ε.
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Furthermore, there exists a continuous function τε such that

sup
x
|f̄ε(x)− τε(x)| < ε/2 and P{sgn(τε(X)) 6= sgn(f̄(X))} ≤ ε/4 · δ/(2− δ).

Proof Let fδ(x) be a truncated function of f̄ :

fδ(x) =


2−δ
δ , if p(x) > 1− δ/2,
−2−δ

δ , if p(x) < δ/2,

f̄(x), o.w.

By Lusin’s theorem, there exists a continuous function %(x) such that P{%(X) 6= fδ(X)} ≤
ε/4 · δ/(2− δ). Let

τ(x) =

{
%(x), if |%(x)| ≤ 2−δ

δ ,
2−δ
δ

%(x)
|%(x)| , if |%(x)| > 2−δ

δ .

Since supx |fδ(x)| ≤ 2−δ
δ , P{τ(X) 6= fδ(X)} ≤ ε/4 · δ/(2− δ). Hence,

|E [1 {|2p(X)− 1| < 1− δ} {L(Yτ(X))− L(Yfδ(X))}]|
≤ E{X:τ(X)6=fδ(X)}|fδ(X)− τ(X)|

≤ 2
2− δ
δ

ε

4

δ

2− δ
= ε/2,

where the first inequality comes from the fact that

|L(u1)− L(u2)| ≤ |u1 − u2|, ∀u1, u2 ∈ R.

By the definition of a universal kernel and the continuity of a function τ(x), there exists
a function f̄ε ∈ HK such that

sup
x
|f̄ε(x)− τ(x)| < ε/2.

Combining the above together, we obtain that∣∣E [1 {|2p(X)− 1| < 1− δ}
{
L(Yf̄ε(X))− L(Yf̄(X))

}]∣∣
=
∣∣E [1 {|2p(X)− 1| < 1− δ}

{
L(Yf̄ε(X))− L(Yfδ(X))

}]∣∣
≤
∣∣E [1 {|2p(X)− 1| < 1− δ}

{
L(Yf̄ε(X))− L(Yτ(X))

}]∣∣
+ |E [1 {|2p(X)− 1| < 1− δ} {L(Yτ(X))− L(Yfδ(X))}]| ≤ ε.
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A.13 Proof of Theorem 5

Let B := supx,y∈X K(x,y) and C := infx,y∈X K(x,y). Set δn = inf{δ : λn ≤ Cδ2g(δ)
(2−δ)2 }.

Note that as λn → 0, δn → 0. Also, by the Stolz-Cesàro theorem, if λ−1n+1 − λ−1n → 0,
(nλn)−1 → 0. Let N be such that δN < δ′ and B · (2λN )−1 ≥ 1.

Fix any n > N . By Lemma 4,

R(f̂n)−R(f∗) ≤ P[sgn{f∗(X)} 6= sgn{f̂n(X)}, |2p(X)− 1| ≥ 1− δn]

+ E
[
1 {|2p(X)− 1| < 1− δn}

(
L(Yf̂n(X))− L(Yf̄(X))

)]
≤ g(δn) + E

[
1 {|2p(X)− 1| < 1− δn}

(
L(Yf̂n(X))− L(Yf̄(X))

)]
,

where the last inequality is by the definition of g.

Let Tn = {(Xk,Yk)}nk=1, where each random pair has the same distribution to that of
(X,Y). To prove the theorem, it is enough to show that

lim
n→∞

ETn−1

[
E
[
1 {|2p(X)− 1| < 1− δn}

(
L(Yf̂n−1(X))− L(Yf̄(X))

)]]
= 0,

by Markov’s inequality and the assumption implying that g(δn)→ 0 as δn → 0.

