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Abstract

The matrix lasso, which minimizes a least-squared loss function with the nuclear-norm
regularization, offers a generally applicable paradigm for high-dimensional low-rank matrix
estimation, but its efficiency is adversely affected by heavy-tailed distributions. This paper
introduces a robust procedure by incorporating a Wilcoxon-type rank-based loss function
with the nuclear-norm penalty for a unified high-dimensional low-rank matrix estimation
framework. It includes matrix regression, multivariate regression and matrix completion
as special examples. This procedure enjoys several appealing features. First, it relaxes the
distributional conditions on random errors from sub-exponential or sub-Gaussian to more
general distributions and thus it is robust with substantial efficiency gain for heavy-tailed
random errors. Second, as the gradient function of the rank-based loss function is com-
pletely pivotal, it overcomes the challenge of tuning parameter selection and substantially
saves the computation time by using an easily simulated tuning parameter. Third, we
theoretically establish non-asymptotic error bounds with a nearly-oracle rate for the new
estimator. Numerical results indicate that the new estimator can be highly competitive
among existing methods, especially for heavy-tailed or skewed errors.

Keywords: heavy-tailed error, high dimension, low-rank matrix, non-asymptotic bounds,
robustness, tuning parameter selection

1. Introduction

The estimation of low-rank matrices under high-dimensional settings has received extensive
attention and in-depth research in the past decade. Its applications include recommendation
systems (Ramlatchan et al., 2018), image inpainting (Zheng et al., 2018), compressed sensing
(Golbabaee and Vandergheynst, 2012), sensor localization (Nguyen et al., 2019) and so on.
The most popular model for low-rank matrix recovery is the linear operator model

y = X (X; A0) + ε, (1)

where A0 ∈ Rm1×m2 is the matrix of interest, which is usually assumed to have a low-
dimensional intrinsic structure, y ∈ Rp is the response, X is the covariate vector/matrix
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which belongs to some linear space L, ε ∈ Rp is the random error and X : L×Rm1×m2 → Rp
is a bilinear operator with respect to each argument. We assume that X is independent
of ε and ε has independent elements. This model allows us to deal with several impor-
tant problems in a unified manner, including matrix regression (matrix compressed sens-
ing)(Recht et al., 2010), multivariate linear regression (Yuan et al., 2007) and matrix com-
pletion (Candès and Recht, 2009; Gross, 2011), among others. For example, when p = 1,
X (X; A) = tr

(
A>X

)
and X ∈ Rm1×m2 is a matrix of explanatory variables, the linear oper-

ator model (1) becomes the well-studied trace regression model (Negahban and Wainwright,
2011). See Section 2.1 for a detailed discussion.

One of the most successful estimation methods is the regularization approach based
on the trade-off between fitting the target matrix to the data and minimizing the model
complexity, i.e., solving

Â = arg minA∈S {Qn (A) + λP (A)} , (2)

where S is a convex parameter space in Rm1×m2 , Qn (A) is an empirical loss function,
λ is a tuning parameter and P (A) is an appropriate penalization function. Under this
paradigm, the most popular one may be the matrix lasso, which considers a least-squared
loss with the nuclear-norm penalization or its variants. The literature in this area is vast.
To name a few, for the trace regression model, Negahban and Wainwright (2011) derived
non-asymptotic Frobenius norm estimation bounds under the sub-Gaussian assumption on
the noise. Law et al. (2021) established a nearly optimal in-sample prediction risk bound for
the rank-constrained least-squares estimator under no assumptions on the design matrix.
For matrix regression, Fazel et al. (2008) and Recht et al. (2010) used the matrix lasso
to explore the possibility of recovering a target matrix by observing its linear projection
onto chosen dictionaries. For multivariate regression, similar ideas can be found in Yuan
et al. (2007), Bunea et al. (2011, 2012), Bing et al. (2019), Kong et al. (2020) and the
references therein. For the problem of noisy matrix completion, Koltchinskii et al. (2011),
Negahban and Wainwright (2012), Rohde and Tsybakov (2011), among others, investigated
the properties of the nuclear-norm penalized least-squares. They derived estimation error
bounds which are shown to match the information-theoretic lower bound up to logarithmic
factors. Other related works base on paradigm (2) include Hu et al. (2020), Hu et al.
(2021) and Yu et al. (2022). Another important method for low-rank matrix estimation
are based on matrix factorization framework (Sun and Luo, 2016; Ma et al., 2018; Tong
et al., 2021a; Zhang et al., 2022), which stand beyond the consideration of the penalized
estimation framework of the current paper.

Although the quadratic loss based methods can recover the target matrix with optimal
rate under sub-Gaussian random errors, it is extremely sensitive to heavy-tailed or skewed
errors. Many literature adopt robust loss instead of quadratic loss to deal with heavy-
tailed random errors, and also establish the optimal estimation rate, see She and Chen
(2017), Elsener and van de Geer (2018) and Tan et al. (2022), among others. However,
these papers typically focus on one model and can not handle aforementioned important
low-rank recovery problem in a unified manner. Fan et al. (2021) introduced the shrinkage
principle to deal with heavy-tailed random errors in several important low-rank matrix
recovery problems through the trace regression model. Although their estimators achieve
the same estimation error rate as Negahban and Wainwright (2011) when the random error
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has bounded second moments, an additional tuning parameter, the truncation level, needs
to be determined. Consequently, a cross-validation method is inevitably required to select
the regularization parameter λ and the truncation level together, which is time-consuming
and lacks theoretical guarantee. More critically, the challenges of heavy-tailed error and
tuning parameter selection are usually intertwined. Solutions specifically designed for only
one aspect of the two challenges could leave the other aspect more unsatisfactory. To the
best of our knowledge, there is no method that solves both problems simultaneously in the
low-rank matrix estimation.

In this paper, we propose a robust procedure, termed as rank matrix lasso, in a uni-
fied high-dimensional low-rank matrix estimation framework. It enjoys both robustness
for heavy-tailed error distributions and computational efficiency of the tuning parameter
selection. Our major contributions are listed from the following three aspects. (1) From
the methodology aspect, we propose a new tuning-easy robust method incorporating a
Wilcoxon-type rank-based loss function with the nuclear-norm penalty for the low-rank
matrix estimation model (1). (2) From the computation aspect, as the gradient function
of the rank-based loss function is completely pivotal, it overcomes the challenge of tuning
parameter selection and substantially saves the computation time by using an easily simu-
lated tuning parameter. Thus, the rank matrix lasso is tuning-easy. (3) From the theory
aspect, we establish non-asymptotic error bounds with a nearly-oracle rate for the new
estimator in a unified high-dimensional low-rank matrix recovery framework under much
weaker assumptions on covariates and random errors. We largely overcome the bounded and
centralized assumption on covariates in Wang et al. (2020) which is restrictive for low-rank
matrix recovery. Technical arguments for extending the existing linear regression model to
our more general linear operator model are nontrivial and may be also interesting in their
own rights.

The remainder of our paper is structured as follows. In Section 2, we present the
proposed rank matrix lasso procedure. Section 3 studies the theoretical non-asymptotic
properties of the new estimator. Numerical studies, including simulations and a real-data
application, are presented in Section 4 and Section 5 respectively. Section 6 concludes the
paper. Technical proofs and additional simulation results are provided in the Appendix.

Notations. Let A = (aij) ∈ Rm1×m2 be a rectangular matrix. We use ‖A‖∞ =
maxi,j |aij | to denote the `∞ norm, ‖A‖F for Frobenius norm, ‖A‖op for operator norm,
and ‖A‖1 for nuclear norm. For square matrix A, denote the smallest eigenvalues of A
by λmin (A). For vectors, we use ‖·‖1 and ‖·‖2 for the `1 and `2 norms, respectively. Let
ψp (x) = ex

p − 1, p ≥ 1, then the ψp-Orlicz norm of a random variable X is defined as:
‖X‖ψp = inf {t > 0 : E{ψp (|X|/t)} ≤ 1}. For a random vector x ∈ Rd, we define its ψp-
Orlicz norm ‖x‖ψp := supv∈Dd−1 ‖v>x‖ψp , where Dd−1 is the d-dimensional unit sphere.

Let ek (m) be the k-th m-dimensional unit vector.

2. Methodology

In this section, we first introduce the model and several examples in Section 2.1. Then, in
Section 2.2, we propose a new robust estimation method. Finally, in Section 2.3, we present
a data-driven approach for tuning parameter selection.
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2.1 Model

Consider n independent observations collected from the linear operator model (1)

yi = X (Xi; A0) + εi, i = 1, . . . , n, (1)

where yi, Xi and εi are the response, covariate matrix and random error for the ith obser-
vation, respectively. We assume that A0 is nearly low-rank by requiring that its singular
value sequence {σi (A0)}mi=1 decays quickly enough, where σi (A0) is the i-th largest sin-
gular value of A0 and m = min{m1,m2}. This assumption on A0 is less stringent and
more natural to model the real-world problems than the exact low-rank assumption. In
particular, for a parameter q ∈ [0, 1] and a positive radius Rq, we consider A0 coming from
the set

Bq (Rq) :=

{
A ∈ Rm1×m2 |

m∑
i=1

σqi (A) ≤ Rq

}
.

Note that when q = 0, the set B0 (R0) corresponds to the set of matrices with rank at most
R0. This model provides a unified high-dimensional low-rank matrix recovery framework
including various cases of interest.

Example 1 (Matrix regression) The matrix regression model is a setup in which one
observes random linear projections of the unknown matrix A0. Concretely speaking, we
have trace inner products

yi = 〈Xi,A0〉+ εi, i = 1, . . . , n, (2)

where 〈Xi,A0〉 = tr
(
X>i A0

)
, Xi ∈ L = Rm1×m2 is a random matrix so that 〈Xi,A0〉 is

a linear projection. In the typical form of matrix regression, which is called the compressed
sensing, the observation matrix Xi has independent identically distributed (i.i.d.) standard
normal entries. Here we relax this restriction to general sub-Gaussian ensembles. In this
case, X (Xi; A0) = 〈Xi,A0〉 = tr

(
X>i A0

)
and p = 1. Moreover, model (2) includes the

high-dimensional linear regression model as a special case. Let m1 = m2 = m, and take
{Xi}ni=1 and A0 to be diagonal, then 〈Xi,A0〉 = x>i θ0, where xi and θ0 denote the vectors
of diagonal elements of Xi and A0, respectively. In this special case, having a low-rank A0

is equivalent to having a sparse θ0.

Example 2 (Multivariate regression) The goal of multivariate regression is to estimate
a prediction function that maps covariates xi ∈ Rm2 to multidimensional output vectors
yi ∈ Rm1. More specifically, consider the linear model

yi = A0xi + εi, i = 1, . . . , n, (3)

where εi ∈ Rm1. We can write the multivariate regression as an instance of the linear
operator model (1) with Xi = xi ∈ L = Rm2 and X (xi; A0) = A0xi.

Example 3 (Matrix completion) The matrix completion problem can be formulated into
the trace inner products model (2), where the matrices Xi ∈ Rm1×m2 are so-called masks.
They are assumed to lie in

X =
{

ek (m1) e>l (m2) : 1 ≤ k ≤ m1, 1 ≤ l ≤ m2

}
.
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We will assume that {Xi}ni=1 are i.i.d. samples with some underlying distribution Π on X .
The goal is to reconstruct all the entries of A0.

2.2 New Estimation Method: Rank Matrix Lasso

For the unified high-dimensional low-rank matrix recovery model (1), we consider a new
estimator of A0 by minimizing the following penalized loss function

Â = arg min
A∈S

{Qn (A) + λ ‖A‖1} , (4)

where ‖A‖1 denotes the nuclear norm of A and λ denotes the tuning parameter. The loss
function is defined as

Qn (A) =
2(n+ 1)√
3n(n− 1)

p∑
k=1

n∑
i=1

φ (R (εik (A))) · εik (A) , (5)

where εik (A) = yik − e>k (p)X (Xi; A), R (εik (A)) denotes the rank of εik (A) among
ε1k (A) , . . . , εnk (A), and φ(1) ≤ φ(2) ≤ · · · ≤ φ(n) is a set of scores generated as φ(i) =
ϕ(i/(n + 1)) for some nondecreasing score function ϕ(u) defined on the interval (0, 1) and
standardized such that

∫ 1
0 ϕ(u)du = 0 and

∫ 1
0 ϕ

2(u)du = 1. Hereafter we denote the pop-
ulation version of the loss function E{Qn (A)} by Q (A). We will show that A0 is the
minimizer of Q (A) under some weak conditions.

The multivariate rank-based loss function Qn (A) was first proposed by Davis and McK-
ean (1993) in low-dimensional multivariate linear model. In this paper, we consider the
rank-based loss with Wilcoxon score

ϕ(u) =
√

12(u− 1/2) (6)

to achieve both robustness and efficiency in the low-rank matrix recovery problem. As
pointed out by She and Chen (2017), changing the squared error loss to a robust loss
amounts to designing a set of multiplicative weights for εik (A). We can regard the rank
loss as using R (εik (A)) /(n + 1) − 1/2 to weight εik (A), while `2 loss and `1 loss use
εik (A) and sign(εik (A)) as weights respectively. In light of this observation, the weight
R (εik (A)) /(n+ 1)− 1/2 can be regarded as a balance between weight εik (A) and weight
sign(εik (A)). Intuitively, outliers will not have as much impact on R (εik (A)) /(n+1)−1/2
as they do for weight εik (A), and at the same time, information on the relative magnitude
of errors can still be utilized to improve the performance of estimator comparing to the `1
loss. Similar ideas also appear on the commonly used Huber loss which is a combination of
`2 and `1 loss, but the truncation level needs to be determined.

Wang and Li (2009) considered the weighted Wilcoxon-type univariate rank-based loss
with the SCAD penalty (Fan and Li, 2001) for low-dimensional linear regression. Fur-
thermore, Wang et al. (2020) investigated the appealing features of this Wilcoxon-type
univariate rank-based loss function for high-dimensional linear regression. A natural ques-
tion is whether the new estimator Â in (4) for high-dimensional low-rank matrix recovery
problems can still inherit the merits of the rank lasso estimator for linear regressions (Wang
et al., 2020). In the later sections, we name our new robust method via the penalized multi-
variate rank-based loss optimization with score function (6) for high-dimensional low-rank
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matrix recovery problems as rank matrix lasso. We will show that the new estimator Â
behaves very similarly as matrix lasso for normal random errors and remains robust under
heavy-tailed errors.

2.3 The Choice of the Tuning Parameter

It is critical to select the tuning parameter λ for the regularization methods in a compu-
tationally efficient way as different λ’s may produce quite different models. Traditional
cross-validation (CV) or information criteria techniques are computationally inefficient to
exhaustively search an appropriate value of λ. Fortunately, it was noted in Wang et al.
(2020) that for high-dimensional linear regression model, the gradient function of the rank
based loss function is completely pivotal (Belloni et al., 2011; Parzen et al., 1994), lead-
ing to an appealing tuning-easy property. This inspires us to consider whether the similar
property can be achieved by our rank matrix lasso method. Pivotal tuning would be espe-
cially interesting in matrix cases, since it allows us to circumvent the difficulty of tuning
parameter selection for high-dimensional matrix estimation problems, which are typically
very time-consuming if we apply conventional selection criteria such like cross-validation.

Let Rik = rank (εik) be the rank of εik among {ε1k, . . . , εnk}. Write ξik = 2Rik− (n+ 1)
for i = 1, . . . , n, k = 1, . . . , p. By the definition of Qn (A), direct computation yields the
gradient of Qn (A) evaluated at A0,

∇Qn (A0) = −2 {n (n− 1)}−1
p∑

k=1

n∑
i=1

Hikξik,

where Hik ∈ Rm1×m2 and the (a, b)-th element of Hik is e>k (p)X (Xi; Eab), here Eab =
ea (m1) e>b (m2) ∈ Rm1×m2 .

It is important to observe that {R1k, R2k, . . . , Rnk} follows the uniform distribution on
the permutations of the integers {1, 2, . . . , n}. Therefore, ∇Qn (A0) has a known distribu-
tion conditional on covariates X1, · · · ,Xn.

By the theoretical analysis given in Section 3, conditional on the event that

λ ≥ 2 ‖∇Qn (A0)‖op , (7)

the rank matrix lasso estimator enjoys the nearly-oracle error bound, ‖Â−A0‖F ∝ λ1−q/2.
Larger λ increases the probability of that event but will have an adverse effect on estimation
accuracy. This suggests that it is desirable to choose a small λ such that the event (7) holds
with high probability. In the same spirit of Wang et al. (2020), we introduce a new variable
Sn = ‖∇Qn (A0)‖op and recommend to take λ equal to

λ∗ = 2G−1
Sn

(1− α0) , (8)

where G−1
Sn

(1− α0) denotes the (1− α0)th quantile of the distribution of Sn conditional on
covariates X1, · · · ,Xn. Because Sn is distribution-free as discussed above, the λ∗ does not
depend on the estimation of any unknown population quantity and thus can be obtained
via a simulation method given X1, . . . ,Xn.
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3. Non-asymptotic Properties

We first present Theorem 1 that serves as a roadmap to establish the convergence rate for Â.
Then we apply this theorem to the three specific problems, matrix regression, multivariate
regression and matrix completion, in Sections 3.1-3.3, respectively, and derive explicit non-
asymptotic error bounds which allow us to compare with existing works.

Our main result is given as follows. The set S is a convex parameter space which is
determined based on the concrete settings.

Theorem 1 Suppose A0 ∈ Bq (Rq) ∩ S and that the regularization parameter λ is chosen

such that λ ≥ 2 ‖∇Qn (A0)‖op. Suppose further that for λε ≥ 0, λ̃ ≥ 0 and all A ∈ S,

|{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| ≤ λε ‖A−A0‖1 + λ̃.

Then for each integer r ∈ {1, 2, . . . ,m}, the estimator Â satisfies

Q(Â)−Q (A0) ≤max

12
√

2r (λε + λ) ‖Â−A0‖F , 12 (λε + λ)
m∑

j=r+1

σj (A0) , 3λ̃

 .

Define the restricted set

C :=

∆ ∈ Rm1×m2 |
∥∥∆′′∥∥

1
≤ 3

∥∥∆′∥∥
1

+ 4
m∑

j=r+1

σj (A0)

 .

If Q(A)−Q (A0) ≥ κ ‖A−A0‖2F for some positive number κ and all A−A0 ∈ C, then we
have

‖Â−A0‖F ≤ max

24
√
Rq

(
λ+ λε
κ

)1−q/2
,

√
3λ̃

κ

 .

This theorem reveals that three major conditions are required to yield a convergence
rate of Â. First, we need λ to be greater than 2 ‖∇Qn (A0)‖op. Second, λε and λ̃ are
two nonrandom constants which depend on the model parameters n, m1 and m2. They
bound the quantity Q(Â)−Q(A0) by controlling the empirical process. We need to control
an empirical process to specify a proper rate of λε and λ̃ by advanced empirical process
techniques. At last, we need to verify that Q(Â) − Q (A0) ≥ κ‖Â −A0‖2F which controls
the quality of minoration of the loss function by a quadratic function and strongly relates
to the shape of the density function of the errors. In the restricted set C, we take r =
# {j ∈ {1, 2, . . . ,m} | σj (A0) ≥ (λ+ λε)/κ} in our proof, which is known as the “effective
rank” of a near low-rank matrix (Negahban and Wainwright, 2011). In specific example, it
can be shown that λ+ λε decay to 0 as the sample size n increases, this effective rank will
increase, reflecting the fact that as we obtain more samples, we can afford to estimate more
of the smaller singular values of the matrix A0. The definition of ∆′ and ∆′′ are given in
the Appendix A to save space.

Next we will show that, when specialized to the three examples in Section 2.1, under
much weaker assumptions on random errors, the proposed robust rank matrix lasso es-
timators achieve the same rates as those presented in Negahban and Wainwright (2011),
Negahban and Wainwright (2012), Klopp (2014). For technical convenience, we assume
S = {A ∈ Rm1×m2 | ‖A‖∞ ≤ η} for some large positive constant η.
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3.1 Matrix Regression

For the matrix regression model (2), we impose the following conditions on observation
matrices and random errors.