We define f̂ [k] as the solution of (13) where the k-th datum is excluded from the training
data,

f̂ [k] = argmin
f∈HK

 1

n− 1

n∑
i=1,i 6=k

L (yif(xi)) + λn−1||f ||2HK

 .
We have

0 ≤ 1

n− 1

n∑
i=1,i 6=k

L
(
yif̂n(xi)

)
+ λn−1||f̂n||2HK −

1

n− 1

n∑
i=1,i 6=k

L
(
yif̂

[k](xi)
)
− λn−1||f̂ [k]||2HK

≤ − 1

n− 1

n∑
i=1,i 6=k

L′
(
yif̂n(xi)

)
yi

{
f̂ [k](xi)− f̂n(xi)

}
+ λn−1||f̂n||2HK − λn−1||f̂

[k]||2HK

= − 1

n− 1

n∑
i=1,i 6=k

L′
(
yif̂n(xi)

)
yi

〈
K(xi, ·), f̂ [k] − f̂n

〉
+ λn−1||f̂n||2HK − λn−1||f̂

[k]||2HK

= − 1

n− 1

n∑
i=1,i 6=k

L′
(
yif̂n(xi)

)
yi

〈
K(xi, ·), f̂ [k] − f̂n

〉
− 2λn−1

〈
f̂n, f̂

[k] − f̂n
〉
− λn−1||f̂ [k] − f̂n||2HK ,

where the first inequality is by the definition of f̂ [k], the second inequality is by the convexity
of L, and the third equality is by the reproducing property.

By the KKT condition and the representer theorem,

f̂n(x) = − 1

2nλn

n∑
i=1

L′
(
yif̂n(xi)

)
yiK(xi,x), (18)
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assuming that K is invertible. Thus, we further have

λn−1||f̂ [k] − f̂n||2HK ≤ −
1

n− 1

n∑
i=1,i 6=k

L′
(
yif̂n(xi)

)
yi

〈
K(xi, ·), f̂ [k] − f̂n

〉
+
λn−1
nλn

n∑
i=1

L′
(
yif̂n(xi)

)
yi

〈
K(xi, ·), f̂ [k] − f̂n

〉
≤
∣∣∣∣λn−1nλn

− 1

n− 1

∣∣∣∣ n∑
i=1,i 6=k

∣∣∣L′ (yif̂n(xi)
)∣∣∣ ∣∣∣〈K(xi, ·), f̂ [k] − f̂n

〉∣∣∣
+
λn−1
nλn

∣∣∣L′ (ykf̂n(xk)
)∣∣∣ ∣∣∣〈K(xk, ·), f̂ [k] − f̂n

〉∣∣∣
≤
∣∣∣∣λn−1nλn

− 1

n− 1

∣∣∣∣ n∑
i=1,i 6=k

‖K(xi, ·)‖HK‖f̂
[k] − f̂n‖HK

+
λn−1
nλn

‖K(xk, ·)‖HK‖f̂
[k] − f̂n‖HK

≤
(∣∣∣∣n− 1

n

λn−1
λn
− 1

∣∣∣∣+
λn−1
nλn

)√
supK(x,x)‖f̂ [k] − f̂n‖HK ,

where the third inequality is by the Cauchy Schwarz inequality. It gives us

||f̂ [k] − f̂n||HK ≤
(∣∣∣∣n− 1

nλn
− 1

λn−1

∣∣∣∣+
1

nλn

)√
B

≤
(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)√
B.

Then, we have

L
(
ykf̂

[k](xk)
)
− L

(
ykf̂n(xk)

)
≤
∣∣∣f̂ [k](xk)− f̂n(xk)

∣∣∣
≤
∣∣∣∣〈K(xk, ·), f̂ [k] − f̂n

〉
HK

∣∣∣∣
≤
√
B · ||f̂ [k] − f̂n||HK

≤ B ·
(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)
,

for k = 1, . . . , n, where the first inequality is by the Lipschitz continuity of the LHS loss
function and the second inequality is by reproducing property.
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We see that

ETn−1

[
E
[
1 {|2p(X)− 1| < 1− δn}L

(
Yf̂n−1(X)

)]]
=

1

n

n∑
k=1

ETn

[
1 {|2p(Xk)− 1| < 1− δn}L

(
Ykf̂

[k](Xk)
)]

= ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| < 1− δn}L
(
Ykf̂

[k](Xk)
)]

≤ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| < 1− δn}
{
L
(
Ykf̂n(Xk)

)
+B ·

(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)}]

+ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn}L
(
Ykf̂n(Xk)

)]

− ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn}L
(
Ykf̂n(Xk)

)]
,

where the first and the second inequalities are because (X,Y) and (Xk,Yk) have the same
distribution for any k = 1, . . . , n.