Assumption 2 The random errors εi’s are i.i.d. with density function f (·). Let ζij =
εi − εj , 1 ≤ i 6= j ≤ n. Denote f∗ (·) as the probability density function of ζij. There exists
positive constants b1 and b2 such that f∗ (0) ≥ b1 and |∂f∗ (t)/∂t| ≤ b2 for all t.

Assumption 3 The {vec (Xi)}ni=1 are i.i.d. sub-Gaussian vectors with ‖vec (Xi)‖ψ2
≤

κ0 <∞. Denote the population covariance matrix J = Cov (vec (Xi)). Define the restricted
eigenvalue

ρ = inf
∆∈C,∆ 6=0

vec(∆)>J vec(∆)

vec(∆)> vec(∆)
.

There exists constant b3 such that ρ ≥ b3 > 0.

Assumption 4 Let ∆ ∈ Rm1×m2, there exists a positive constant b4 such that

3b1

2
√

2b2
inf

∆ 6=0

(
E〈X1 −X2,∆〉2

)3/2
E |〈X1 −X2,∆〉|3

≥ b4 > 0.

Remark 5 Existing works on low-rank matrix estimation usually impose sub-Gaussian dis-
tribution (Negahban and Wainwright, 2011, 2012) or bounded moment condition (Fan et al.,
2021) on random errors which excludes many heavy-tailed distributions and skewed distribu-
tions such as Cauchy distribution, log-normal distribution and χ2 distribution. Assumption
2 relaxes such requirement to a large degree. Assumption 3 is standard to studying the error
bound for matrix lasso estimators. It allows the covariance matrix J to be rank-degenerate
when A0 is exact low rank such that

∑m
j=r+1 σj (A0) = 0. In such case, the restricted

set becomes a cone C := {∆ ∈ Rm1×m2 | ‖∆′′‖1 ≤ 3 ‖∆′‖1} . This cone completely excludes
certain directions, and thus it is possible that the covariance matrix J, while being rank-
degenerate, can satisfy ρ > 0 over the cone. A simple sufficient condition of Assumption
3 is that the smallest eigenvalue of J is bounded away from zero. Similar assumptions
are made in recent literature on high-dimensional linear regression and low-rank matrix
estimation to establish error bounds, for example, Negahban and Wainwright (2011), Fan
et al. (2018), Wang et al. (2020), and Tan et al. (2022). Assumption 4 controls the qual-
ity of minoration of the loss function by a quadratic function. From our theory, we have
Q (A)−Q (A0) ≥ b1b3

2 ‖A−A0‖2F for all A−A0 ∈ C and ‖A−A0‖F ≤ b4. To guarantee
that Q(A) is sharply curved around the ground truth A0, we make the assumption b4 > 0.
It helps us transform the small loss difference Q(Â) − Q (A0) into small estimation error
‖Â − A0‖F . Assumption 4 also appears in Belloni and Chernozhukov (2011) as part of
the “restricted identifiability and nonlinearity” condition. Similar conditions are used in
recent literature (Gu and Zou, 2020; Zhou et al., 2023). Indeed, if the vectorized covariates
vec (X) have a log-concave density, which includes many interesting distributions such as
multivariate normal distributions and uniform distribution, then b4 ≥ 3b1/

(
2
√

2b2K
)

for

a universal constant K. This follows from the fact that E|〈X,∆〉|3 ≤ K(E|〈X,∆〉|2)3/2
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holds for log-concave vec (X) with some universal constant K by Theorem 5.22 of Lovász
and Vempala (2007) and log-concavity is preserved under affine transformations and con-
volution; see Saumard and Wellner (2014) for a nice review of log-concavity.

It is worth noting that the above conditions can ensure that A0 is the minimizer of
population version loss function Q (A). See Lemma 22 in the Appendix. The following
theorem gives the estimation error rate of Â.

Theorem 6 Suppose that A0 ∈ Bq (Rq)∩S and Assumptions 2-4 hold. The regularization
parameter λ is chosen as λ∗. Then there exists constant c > 0 and C > 0 such that when

n > c(m1 +m2)R
2/(2−q)
q and m1 +m2 > ln (2/α0), the estimator Â satisfies

‖Â−A0‖2F ≤ C
(
κ0

b1b3

)2−q
Rq

(
m1 +m2

n

)1−q/2
(9)

with probability at least 1− α0 − 2 exp {− (m1 +m2)} .

The Frobenius norm rate here is identical to the rate established by Negahban and
Wainwright (2011) under sub-Gaussian random error assumptions and also matches the
minimax optimal rate of Frobenius norm established by Rohde and Tsybakov (2011). The
condition m1 + m2 > ln (2/α0) is very weak. For a small α0 = 10−4, this amounts to
requiring m1 +m2 > 10. In our assumption, b1 is kind of related to the dispersion measure
of error. The smaller the dispersion of error, the larger the value that b1 can take, resulting
in smaller error bounds. This can be seen more clearly by using Gaussian error ε ∼ N (µ, σ2).
Now εi − εj ∼ N (0, 2σ2), b1 = f∗(0) = 1/(2

√
πσ) and the corresponding estimation error

bound is

‖Â−A0‖2F ≤ C
(
κ0σ

b3

)2−q
Rq

(
m1 +m2

n

)1−q/2
,

which indicates that our results are sharp for Gaussian errors like the result in Negahban
and Wainwright (2011).

Comparing our result to the result in Fan et al. (2021). Our Assumption 2 cannot be
directly compared with the moment condition in Fan et al. (2021) for that the two conditions
apply to different settings. Our assumption can work well for the heavy-tailed distribution
without moments, like the Cauchy distribution. This is also reflected by our simulation
that our method performs better than Fan et al. (2021) under the Cauchy distribution. Fan
et al. (2021) do not assume the existence of error’s density function and include independent
but not identical distributions. In Theorem 6, as b1 approaches infinity, our error bound
approaches zero. In contrast, Fan et al. (2021) works with the moment condition ∀i =
1, . . . , n,E |yi|2k ≤M <∞ for some k > 1, and their estimation error bound is

‖Â−A0‖2F ≤ CRq

(
M1/k (m1 +m2)

n

)1−q/2

,

in which the values of (k,M) quantify the effect of error dispersions.
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Remark 7 In this theorem, we require that m1 + m2 tends to infinity so that the optimal
rate hold with high probability. When applied to m1 +m2 is fixed, our theory also holds with
m1 +m2 replaced by log n, i.e.,

‖Â−A0‖2F ≤ C
(
κ0

b1b3

)2−q
Rq

(
log n

n

)1−q/2

with probability at least 1−α0−2n−1. If m1 +m2 diverges faster than n in practical settings,
some additional assumptions about the structure of A0, such as sparsity, are necessary since
the Frobenius norm rate here matches the minimax optimal rate established by Rohde and
Tsybakov (2011). Recent literature Tan et al. (2022) considers the sparse reduced rank
regression, they addressed this problem by adding an additional `1 penalty to induce a sparse
low-rank solution. Their theory implies that the m1 + m2 can diverge much faster than n
with the sparsity condition. However, this setting is beyond the scope of our paper, and
extending our approach to this case deserves future research.

Remark 8 In our theory, the number 1 − α0 can be regarded as the “confidence level” in
the sense that our nonasymptotic bounds on the estimation error will be controlled at the
optimal rate with probability close to 1− α0. In Appendix H3, we show the performance of
our estimator under different values of α0. The estimation error is not so sensitive to the
choice of α0 for different random errors and the confidence level 1−α0 ∈ [0.8, 0.9] would give
good performance results in terms of balancing regularization bias with estimation variation.
Our concrete recommendation for practice is to set 1 − α0 = 0.8. After the α0 is given,
our estimator enjoys the minimax optimal convergence rate and our method is tuning-easy
in the sense that the proposed penalization parameter is independent of the random error
distribution and easier to obtain compared with other state-of-the-art methodologies.

Remark 9 In robust statistics, vertical outliers and leverage points are also worthy of at-
tention. Our method is applicable for the vertical outliers. Consider that the vertical outliers
are modeled by the Huber’s ε-contamination model (Huber, 1992), specifically, the error εi
follows a mixture distribution of the form Pε = (1− ε)P + εQ, where P is usually assumed
to be some light-tailed distribution, Q is an arbitrary noise distribution, and ε measures the
strength of contamination. As long as the error εi are i.i.d. from Pε, the Assumption 2 holds
for a large class of Pε that includes the distributions and their mixtures that we consider in
our simulations. But our method is not applicable to situations where leverage points exist.
In our method, the selection of regularization parameter λ is related to the covariates. The
existence of leverage points may cause λ to be very large, affecting the estimation error. In
the Appendix H4, we conduct simulations to compare the performance of different methods
in these two cases.

For the special case, say the linear regression problem in the form of 〈Xi,A0〉 = x>i θ0,
where xi ∈ Rm is the covariate vector and θ0 ∈ Rm is the parameter of interest, we have
the following result.

Corollary 10 Suppose that Assumptions 2-4 hold and
∑m

i=1 |θ0i|q ≤ Rq, where θ0 =
(θ01, . . . , θ0m)> and 0 ≤ q ≤ 1. The regularization parameter λ is chosen as λ = λ∗.

10
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Then there exists constant c > 0 and C > 0 such that when n > cR
2/(2−q)
q logm and

m > (3/α0)1/3, the rank estimator, denoted as θ̂, satisfies

‖θ̂ − θ0‖22 ≤ C
(
κ0

b1b3

)2−q
Rq

(
logm

n

)1−q/2

with probability at least 1− α0 − 3m−3.

Due to special structures in the linear regression, the estimator θ̂ achieves a faster estimation
rate than (9) in Theorem 6. This corollary is an extension of Wang et al. (2020)’s results
to the sub-Gaussian design. The estimator θ̂ attains the minimax optimal rate of `2 norm
established by Raskutti et al. (2011).

3.2 Multivariate Regression

For the multivariate regression model (3), we need the following conditions.

Assumption 11 The random errors εi’s are i.i.d. with marginal density function fk (·)
for εik. Let ζijk = εik − εjk, 1 ≤ i 6= j ≤ n, 1 ≤ k ≤ m1. Let f∗k (·) denote the probability
density function of ζijk. There exists positive constants b1 and b2 such that f∗k (0) ≥ b1 and
|∂f∗k (t)/∂t| ≤ b2 for all t, uniformly in k.

Assumption 12 The covariates {xi}ni=1 are i.i.d. sub-Gaussian vectors with ‖xi‖ψ2
≤

κ0 <∞. Denote J = Cov (xi). Define the restricted eigenvalue

ρ = inf
∆∈C,∆ 6=0

tr(∆J∆>)

‖∆‖2F
.

There exists constant b3 such that ρ ≥ b3 > 0.

Assumption 13 Let ∆ ∈ Rm1×m2, there exists a positive constant b4 such that

3b1

2
√

2b2
inf

∆ 6=0

{∑m1
k=1 E

∣∣∣(x1 − x2)>∆k

∣∣∣2}3/2

∑m1
k=1 E

∣∣∣(x1 − x2)>∆k

∣∣∣3 ≥ b4 > 0

where ∆>k is the k-th row of ∆.

Theorem 14 Suppose A0 ∈ Bq (Rq) ∩ S and Assumptions 11-13 hold. The regularization
parameter λ is chosen such that λ = λ∗. Then there exists constant c > 0 and C > 0 such

that when n > c(m1 +m2)R
2/(2−q)
q and m1 +m2 > ln (2/α0), the estimator Â satisfies

‖Â−A0‖2F ≤ C
(
κ0

b1b3

)2−q
Rq

(
m1 +m2

n

)1−q/2

with probability at least 1− α0 − 2 exp {− (m1 +m2)} .

Once again, this estimation rate is identical to the rate established under sub-Gaussian
random error in Negahban and Wainwright (2011).
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3.3 Matrix Completion

For the matrix completion problem (Example 3), the trace regression formulation (2) will
induce an identifiability issue if we try to apply the Wilcoxon-type loss directly, due to
the special structure of the masks Xi. It is well-understood in classic nonparametric liter-
ature that the Wilcoxon loss is unable to extract the intercept term from a linear model
(Hettmansperger and McKean, 1998). To wit, note that we have the following fact holds
almost surely:

〈
Xi , cI

〉
= c, for any c ∈ R, where I = 11>. Consequently, we can always

reformulate (2) by offsetting the ground truth and introducing an intercept term

yi = c+
〈
Xi , A0 − cI

〉
+ εi.

Hence, the failure for the estimation of c will cause the problem of identifiability between
A0 and A0 − cI.

However, there is a feasible solution by introducing the Rademacher sequence ai ∈
{−1,+1} and cope with the model

aiyi =
〈
aiXi , A0

〉
+ aiεi, (10)

where {ai}ni=1 is independent of {Xi, yi}ni=1. With this simple manipulation, we can over-
come the intercept issue. To see this, suppose for some constant C ∈ Rm1×m2 and c ∈ R, we
have almost surely

〈
aiXi , C

〉
= c. It can be easily verified that this holds only when C = 0

and c = 0, implying that no alternative offsetting formulation involving an intercept term
exists for (10). Our proposed procedure is directly applicable with the pseudo observations
{aiyi, aiXi}ni=1. Thus for the matrix matrix completion problem, Qn(A) is

Qn (A) =
2(n+ 1)√
3n(n− 1)

n∑
i=1

φ (R (aiεi (A))) · aiεi (A) ,

where εi (A) = yi − 〈Xi,A〉. We show that in Appendix E, (10) can guarantee that A0 is
the minimizer of Q(A) under appropriate condition.

In literature, a conventional setting for the Xi’s is that they are i.i.d sampled from
the uniform distribution Π. See Rohde and Tsybakov (2011), Koltchinskii et al. (2011)
and Elsener and van de Geer (2018). We consider here a more general sampling model
as formulated by Klopp (2014). More precisely, let πjk = P

(
X = ej (m1) e>k (m2)

)
be the

probability to observe the (j, k)-th entry. Denote by Ck =
∑m1

j=1 πjk the probability to
observe an element from the k-th column and by Rj =

∑m2
k=1 πjk the probability to observe

an element from the j-th row. Note that maxi,j (Ci, Rj) ≥ 1/min (m1,m2) = 1/m2, where
we assume m1 ≥ m2 without loss of generality. We impose the following assumptions on
the sampling distribution and error distribution.

Assumption 15 There exists a positive constant L ≥ 1 such that maxi,j (Ci, Rj) ≤ L/m2.

Assumption 16 There exists a positive constant µ ≥ 1 such that πjk ≥ (µm1m2)−1 .

Then for any ∆ ∈ Rm1×m2 , E
(
〈∆,Xi〉2

)
≥ (µm1m2)−1 ‖∆‖2F .
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Assumption 17 The random errors εi’s are i.i.d with density function f (·). Let ζ−ij =

εi−εj, ζ+
ij = εi+εj , 1 ≤ i 6= j ≤ n. Let f− (·) and f+ (·) denote probability density function

of ζ−ij and ζ+
ij respectively. We assume the median of ζ+

ij is 0 and there exists a positive

constant c1 such that f− (t) ≥ 1/(2c2
1) and f+ (t) ≥ 1/(2c2

1) for all |t| ≤ 4η.

Write

Sn = 2 {n (n− 1)}−1

∥∥∥∥∥
n∑
i=1

aiXiξi

∥∥∥∥∥
op

,

where ξi = 2Ri−(n+ 1) , i = 1, . . . , n and {R1, R2, . . . , Rn} follows the uniform distribution
on the permutations of the integers {1, 2, . . . , n}. We recommend to take λ equal to

λ∗ = 2G−1
Sn

(1− α0) ,

where G−1
Sn

(1− α0) denotes the (1− α0)-quantile of the distribution of Sn conditional on
pseudo covariates {a1X1, . . . , anXn}. We have the following theorem.

Theorem 18 Suppose A0 ∈ Bq (Rq) ∩ S and Assumptions 15-17 hold. Consider the regu-

larization parameter λ = λ∗. If m1 +m2 ≥ (3/α0)1/3, then there exist a numerical constant
C such that

‖Â−A0‖2F

≤C max

Rq
c2

1µm1m2

√
L log (m1 +m2)

nm2

2−q

, c2
1ηµm1m2

√
log (m1 +m2)

n

 (11)

with probability greater than 1−β0− 2(m1 +m2)−2, where β0 = P
(
λ∗ ≤ 2 ‖∇Qn (A0)‖op

)
.

Remark 19 When the random errors εi’s are symmetric, aX is independent of aε (see
Lemma 25 in the Appendix), which implies that ‖∇Qn (A0)‖op has the same distribution
as Sn conditional on the pseudo covariates {a1X1, . . . , anXn}. This is in accordance with
previous results. However, in general cases, the distribution of ‖∇Qn (A0)‖op is unknown
conditional on all the pseudo covariates {a1X1, . . . , anXn} due to the dependence between
aX and aε, so the pivotal tuning property is no longer valid in an exact sense. Nevertheless,
we conjecture that β0 in the above theorem is close to α0, say GSn is an approximation of
‖∇Qn(A0)‖op. Our simulation shows that our method is still superior to other methods
with such a choice of λ in general cases.

Remark 20 When the random errors εi’s are symmetric, we have β0 = α0. If q = 0, R0

becomes the rank of A0, and the error bound reduces to

‖Â−A0‖2F
m1m2

≤ C max

{
c4

1µ
2L
R0m1 log (m1 +m2)

n
, c2

1ηµ

√
log (m1 +m2)

n

}
.

This bound is of the same order as the one given in Theorems 7 and 10 of Klopp (2014),
established under sub-Gaussian error assumptions. For the nearly low-rank case, if we
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consider the matrix completion setting (i.e.,n � m1m2), then the first term dominate the
maximum in (11), and this rate is the same as the statistical rate of the Huber estimator
and least absolute deviation estimator in Elsener and van de Geer (2018) and is only a
logarithmic factor different from the minimax optimal rate established in Koltchinskii et al.
(2011).

4. Simulation

In this section, we investigate the performance of our proposed rank matrix lasso (RML) es-
timator through Monte Carlo simulations. The simulation results are evaluated through 100
Monte Carlo replications. Our implementation is based on a proximal gradient algorithm
which can be found in Appendix G.

Example 4.1 [Matrix regression] We firstly study the matrix regression model (2). We
consider two dimensions: m1 = m2 = m = 40 and m1 = m2 = m = 80. The ground truth is
generated by A0 = UV>, where U is the first five eigenvector from the sample covariance
matrix of 100 i.i.d Nm1(0, Im1) samples, V is the first five eigenvectors from another sample
covariance of 100 i.i.d. Nm2(0, Im2) data points. The covariates are i.i.d. copies of a generic
random matrix X, which is also composed of N (0, 1) entries(we also consider the correlated
designs with varying strengths of correlation in the Appendix H5). The random errors εi
are sampled independently from each of the following distributions: Gaussian N (0, 0.25),
scaled Cauchy C(0, 1)/64, and scaled and centered log-normal {LN (0, 9)− exp(9/2)}/400.
The sample size grows from 3200 to 6400.

We compare four nuclear norm penalization estimators: matrix lasso (Negahban and
Wainwright, 2011), Robustified matrix lasso (Fan et al., 2021), regularized LAD (Elsener
and van de Geer, 2018), and our rank matrix lasso. The tuning parameter of matrix lasso
and regularized LAD are given by (8). In practice, (8) cannot be applied to the calculation
of λ∗ for matrix lasso and regularized LAD for that we don’t know the distribution of error.
For the convenience of calculation, we assume the distribution of error is known for matrix
lasso and regularized LAD. The tuning parameter λ∗ given by (8) is obtained by simulation
based on 100 repetitions with α0 = 0.2. The tuning parameter of Robustified matrix lasso is
given by RCV introduced in Fan et al. (2021). We use “`2”, “Robust `2”, “`1” and “RML”
to denote the four methods, respectively. Note that though theoretical guarantee for the
regularized LAD estimator was investigated only under the matrix completion model, we
still take it as a benchmark for comparison. The logarithm values of the Frobenius norm
‖Â−A0‖F for those estimators are presented in Figure 1.