From Lemma 7, there is f̄δn ∈ HK such that supx∈X |f̄δn(x)| ≤ 2−δn
δn

+ δn
2 and

∣∣E [1 {|2p(X)− 1| < 1− δn}
{
L(Yf̄δn(X))− L(Yf̄(X))

}]∣∣ < δn.

Also, there exists a function τδn such that

sup
x
|f̄δn(x)− τδn(x)| < δn/2 and P{sgn(τδn(X)) 6= sgn(f̄(X))} ≤ δn/4 · δn/(2− δn).

By the definition of f̂n, we have

1

n

n∑
i=1

L
(
yif̂n(xi)

)
+ λn||f̂n||2HK ≤

1

n

n∑
i=1

L
(
yif̄δn(xi)

)
+ λn||f̄δn ||2HK .
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We further have that,

ETn−1

[
E
[
1 {|2p(X)− 1| < 1− δn}L

(
Yf̂n−1(X)

)]]
≤ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| < 1− δn}
{
L
(
Ykf̄δn(Xk)

)
+B ·

(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)}]

+ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn}
{
L
(
Ykf̄δn(Xk)

)
−L (Ykτδn(Xk)) + L (Ykτδn(Xk))

}]

+ λn‖f̄δn‖2HK − ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn}L
(
Ykf̂n(Xk)

)]

≤ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| < 1− δn}L
(
Ykf̄δn(Xk)

)]
+B ·

(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)

+ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn}
δn
2

]

+ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn}L (Ykτδn(Xk))

]

+
λn
C

(
2− δn
δn

+
δn
2

)2

+ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn} log

(
B

2λn

)]

≤ ETn−1

[
E
[
1 {|2p(X)− 1| < 1− δn}L

(
Yf̄δn(X)

)]]
+B ·

(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)
+ g(δn)δn/2 + g(δn) +

δ2n
4(2− δn)

(
1 +

δn
2

+
2− δn
δn

+
δn
2

)
+
λn
C

(
2− δn
δn

+
δn
2

)2

+ g(δn) log

(
B

2λn

)
≤ ETn−1

[
E
[
1 {|2p(X)− 1| < 1− δn}L

(
Yf̄(X)

)]]
+ δn +B ·

(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)
+ g(δn)δn/2 + g(δn) +

δ2n
4(2− δn)

(
1 +

δn
2

+
2− δn
δn

+
δn
2

)
+
λn
C

{(
2− δn
δn

)2

+ 2− δn +
δn

2

4

}
+ g(δn) log(B/2)− g(δn) log(λn)

= ETn−1

[
E
[
1 {|2p(X)− 1| < 1− δn}L

(
Yf̄(X)

)]]
+ δn +B ·

(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)
+ g(δn)δn/2 + g(δn) +

δ2n
4(2− δn)

(
1 +

δn
2

+
2− δn
δn

+
δn
2

)
+ g(δn) +

g(δn)δ2n
(2− δn)2

{
2− δn +

δn
2

4

}
+ g(δn) log(B/2)

− g(δn) {log(g(δn)) + log(C) + 2 log(δn)− 2 log(2− δn)} ,
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where the second inequality is because |f̂n(x)| ≤ B
2λn

from (18) and ‖f̄δn‖2HK ≤
1
C

(
2−δn
δn

+ δn
2

)2
by Theorem 3.11 of Paulsen and Raghupathi (2016). The last equality is because λn =
Cδ2ng(δn)
(2−δn)2 for a large enough n such that δn < δ′ following from Assumption 1 and the

definition of δn.

Hence, for any n > N ,

0 ≤ ETn−1

[
E
[
1 {|2p(X)− 1| < 1− δn}

{
L(Yf̂n−1(X))− L

(
Yf̄(X)

)}]]
≤ δn +B ·

(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)
+ g(δn)δn/2 + g(δn) +

δ2n
4(2− δn)

(
1 + δn +

2− δn
δn

)
+ g(δn) +

g(δn)δ2n
(2− δn)2

{
2− δn +

δn
2

4

}
+ g(δn) log(B/2)

− g(δn) {log(g(δn)) + log(C) + 2 log(δn)− 2 log(2− δn)} .