All the robust estimators have much smaller statistical errors and sharper estimation
results than the matrix lasso estimator under the heavy-tailed errors such as Cauchy and
log-normal distribution. In particular, our RML outperforms other methods in Cauchy
and log-normal cases and guarantee nearly the same performance compared with the best
estimator in Gaussian case. This suggests that it is adaptive to a wide range of populations
and capable of yielding a better trade-off between robustness and estimation accuracy.

In Figure 2, under the same setting as Figure 1, we compare our method with the state-
of-art alternate projection method called Scaled Gradient Descent (SGD) in Tong et al.
(2021a) and Scaled Subgradient Methods (SSM) in Tong et al. (2021b). The SGD and
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SSM consider the `2 loss and `1 loss under matrix factorization framework, respectively.
For the two methods, we consider three specifications on rank, R = 3, 5, 10 which represent
the underestimation, perfect specification and overestimation respectively. We also consider
using cross validation to select rank R. It can be seen that the performances of SGD and
SSM are sensitive to the choice of pre-specified rank R. Our method is either the best or is
close to the best. The cross validation criterion lacks a theoretical guarantee, which is also
a manifestation of the usefulness of our method.

Example 4.2 [Multivariate regression] We consider the multivariate regression model
(3). Here we consider m1 = m2 = m = 40 and r = 5, the sample size ranges from
500 to 2000. The ground truth A0 is generated in the same way as Example 4.1, but
this example takes different covariate designs into account. As for the covariates xi, we
take i.i.d. draws from a multivariate normal Nm(0,Σ). Two choices of Σ are considered:
(1)Identity covariance. Σ = Im, which gives i.i.d. normal components for the random
vectors. In this case our Assumption 12 is met with κ0 = 1 and b3 = 1. (2) Autoregressive
covariance. Σ = (aij), aij = 0.8|i−j|. This generates the elements of xi from an AR(1)
model with the coefficient fixed at 0.8. According to Grenander and Szegö (1958), in this
case Assumption 12 is satisfied with κ0 = 1/9 and b3 = 9. We compare four methods and
numerical results are presented in Figure 3. The proposed rank matrix lasso method shows
a quite competitive performance within the four candidates and yields sharp accuracy in
estimating the ground truth under both designs.

In addition, Figure 4 investigated the effect of heavy-tailed errors. Two settings on
the matrix dimension are considered: (1) Lower dimension: m1 = m2 = m = 40 and
n = 200; (2) Higher dimension: m1 = 40, m2 = 80, and n = 60. The ground truth A0 is
generated in the same way as Example 4.1. The covariates xi are drawn from a Nm2(0, Im2)
distribution, and we simulate a sequence of independent noise vector εi ∈ Rm1 , for which
each component comes from a t distribution with a degree of freedom d. Here d is given by
3k, k = 1, . . . , 6. Figure 4 shows the results after averaging over 100 simulation runs. The
performance curves of the aforementioned estimators are presented along with the degrees
of freedom of the t distributions. Generally as the t distribution approaches the normal,
better estimation accuracy can be achieved by all four estimators. When the noise has
a relatively heavy tail (small d), `2 loss yields a poor performance, while `1 loss and the
rank matrix lasso could result in a remarkable improvement. However, for the case of large
d, the performances of `1-based method would be largely compromised. In contrast, our
proposed estimator still remains as competitive as `2-type methods. Thus, the rank matrix
lasso achieves a good balance between robustness and estimation accuracy.

Example 4.3 [Matrix completion] We study the matrix completion model in Example
3. A0 is generated similarly as before but with an additional step of normalization (divided
by
√

5) such that its Forbenius norm equals 1. The masks are i.i.d. samples from all the unit
matrices, rescaled by multiplying

√
m1m2 such that the signal-to-noise ratio of the model

remains a constant as the dimension grows. Again, we take m1 = m2 = m ∈ {40, 80}. The
random error takes the same form as the matrix regression example in Example 4.1, and the
sample size ranges from 3200 to 6400. The results are presented in Figure 5. The numerical
results fully demonstrate the satisfactory performances of our rank matrix lasso estimators
regardless of the dimension, sample size and random error, especially for log-normal random
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(a) Gaussian, m = 40 (b) Gaussian, m = 80

(c) Cauchy, m = 40 (d) Cauchy, m = 80

(e) Log-normal, m = 40 (f) Log-normal, m = 80

Figure 1: Log Frobenius Errors of different estimators for matrix regression model
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(a) Gaussian, m = 40 (b) Gaussian, m = 80

(c) Cauchy, m = 40 (d) Cauchy, m = 80

(e) Log-normal, m = 40 (f) Log-normal, m = 80

Figure 2: Log Frobenius Errors of different estimators for matrix regression model
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(a) Gaussian noise with identity covariance (b) Gaussian noise with AR covariance

(c) Cauchy noise with identity covariance (d) Cauchy noise with AR covariance

(e) Log-normal noise with identity covariance (f) Log-normal noise with AR covariance

Figure 3: Log Frobenius Errors of different estimators for multivariate regression model
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(a) Case (1): m1 = m2 = m = 40, n = 200 (b) Case (2): m1 = 40, m2 = 80, n = 60

Figure 4: Log Frobenius Errors of different estimators for multivariate regression model
under t noises with varying degrees of freedom

errors. The rank matrix lasso can not only be robust to heavy-tailed random errors but
also perform similarly as matrix lasso under Gaussian random errors.

Moreover, the computational merit of our rank matrix lasso is that it is tuning-easy
by using a simulated tuning parameter. It overcomes the challenge of tuning parameter
selection and substantially saves the computation time. Next, we demonstrate the supe-
riority of pivotal tuning using simulations. We consider the aforementioned three models,
(I) matrix regression model with the same settings as Example 4.1 when m1 = m2 = 40
and n = 3200, (II) multivariate regression model with the same settings as Example 4.2
when Σ = Im, m1 = m2 = 40 and n = 500, and (III) matrix completion with the same
settings as Example 4.3 when m1 = m2 = 40 and n = 3200. To save the space, we only
consider Fan et al. (2021)’s Robustified matrix lasso (Robust `2) for comparison, where the
robust cross-validation (CV) method is used for the tuning parameter selection. Table 1
summarizes the results including the estimation error ‖Â−A0‖2F , both tuning and solving
computation time for different estimators. Clearly, pivotal tuning can remarkably reduce
the burden of parameter tuning than the CV-based methods without scarifying estimation
accuracy.

5. Real Data Analysis

This section is devoted to a numerical study based on the well-known Arabidopsis thaliana
data, which monitors the expression levels of a group of genes contributing to the generation
of isoprenoids under different experimental conditions. See Wille et al. (2004) and She and
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(a) Gaussian, m = 40 (b) Gaussian, m = 80

(c) Cauchy, m = 40 (d) Cauchy, m = 80

(e) Log-normal, m = 40 (f) Log-normal, m = 80

Figure 5: Log Frobenius Errors of different estimators for matrix completion model
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Model Error Estimator ‖Â−A0‖2F Rank Tuning(s) Solving(s) Total(s)

Normal
Robust `2 0.114(0.007) 5(0.00) 343 0.88 344

RML 0.130(0.009) 5(0.00) 0.60 1.37 1.97

(I)
Cauchy

Robust `2 0.105(0.007) 12.11(2.91) 314 0.89 315

RML <0.001 5(0.00) 0.61 2.38 2.98

Log-normal
Robust `2 0.131(0.012) 14.17(3.26) 389 0.85 390

RML <0.001 5(0.00) 0.63 3.80 4.43

Normal
Robust `2 0.611(0.035) 5(0.00) 3.88 0.03 3.91

RML 0.632(0.039) 5(0.00) 0.04 0.06 0.10

(II)
Cauchy

Robust `2 0.076(0.008) 10.27(2.86) 4.45 0.03 4.48

RML 0.003(0.000) 5(0.00) 0.04 0.08 0.12

Log-normal
Robust `2 0.323(0.074) 21.83(4.64) 4.88 0.03 4.91

RML <0.001 5(0.00) 0.04 0.12 0.16

Normal
Robust `2 0.107(0.007) 5(0.00) 367 2.94 370

RML 0.129(0.011) 5(0.00) 0.47 3.19 3.66

(III)
Cauchy

Robust `2 0.103(0.007) 13.69(2.57) 342 1.83 344

RML 0.002(0.000) 5(0.00) 0.45 3.22 3.67

Log-normal
Robust `2 0.121(0.010) 15.52(3.37) 338 1.81 340

RML 0.048(0.006) 5.07(0.25) 0.46 3.16 3.62

Table 1: The comparison of estimation accuracy and computation time. (I): matrix regres-

sion model; (II): multivariate regression model; (III): matrix completion

Chen (2017) for detailed description. The study contains n = 118 GeneChip microarray
records, with the expression levels of m2 = 39 genes from two upstream isoprenoid biosyn-
thesis pathways (mevalonate and non-mevalonate) and m1 = 62 genes from downstream
pathways (plastoquinone, carotenoid, phytosterol and chlorophyll). We consider a multi-
variate regression model for the data, using genes from upstream pathways as predictors
and the downstream genes as responses.

Here for the sake of comparison, we again consider the four estimators mentioned in
Section 4, trained over 80% of the data, Ytrain, and calculate the prediction accuracy based
on the remaining data serving as a test set, Ytest. Concretely speaking, the accuracy for
the prediction Ypre is measured by two prediction errors, mean absolute deviation (MAD)
and mean square error (MSE), as follows,

MAD =
1

m1ntest
‖Ypre −Ytest‖1,1, MSE =

1

m1ntest
‖Ypre −Ytest‖2F .