As the right-hand side goes to 0 as n→∞, we prove the theorem.

A.14 Proof of Theorem 6

Fix x and let α = f(x). We have

E[Lr(Yα)|X = x] = p(x)Lr(α) + {1− p(x)}Lr(−α)

=


p(x)r

(
1− α1/r

)
+ (1− p(x))(1 + α), if α > 1,

p(x)(1− α) + (1− p(x))(1 + α), if − 1 ≤ α ≤ 1,

p(x)(1− α) + (1− p(x))r
(
1− (−α)1/r

)
, if α < −1.

If 0 < p(x) < 1, the global minimizer exists because E[Lr(Yα)|X = x] is coercive:

E[Lr(Yα)|X = x]→∞ as |α| → ∞.

∂
∂αE[Lr(Yα)|X = x] = 0 holds if and only if

f̄(x) = α =

 −
(
1−p(x)
p(x)

) r
r−1

, if p(x) < 1
2 ,

+
(

p(x)
1−p(x)

) r
r−1

, if p(x) > 1
2 .

α is the unique minimizer because E[Lr(Yα)|X = x] is convex.
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A.15 Proof of Theorem 7

Given X = x, let ζ{f̄ ,x} = E[Lr(Yf̄(x))|X = x]. We see that

ζ{f̄ ,x} = p(x)Lr{f̄(x)}+ {1− p(x)}Lr{−f̄(x)}

=


p(x)Lr

(
−
(
1−p(x)
p(x)

) r
r−1

)
+ {1− p(x)}Lr

((
1−p(x)
p(x)

) r
r−1

)
if p(x) ≤ 1

2

p(x)Lr

((
p(x)

1−p(x)

) r
r−1

)
+ {1− p(x)}Lr

(
−
(

p(x)
1−p(x)

) r
r−1

)
if p(x) > 1

2

=


p(x)

(
1 +

(
1−p(x)
p(x)

) r
r−1

)
+ {1− p(x)}

(
r − r

(
1−p(x)
p(x)

) 1
r−1

)
if p(x) ≤ 1

2

p(x)

(
r − r

(
p(x)

1−p(x)

) 1
r−1

)
+ {1− p(x)}

(
1 +

(
p(x)

1−p(x)

) r
r−1

)
if p(x) > 1

2

=

p(x)− (r − 1)
(
(1−p(x))r
p(x)

)1/(r−1)
+ r{1− p(x)} if p(x) ≤ 1

2

{1− p(x)} − (r − 1)
(
p(x)r

1−p(x)

)1/(r−1)
+ rp(x) if p(x) > 1

2

=
1

2
{1− |2p(x)− 1|} − r − 1

2

{1 + |2p(x)− 1|}r/(r−1)

{1− |2p(x)− 1|}1/(r−1)
+
r

2
{1 + |2p(x)− 1|}

= −r − 1

2

{1 + |2p(x)− 1|}r/(r−1)

{1− |2p(x)− 1|}1/(r−1)
+ 1 +

r − 1

2
{1 + |2p(x)− 1|}

= 1− r − 1

2
{1 + |2p(x)− 1|}

[(
1 + |2p(x)− 1|
1− |2p(x)− 1|

)1/(r−1)
− 1

]
.

We further see that

1− ζ{f̄ ,x} ≥ |2p(x)− 1|.

Following the similar procedure of the proof of Lemma 4, for any 0 < δ ≤ 1, we have
that

R(f̂n)−R(f∗) ≤ pr[sgn{f∗(X)} 6= sgn{f̂n(X)} and p(X)(1− p(X)) ≤ δ/2 · (1− δ/2)]

+ E{X:p(X)(1−p(X))>δ/2·(1−δ/2)}

[
Lr(Yf̂n(X))− Lr(Yf̄(X))

]
.

Therefore, to prove the theorem, it is enough to show that there exists a sequence of δn
such that

lim
n→∞

ETn−1

[
E
[
1 {|2p(X)− 1| < 1− δn}

(
Lr(Yf̂n−1(X))− Lr(Yf̄(X))

)]]
= 0.

Here, Tn = {(Xk,Yk)}nk=1 where each random pair has the same distribution as that of
(X,Y).