Here ‖ · ‖1,1 simply gives the summation of the absolute values of all the entries for a
given matrix. For matrix lasso, regularized LAD and our RML we apply the pivotal tuning
procedure with α = 0.2(for matrix lasso, we simply assume the error follows standard
normal distribution), and for Robustified matrix lasso, we determine the tuning parameter
using robust cross validation (Fan et al., 2021). We repeat the splitting step 100 times
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and report the average prediction error and the standard error. The result is summarized
in Table 2. We observe from Table 2 that the matrix lasso shows the highest prediction
error. In contrast, the RML has consistently lower prediction errors than other methods.
Compared to Robustified matrix lasso, the RML produced estimators with smaller rank
and end up with a more parsimonious model, which is beneficial for some follow-up analysis
such as principal component analysis or exploratory factor analysis (EFA).

Method `2 Robust-`2 `1 RML

MSE 0.609(0.079) 0.574(0.075) 0.581(0.077) 0.567(0.072)

MAD 0.560(0.026) 0.543(0.028) 0.539(0.025) 0.531(0.023)

Estimated rank 3.76(0.42) 8.6(0.84) 3.16(0.36) 4(0.20)

Table 2: Prediction accuracy for the Arabidopsis thaliana generic data

Next, we perform an EFA based on the RML estimators. The analysis follows a similar
manner to She and Chen (2017) which conducted a factor analysis following their addi-
tive model setup and robust reduced rank regression estimation results. Let the predicted
response be Ypre = XÂ> ∈ Rn×m1 with singular value decomposition ÛD̂V̂>. Then Û

collects five underlying factors, and V̂D̂ records the factor loadings (coefficients) of the 62
genes in the four downstream pathways. We plot the coefficients corresponding to the first
two factors in Figure 6. To identify the most significant genes for each factor, we take a

same cut-off value as She and Chen (2017), which is given by ±m−1/2
1 d̂k for the k-th factor.

Here d̂k is the k-th singular value of Ŷpre, given by the k-th diagonal element of D̂.

Basically the factor analysis results can unveil some structural information beneath the
target genes. We can see the first factor captures some joint characteristics of carotenoid and
chlorophyll, and the second factor differentiates the influence of carotenoid and phytosterol,
which coincide with the findings in She and Chen (2017). This reveals some group pattern
in the downstream pathways that has been verified by many biological studies. For example,
Trudel and Ozbun (1970) mentioned that carotenoid and chlorophyll pigments are generally
interrelated, since “the two pigment systems are morphologically associated in the cell
where they are attached to the same or very similar proteins in the grana or lamellae of the
chloroplast”, providing evidence of the group structure we summarized from the first factor
loadings. It is worthy of further devotion to knit together the line of biological experiments
and the insight from statistical analysis to acquire deeper understanding of these natural
mechanisms.

6. Conclusion and Discussion

In this article, we study a linear operator model and propose a new rank matrix lasso method
for high-dimensional low-rank matrix recovery which can tackle the challenges of tuning
parameter selection for regularized estimator. For normal random errors, our estimator
behaves very similarly as matrix lasso. It remains robust under heavy-tailed and skewed
random errors in the sense that it possesses nearly optimal statistical error rates as other
standard estimators under sub-Gaussian errors.
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(a) First factor coefficients (b) Second factor coefficients

Figure 6: Factor loadings of the 62 genes from downstream pathways for the first and second
factor

We conclude this article with two remarks. Firstly, it is well known that for the linear
regression model, the influence function of rank-based estimators is bounded in the response
space but it is unbounded in the covariate space. Hence an outlier in the covariate space can
seriously impair a rank estimate. For this aspect of robustness, Fan et al. (2021) proposed
several bounded moment conditions on the design matrices and showed their shrinkage
principle can achieve the minimax estimation error rate. It deserves to investigate the
possibility of similar extensions in our method. Secondly, while the linear operator model
has already covered a wide range of problems, it’s still limited in some real-life application,
especially when additional structures or restrictions are imposed on the model, such as 1-bit
matrix completion (Davenport et al., 2014). Hence it is attractive to explore whether this
rank based method as well as the pivotal tuning property can be adapted to more general
model with other side/structure information.
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Appendix

The Appendix contains the technical proofs of all Theorems and Corollaries, the associated
optimization algorithm and additional simulations results. Hereafter we let EP|X be the
conditional expectation conditioning on all observed covariates and EX be the expectation
taken with respect to covariates.

Appendix A: Proof of Theorem 1

We first give the definition of ∆′ and ∆′′, which is first proposed by Negahban and Wain-
wright (2011). Any matrix A0 ∈ Rm1×m2 has a singular value decomposition of the form
A0 = UDV>, where U ∈ Rm1×m1 and V ∈ Rm2×m2 are orthogonal matrices. For each in-
teger r ∈ {1, 2, . . . ,m}, we let Ur ∈ Rm1×r and Vr ∈ Rm2×r be the sub-matrices of singular
vectors associated with the top r singular values of A0. We then define the following two
subspaces of Rm1×m2 :

A (Ur,Vr) : =
{
∆ ∈ Rm1×m2 | row(∆) ⊆ Vr and col(∆) ⊆ Ur

}
B (Ur,Vr) : =

{
∆ ∈ Rm1×m2 | row(∆) ⊥ Vr and col(∆) ⊥ Ur

}
,

where row (∆) ⊆ Rm2 and col(∆) ⊆ Rm1 denote the row space and column space, respec-
tively, of the matrix ∆. Let ΠB denote the projection operator onto the subspace B, and
define ∆′′ = ΠB(∆) and ∆′ = ∆−∆′′.

Before proving the main theorem, we state a useful lemma.

Lemma 21 Let Ur ∈ Rm1×r and Vr ∈ Rm2×r be matrices consisting of the top r left
and right singular vectors of A0, respectively. Then there exists a matrix decomposition
∆ = ∆′ + ∆′′ of the error ∆ = Â−A0 such that:

(a) the matrix ∆′ satisfies ‖∆′‖F ≤ ‖∆‖F and the constraint rank (∆′) ≤ 2r;

(b) if λ ≥ 2 ‖∇Qn (A0)‖op , then the nuclear norm of ∆′′ is bounded as ‖∆′′‖1 ≤
3 ‖∆′‖1 + 4

∑m
j=r+1 σj (A0) .

The proof of this lemma is the same as the proof of Lemma 1 in Negahban and Wain-
wright (2011), thus we omit it.

Proof [Proof of Theorem 1] Using the fact that Â is the minimizer of the objective function,
we have

Qn(Â) + λ‖Â‖1 ≤ Qn (A0) + λ ‖A0‖1 .

From this and the assumption, we obtain the following inequality

Q(Â)−Q (A0) ≤ −
[
{Qn(Â)−Q(Â)} − {Qn (A0)−Q (A0)}

]
+ λ ‖A0‖1 − λ‖Â‖1

≤ λε‖Â−A0‖1 + λ̃+ λ‖Â−A0‖1
= (λε + λ) ‖Â−A0‖1 + λ̃.
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Combining with Lemma 21, we have that

Q(Â)−Q (A0) ≤ (λε + λ)

4
√

2r‖Â−A0‖F + 4

m∑
j=r+1

σj (A0)

+ λ̃

≤ max

12
√

2r (λε + λ) ‖Â−A0‖F , 12 (λε + λ)

m∑
j=r+1

σj (A0) , 3λ̃

 .

By Lemma 21, we have Â −A0 ∈ C, which implies that Q(Â) − Q (A0) ≥ κ‖Â−A0‖2F .
Then it follows that

κ‖Â−A0‖2F ≤ max

12
√

2r (λε + λ) ‖Â−A0‖F , 12 (λε + λ)

m∑
j=r+1

σj (A0) , 3λ̃

 ,

which further implies

‖Â−A0‖F ≤ max

24 (λ+ λε)
√
r

κ
,

{
12 (λ+ λε)

∑m
j=r+1 σj (A0)

κ

}1/2

,

√
3λ̃

κ

 .

For a threshold τ > 0, we choose r = # {j ∈ {1, 2, . . . ,m} | σj (A0) ≥ τ} . Then it follows
that

m∑
j=r+1

σj (A0) ≤ τ
m∑

j=r+1

σj (A0)

τ
≤ τ

m∑
j=r+1

(
σj (A0)

τ

)q
≤ τ1−q

m∑
j=r+1

σj (A0)q ≤ τ1−qRq

On the other hand, Rq ≥
∑r

j=1 σj (A0)q ≥ rτ q, so r ≤ Rqτ−q. Choose τ = (λ+λε)/κ yields
that

‖Â−A0‖F ≤ max

24
√
Rq

(
λ+ λε
κ

)1−q/2
,

√
3λ̃

κ

 .

Before proceeding to the proof of Theorems 6, 14, and 18, we give an equivalent form
for rank-based loss with Wilcoxon score Qn(A), which is useful in our proof. Denote∑

i 6=j :=
∑n

i=1

∑n
j=1,j 6=i, we have

Qn (A) =
2(n+ 1)√
3n(n− 1)

p∑
k=1

n∑
i=1

φ (R (εik (A))) · εik (A)

= {n (n− 1)}−1
p∑

k=1

∑
i 6=j
|εik (A)− εjk (A)|

= {n (n− 1)}−1
p∑

k=1

∑
i 6=j

∣∣∣{yik − e>k (p)X (Xi; A)
}
−
{
yjk − e>k (p)X (Xj ; A)

}∣∣∣ ,
where φ(i) = ϕ(i/(n+ 1)) and ϕ(u) =

√
12(u− 1/2).
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Appendix B: Proof of Theorem 6

Combining the following lemma with Theorem 1, we can complete the proof of Theorem 6.

Lemma 22 Suppose that Assumptions 2-4 hold. Suppose A0 ∈ Bq (Rq)∩S. Then we have
the following conclusions.

(a) Define for all M > 0

ZM := sup
‖A−A0‖1≤M

|{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| .

Then there exists a universal constant C1 > 0, with λ′ε = 8C1κ0

√
m1+m2

n , such that

ZM ≤ λ′εM

with probability at least 1 − 2 exp (−4 (m1 +m2)). Moreover, let λε = 2λ′ε and λ̃ =
2m1+m2

n λ′ε, we have, for any A ∈ S

|{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| ≤ λε ‖A−A0‖1 + λ̃

with probability at least 1− 2 exp (−2 (m1 +m2)).