Let B := supx,y∈X K(x,y) and C := infx,y∈X K(x,y). We set δn = inf{δ : λn ≤
Cg(δ) (δ/(2− δ))2r/(r−1)}. Note that as λn → 0, δn → 0. Also, by the Stolz-Cesàro theorem,
if λ−1n+1 − λ−1n → 0, (nλn)−1 → 0. Let N be such that δN < δ′ and B · (2λN )−1 ≥ 1.
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Following the same procedure in the proof of Theorem 5, thanks to the fact that L is
convex and Lipschitz with the Lipschitz constant being 1, we arrive at

ETn−1

[
E
[
1 {|2p(X)− 1| < 1− δn}Lr

(
Yf̂n−1(X)

)]]
≤ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| < 1− δn}
{
Lr

(
Ykf̂n(Xk)

)
+B ·

(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)}]

+ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn}Lr
(
Ykf̂n(Xk)

)]

− ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn}Lr
(
Ykf̂n(Xk)

)]
.

Also, following the similar logic to the proof of Lemma 7, as Lr is Lipschitz with the
Lipschitz constant being 1, for any δ ∈ (0, 1], we see that there exists f̄δ ∈ HK such that

supx∈X |f̄δ(x)| ≤
(
2−δ
δ

)r/(r−1)
+ δ

2 and,∣∣E [1 {|2p(X)− 1| < 1− δ}
{
Lr(Yf̄δ(X))− Lr(Yf̄(X))

}]∣∣ < δ.

Also, there exists a continuous function τδ such that

sup
x
|f̄δ(x)− τδ(x)| < δ/2 and P{sgn(τδ(X)) 6= sgn(f̄(X))} ≤ δ/4 · (δ/(2− δ))

r
r−1 .

Therefore, we further have that

ETn−1

[
E
[
1 {|2p(X)− 1| < 1− δn}Lr

(
Yf̂n−1(X)

)]]
≤ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| < 1− δn}
{
Lr
(
Ykf̄δn(Xk)

)
+B ·

(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)}]

+ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn}
{
Lr
(
Ykf̄δn(Xk)

)
−Lr (Ykτδn(Xk)) + Lr (Ykτδn(Xk))

}]

+ λn‖f̄δn‖2HK − ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn}Lr
(
Ykf̂n(Xk)

)]
.

The first term of the right-hand side is less than or equal to

ETn−1

[
E
[
1 {|2p(X)− 1| < 1− δn}Lr

(
Yf̄(X)

)]]
+ δn +B ·

(∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
2

nλn

)
.

The second term is less than or equal to

g(δn)
δn
2

+ ETn

[
1

n

n∑
k=1

1 {|2p(Xk)− 1| ≥ 1− δn}Lr (Ykτδn(Xk))

]

≤ g(δn)δn/2 + g(δn) +
δnδ

r/(r−1)
n

4(2− δn)r/(r−1)

(
1 +

δn
2

+

(
2− δn
δn

)r/(r−1)
+
δn
2

)

= g(δn)δn/2 + g(δn) +
δnδ

r/(r−1)
n

4(2− δn)r/(r−1)
(1 + δn) +

δn
4
.

36



Leaky Hockey Stick Loss

For n > N , the sum of the third and the fourth terms is less than or equal to

λn
C

((
2− δn
δn

)r/(r−1)
+
δn
2

)2

+ g(δn)

(
r

(
B

2λn

)1/r

− r

)

≤ g(δn)

(
δn

2− δn

)2r/(r−1)
((

2− δn
δn

)r/(r−1)
+
δn
2

)2

+ g(δn)r(B/2)1/r (Cg(δn))−1/r
(

δn
2− δn

)−2/(r−1)
− g(δn)r,

where the first line is because ‖f̄δn‖2HK ≤
1
C

((
2−δn
δn

)r/(r−1)
+ δn

2

)2

by Theorem 3.11 of

Paulsen and Raghupathi (2016).

Combining the above together, we prove the theorem.