(b) λ∗ > 2 ‖∇Qn (A0)‖op with probability 1 − α0. If m1 + m2 > ln (2/α0), then there

exists constant C2 > 0 such that λ∗ ≤ 4C2κ0

√
m1+m2

n with probability at least 1 −
exp (− (m1 +m2)).

(c) A0 is the minimizer of Q (A). Take κ = b1b3/2, if 16
√

2b4+16
b1b3b24

(
λ+λε
κ

)1−q/2
R

1/2
q < 1,

then we have

Q(Â)−Q (A0) ≥ b1b3
2
‖Â−A0‖2F .

Remark 23 Part (a) and (b) implies that (λ∗ + λε)
1−q/2R

1/2
q . κ0

(
m1+m2

n

)1/2−q/4
R

1/2
q .

A sufficient condition of the assumption in (c) is n & (m1 +m2)R
2/(2−q)
q , where the symbol

& means that the inequality holds up to a multiplicative numerical constant.

Proof [Proof of Lemma 22] (a) The proof of the first conclusion is based on the Markov
inequality, on the symmetrization theorem (Van Der Vaart and Wellner, 1996), on the
contraction theorem (Ledoux and Talagrand, 2013) and on the dual norm inequality. Write
h (εi, εj) =| (εi − εj)− 〈Xi −Xj ,A−A0〉| − |εi − εj |,

ZM = sup
‖A−A0‖1≤M

∣∣∣∣∣∣ 1

n (n− 1)

∑
i 6=j
{h (εi, εj)− E [h (εi, εj)]}

∣∣∣∣∣∣ .
For any γ ≥ 0, Markov’s inequality implies

P (ZM > t) = P
(
eγZM > eγt

)
≤ e−γtEeγZM .
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Let Mn = bn/2c, the largest integer that is no larger than n/2. Let σi, i = 1, . . . , n denote
a Rademacher sequence independent of {Xi, εi}ni=1. In the following, we denote Γ = {A ∈
Rm1×m2 | ‖A−A0‖1 ≤M}. By Lemma A.1 of Clémençon et al. (2008) and the convexity
of exp(x), we have

EeγZM ≤ 1

n!

∑
π

E exp

(
γ sup

A∈Γ

∣∣∣∣∣M−1
n

Mn∑
i=1

{
h
(
επ(i), επ(Mn+i)

)
− Eh

(
επ(i), επ(Mn+i)

)}∣∣∣∣∣
)
,

where the first summation taking over all permutations π of {1, . . . , n}. Applying the
symmetrization theorem and the contraction theorem, we obtain

EeγZM ≤ 1

n!

∑
π

E exp

(
4γ sup

A∈Γ

∣∣∣∣∣M−1
n

Mn∑
i=1

σi
〈
Xπ(i) −Xπ(Mn+i),A−A0

〉∣∣∣∣∣
)
.

Then by the dual norm inequality we have

EeγZM ≤ 1

n!

∑
π

E exp

4γ sup
A∈Γ
‖A−A0‖1

∥∥∥∥∥M−1
n

Mn∑
i=1

σi
(
Xπ(i) −Xπ(Mn+i)

)∥∥∥∥∥
op


≤ 1

n!

∑
π

E exp

4γM

∥∥∥∥∥M−1
n

Mn∑
i=1

σi
(
Xπ(i) −Xπ(Mn+i)

)∥∥∥∥∥
op

 .

Next we adopt the ε-net argument in the Chapter 4 of Vershynin (2018) to bound the last
term. Choose ε = 1/4, by Corollary 4.2.13 of Vershynin (2018), we can find an ε-net N
of the sphere Dm1−1 and ε-net M of the sphere Dm2−1 with cardinalities |N | ≤ 9m1 and
|M| ≤ 9m2 such that for any A ∈ Rm1×m2 , the operator norm of A can be bounded using
these nets as follows: ‖A‖op ≤ 2 maxu∈N ,v∈M u>Av. Then we have

E exp

4γM

∥∥∥∥∥M−1
n

Mn∑
i=1

σi
(
Xπ(i) −Xπ(Mn+i)

)∥∥∥∥∥
op


≤ E exp

(
8γM max

u∈N ,v∈M
u>

{
M−1
n

Mn∑
i=1

σi
(
Xπ(i) −Xπ(Mn+i)

)}
v

)

≤ 2 · 9m1+m2 max
u∈N ,v∈M

E exp

(
8γMu>

{
M−1
n

Mn∑
i=1

σi
(
Xπ(i) −Xπ(Mn+i)

)}
v

)

= 2 · 9m1+m2 max
u∈N ,v∈M

E exp

(
8γMM−1

n

Mn∑
i=1

u>
(
Xπ(i) −Xπ(Mn+i)

)
v

)

≤ 2 · 9m1+m2 exp

(
C2

1κ
2
0γ

2M2

n

)
,

where the second inequality follows from the simple bound

E
[

max
1≤j≤p

e|zj |
]
≤ p max

1≤j≤p
E
[
e|zj |

]
≤ p max

1≤j≤p
E
[
ezj + e−zj

]
≤ 2p max

1≤j≤p
E [ezj ]
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holding for symmetric random variables zj , and the last inequality follows the sub-Gaussian
assumption on the covariate. Above discussion implies

P (ZM > t) ≤ inf
γ≥0

e−γtEeγZM

≤ inf
γ≥0

2 · 9m1+m2 exp
(
C2

1κ
2
0γ

2M2/n− γt
)

= 2 · 9m1+m2 exp

(
− nt2

4C2
1κ

2
0M

2

)
.

Let t = 8C1κ0

√
m1+m2

n M , then we conclude that ZM ≤ 8C1κ0

√
m1+m2

n M with probability

at least 1− 2 exp (−4 (m1 +m2)).

For the second conclusion, to obtain a uniform bound for all A ∈ S, we apply the first
conclusion and peeling device given in Van de Geer (2000) and Elsener and van de Geer
(2018). Without loss of generality we assume m1 ≥ m2, then we can subdivide the set S as
follows

S =

{
A ∈ S : ‖A−A0‖1 ≤

m1 +m2

n

}⋃{
A ∈ S :

m1 +m2

n
< ‖A−A0‖1 ≤ 2

√
m2

1m2η

}
.

On the first set S0 =
{
A ∈ S : ‖A−A0‖1 ≤ m1+m2

n

}
P
(
∃A ∈ S0 : |{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| > λε ‖A−A0‖1 + λ̃

)
≤ P

(
∃A ∈ S0 : |{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| > m1 +m2

n
λ′ε

)
≤ 2 exp (−4 (m1 +m2)) .

We further subdivide the second set
{

A ∈ S : m1+m2
n < ‖A−A0‖1 ≤ 2

√
m2

1m2η
}

into{
A ∈ S :

m1 +m2

n
< ‖A−A0‖1 ≤ 2

√
m2

1m2η

}
⊂

k0⋃
k=1

{
A ∈ S :

m1 +m2

n
2k < ‖A−A0‖1 ≤

m1 +m2

n
2k+1

}
:=

k0⋃
k=1

Sk,

where k0 is the smallest integer such that m1+m2
n 2k0+1 ≥ 2

√
m2

1m2η. For each Sk

P
(
∃A ∈ Sk : |{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| > λε ‖A−A0‖1 + λ̃

)
≤ P

(
∃A ∈ Sk : |{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| > m1 +m2

n
2k+1λ′ε

)
≤ 2 exp (−4 (m1 +m2)) .

Note that k0 = log2

(
n
√
m2

1m2η

m1+m2

)
, by the high-dimensional setting n < m1m2, there exists

a constant c such that (k0 + 1) exp (−2 (m1 +m2)) ≤ 1 when m1 + m2 > c. Then by the
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union bound

P
(
∃A ∈ S : |{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| > λε ‖A−A0‖1 + λ̃

)
≤

k0∑
k=0

P
(
∃A ∈ Sk : |{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| > λε ‖A−A0‖1 + λ̃

)
≤ 2(k0 + 1) exp (−4 (m1 +m2)) ≤ 2 exp (−2 (m1 +m2)) ,

which completes the proof of the second conclusion.

(b) The first conclusion follows from the definition of λ∗. Next, we give the proof of the
second conclusion. Conditional on {Xi}ni=1. For any γ ≥ 0, Markov’s inequality implies

P (Sn > t | X) = P
(
eγSn > eγt | X

)
≤ e−γtEP|Xe

γSn .

Recall that Sn = {n (n− 1)}−1 ‖
∑

i 6=j (Xj −Xi) sign (εi − εj) ‖op, then using the ε-net, we
have

EP|Xe
γSn

≤ 2 · 9m1+m2 max
u∈N ,v∈M

EP|X exp

2γ {n (n− 1)}−1
∑
i 6=j

u> (Xj −Xi) v sign (εi − εj)


≤ 2 · 9m1+m2 max

u∈N ,v∈M
EP|X exp

(
2γ

1

n!

∑
π

M−1
n

Mn∑
i=1

u>
(
Xπ(i) −Xπ(Mn+i)

)
v sign

(
επ(i) − επ(Mn+i)

))

≤ 1

n!

∑
π

2 · 9m1+m2 max
u∈N ,v∈M

EP|X exp

(
2γM−1

n

Mn∑
i=1

u>
(
Xπ(i) −Xπ(Mn+i)

)
v sign

(
επ(i) − επ(Mn+i)

))

≤ 1

n!

∑
π

2 · 9m1+m2 max
u∈N ,v∈M

exp

(
4
γ2

M2
n

Mn∑
i=1

{
u>
(
Xπ(i) −Xπ(Mn+i)

)
v
}2

2

)

≤ 1

n!

∑
π

2 · 9m1+m2 exp

(
16
γ2

n
max

u∈N ,v∈M

1

n

n∑
i=1

(
u>Xiv

)2
)
.

Assume 16 maxu∈N ,v∈M
1
n

∑n
i=1

(
u>Xiv

)2 ≤ κ2
0C

2
2 for some constant C2, we obtain

P (Sn > t | X) ≤ inf
γ≥0

e−γtEP|Xe
γSn

≤ inf
γ≥0

2 · 9m1+m2 exp
(
C2

2κ
2
0γ

2/n− γt
)

= 2 · 9m1+m2 exp

(
− nt2

4C2
2κ

2
0

)
.