Appendix B. Geometric interpretation to the dual problem

To give a geometric interpretation to the dual problem (4), we assume that C is large
enough so that the optimal solution to σσσ is σσσ ≤ C1. The constraint in (4) implies that∑n

i=1 1{yi=1}σi =
∑n

i=1 1{yi=−1}σi. This enables us to write σi as ωσ̃i where ω is positive
and

∑n
i=1 1{yi=1}σ̃i =

∑n
i=1 1{yi=−1}σ̃i = 1. Let σ̃σσ be a n × 1 vector with ith element σ̃i.

We rewrite (4) as

max
ω,σ̃σσ

n logω + log σ̃σσ − ω
∥∥XTYσ̃σσ

∥∥
subject to

n∑
i=1

1{yi=1}σ̃i =
n∑
i=1

1{yi=−1}σ̃i = 1, σ̃i > 0 for all i, and ω > 0.

If we maximize over ω for fixed σ̃σσ by substituing ω = n/
∥∥XTYσ̃σσ

∥∥, it becomes

max
σ̃σσ

log

(
n∏
i=1

σ̃i

) 1
n

− log
∥∥XTYσ̃σσ

∥∥
subject to

n∑
i=1

1{yi=1}σ̃i =

n∑
i=1

1{yi=−1}σ̃i = 1, and σ̃i > 0 for all i.

It is minimizing the (log scaled) distance between points in the two convex hulls of {xi :
yi = 1} and {xi : yi = −1} if noticing XTYσ̃σσ =

∑n
i=1 1{yi=1}σ̃ixi −

∑n
i=1 1{yi=−1}σ̃ixi. At

the same time it is maximizing the (log scaled) geometric mean of σ̃i.

Appendix C. Algorithm for the linear LHS classifier

Let θθθ = (β0,βββ
T )T and θ̃θθ = (β̃0, β̃ββ

T
)T be the current value. Let X be a n × p matrix with

ith row xi and z̃ be a n × 1 vector with ith element yiL
′{yi(β̃0 − xTi β̃ββ)}/n. By Lemma 3,
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we have,

L(θθθ) =
1

n

n∑
i=1

L
(
yi(β0 + xTi βββ)

)
+ λβββTβββ

≤ Q(θθθ|θ̃θθ) =
1

n

n∑
i=1

L
(
yi(β̃0 + xTi β̃ββ)

)
+ λβ̃ββ

T
β̃ββ

+ γ̃T
(
β0 − β̃0
βββ − β̃ββ

)
+

1

2n

(
β0 − β̃0
βββ − β̃ββ

)T
Pλ

(
β0 − β̃0
βββ − β̃ββ

)
,

where,

γ̃ =

(
1T z̃

XT z̃ + 2λβ̃ββ

)
and Pλ =

(
n 1TX

XT1 XTX + 2nλIp×p

)
.

Then we update θθθ by the minimizer of Q(θθθ|θ̃θθ):(
β0
βββ

)
= arg min

β0,βββ
Q(θθθ|θθθm) =

(
β̃0
β̃ββ

)
− nP−1λ γ̃. (19)

Here we introduce an efficient way to implement the algorithm that O(p3) operations
appear only once. Let,

P0 =

(
n 1TX

XT1 XTX

)
and Qλ = P0 + 2nλI.

By eigen decomposition P0 = UΠUT where U = [ u1 | u2 | . . . | up+1 ] is the square
matrix whose ith column is the eigenvector of P0 and Π is a diagonal matrix whose ith
diagonal element is the ith eigenvalue of P0. Then Qλ = UΠλU

T where Πλ is a diagonal
matrix with (Πλ)ii = di + 2nλ.

Pλ can be partitioned into two matrices such that Pλ = Qλ + (Pλ −Qλ) and by the
Sherman-Morrison formula,

P−1λ =

{
Qλ +

(
−2nλ 0T

0 0p×p

)}−1
= Q−1λ + g · vvT = UΠ−1λ U

T
+ g · vvT (20)

where v = UΠ−1λ u
1

is the first column of Q−1λ and g = 2nλ/(1 − 2nλeeeT1 v) with eeeT1 =

(1, 0, . . . , 0). Replacing P−1λ with (20), we see that the right hand side of (19) becomes,(
β̃0
β̃ββ

)
− nUΠ−1λ U

T
γ̃ − ng · vvT γ̃.
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