Let t = 4C2κ0

√
m1+m2

n , it follows that Sn ≤ 4C2κ0

√
m1+m2

n with probability at least 1 −

2 exp (− (m1 +m2)). Then if m1 +m2 > ln (2/α0), we conclude that λ∗ < 4C2κ0

√
m1+m2

n .

29



Cui, Shi, Zhong and Zou

Finally we only need to show that there exists some constant C2 such that

16 max
u∈N ,v∈M

1

n

n∑
i=1

(
u>Xiv

)2
≤ κ2

0C
2
2

holds with high probability. Under the Assumption 12, it’s easy to show that u>Xiv/κ0 is

sub-Gaussian with
∥∥u>Xiv/κ0

∥∥
ψ2
≤ 1 and E

(
u>Xiv/κ0

)2 ≤ µ for all u ∈ N , v ∈M, where

µ is a constant. By ‖
(
u>Xiv/κ0

)2 ‖ψ1 =
(
‖u>Xiv/κ0‖ψ2

)2
we have that

(
u>Xiv/κ0

)2
is

sub-exponential with constant parameter (ν, α) and

P

(
1

n

n∑
i=1

((
u>Xiv/κ0

)2
− E

(
u>Xiv/κ0

)2
)
> t

)
≤

{
e−

nt2

2ν2 for 0 ≤ t ≤ ν2

α

e−
nt
2α for t > ν2

α

.

We take t = ν2

α , then

P

(
max

u∈N ,v∈M

1

n

n∑
i=1

(
u>Xiv/κ0

)2
> µ+

ν2

α

)
≤

9m1+m2∑
k=1

P

(
1

n

n∑
i=1

(
u>Xiv/κ0

)2
> µ+

ν2

α

)

≤ 9m1+m2 exp

(
− ν2

2α2
n

)
.

Hence there exists constant C2 and c2 such that

P

(
16 max

u∈N ,v∈M

1

n

n∑
i=1

(
u>Xiv

)2
≤ κ2

0C
2
2

)
≥ 1− 9m1+m2 exp (−c2n) .

Note that 16 maxu∈N ,v∈M
1
n

∑n
i=1

(
u>Xiv

)2 ≤ κ2
0C

2
2 with probability at least 1−9m1+m2 exp (−c2n).

If n > 4 (m1 +m2) /c2, we obtain λ∗ < 4C2κ0

√
m1+m2

n with probability at least 1 −
exp (− (m1 +m2)).

(c) We denote Cov (vec (X1)) by J. First we show that, for any A

Q (A)−Q (A0) ≥ b1
2
‖J

1
2 vec (A−A0) ‖22 ∧

b1b4
2
‖J

1
2 vec (A−A0) ‖2

which implies that A0 is the minimizer of Q (A). We define the maximal radius over which
the criterion function can be minorated by a quadratic function

rA0 = sup
r

{
r : Q (A)−Q (A0) ≥ b1

2
‖J1/2 vec (A−A0) ‖22 for all ‖J1/2 vec (A−A0) ‖2 ≤ r

}
.

We claim that rA0 ≥ b4. By Knight’s identity (Koenker, 2005),

Qn (A)−Qn (A0) = {n (n− 1)}−1
∑
i 6=j
〈Xi −Xj ,A−A0〉 {I (ζij < 0)− 1/2}

+ {n (n− 1)}−1
∑
i 6=j

∫ 〈Xi−Xj ,A−A0〉

0
{I (ζij ≤ s)− I (ζij ≤ 0)} ds.
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Denote the distribution function of ζij by F ∗ (·). By the independence of X and ε, we have

Q (A)−Q (A0) = EX

∫ 〈Xi−Xj ,A−A0〉

0
{F ∗ (s)− F ∗ (0)} ds.

By the Taylor expansion and Assumption 2, for some ξij between 0 and 〈Xi−Xj ,A−A0〉,
we have

Q (A)−Q (A0) = EX

∫ 〈Xi−Xj ,A−A0〉

0

{
f∗ (0) s+

∂f∗ (ξij)

∂t

s2

2

}
ds

≥ b1
2
EX

[
〈Xi −Xj ,A−A0〉2

]
− b2

6
EX

[
|〈Xi −Xj ,A−A0〉|3

]
.

Note that for all A−A0, if

‖J1/2 vec (A−A0) ‖2 ≤ b4 ≤
3b1

2
√

2b2
inf

A−A0 6=0

(
E〈X1 −X2,A−A0〉2

)3/2
E |〈X1 −X2,A−A0〉|3

,

it follows that

b1
4
EX〈Xi −Xj ,A−A0〉2 ≥

b2
6
EX |〈Xi −Xj ,A−A0〉|3 .

Hence for any ‖J1/2 vec (A−A0) ‖2 ≤ b4, we have

Q (A)−Q (A0) ≥ b1
4
EX

(
〈Xi −Xj ,A−A0〉2

)
=
b1
2
‖J

1
2 vec (A−A0) ‖22.

This implies rA0 ≥ b4.
By construction of rA0 and the convexity of Q, for any A we have

Q (A)−Q (A0)

≥ b1
2
‖J1/2 vec (A−A0) ‖22 ∧

{
‖J1/2 vec (A−A0) ‖2

rA0

· inf
‖J1/2 vec(Ã−A0)‖2=rA0

Q(Ã)−Q (A0)

}

≥ b1
2
‖J1/2 vec (A−A0) ‖22 ∧

{
‖J1/2 vec (A−A0) ‖2

rA0

b1
2
r2
A0

}

≥ b1
2
‖J1/2 vec (A−A0) ‖22 ∧

{
b1b4

2
‖J1/2 vec (A−A0) ‖2

}
,

which implies A0 is the minimizer of Q (A). By Assumption 3, we further have

Q (A)−Q (A0) ≥ b1b3
2
‖A−A0‖2F ∧

b1b3b4
2
‖A−A0‖F

for all A−A0 ∈ C. Using the fact that Â is the minimizer of the objective function:

Qn(Â) + λ‖Â‖1 ≤ Qn (A0) + λ ‖A0‖1 .
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Similar to the proof of Theorem 1, we obtain

Q(Â)−Q (A0) ≤ (λε + λ) ‖Â−A0‖1 + λ̃.

By Lemma 21, we have Â−A0 ∈ C, then

b1b3
2
‖Â−A0‖2F ∧

b1b3b4
2
‖Â−A0‖F ≤ (λε + λ) ‖Â−A0‖1 + λ̃

≤ (λε + λ)

4
√

2r‖Â−A0‖F + 4
m∑

j=r+1

σj (A0)

+ λ̃

≤ (λε + λ) max

8
√

2r‖Â−A0‖F , 8
m∑

j=r+1

σj (A0)

+ λ̃.

If ‖Â−A0‖F ≤ b4, combining the fact that
√
λ̃ is dominated by λε when n & (m1 +m2),

it follows that Q(Â)−Q (A0) ≥ b1b3
2 ‖Â−A0‖2F and

‖Â−A0‖F ≤ max

32 (λ+ λε)
√
r

b1b3
,

{
16 (λ+ λε)

∑m
j=r+1 σj (A0)

b1b3

}1/2
 .

If ‖Â−A0‖F ≥ b4, then

b1b3b4
2
‖Â−A0‖F ≤ 2 (λε + λ)

4
√

2r‖Â−A0‖F + 4
m∑

j=r+1

σj (A0)


which implies

1 ≤ 4 (λε + λ)

b1b3b4

{
4
√

2r + 4

∑m
j=r+1 σj (A0)

‖Â−A0‖F

}
≤ 4 (λε + λ)

b1b3b4

{
4
√

2r + 4

∑m
j=r+1 σj (A0)

b4

}
.

Similar to the proof of Theorem 1, we choose r = # {j ∈ {1, 2, . . . , p} | σj (A0) ≥ τ}, then
we have

∑p
j=r+1 σj (A0) ≤ τ1−qRq and r ≤ Rqτ−q. Taking κ = b1b3/2 and τ = (λ+ λε)/κ,

this gives

1 ≤
{√

2 +
1

b4

}
16

b1b3b4

(
λ+ λε
κ

)1−q/2
R1/2
q < 1

which is a contradiction. Hence if 16
√

2b4+16
b1b3b24

(
λ+λε
κ

)1−q/2
R

1/2
q < 1, we have

Q(Â)−Q (A0) ≥ b1b3
2
‖Â−A0‖2F .
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Appendix C: Proof of Corollary 10

In the proof of Theorem 6, we use ε-net argument to bound ‖M−1
n

∑Mn
i=1 σi

(
Xπ(i) −Xπ(Mn+i)

)
‖op

and ‖
∑

i 6=j (Xi −Xj) sign (εi − εj) ‖op. But in the high dimensional linear regression model,
due to the diagonal structure of X, we bound them in the following way to get a faster rate:∥∥∥∥∥M−1

n

Mn∑
i=1

σi
(
Xπ(i) −Xπ(Mn+i)

)∥∥∥∥∥
op

≤ max
1≤j≤d

∣∣∣∣∣M−1
n

Mn∑
i=1

σi
(
Xπ(i)jj −Xπ(Mn+i)jj

)∣∣∣∣∣ ,∥∥∥∥∥∥
∑
i 6=j

(Xi −Xj) sign (εi − εj)

∥∥∥∥∥∥
op

≤ max
1≤k≤d

∣∣∣∣∣∣
∑
i 6=j

(Xikk −Xjkk) sign (εi − εj)

∣∣∣∣∣∣ ,
where Xπ(i)jj and Xikk denote the j-th and k-th diagonal element of Xπ(i) and Xi respec-
tively. Then with the two inequalities, similar to the proof of Theorem 6, we can get the
conclusion in Corollary 10.

Appendix D: Proof of Theorem 14

Combining the following lemma with Theorem 1, we can complete the proof of Theorem
14.

Lemma 24 Suppose that Assumptions 11-13 hold. Suppose A0 ∈ Bq (Rq) ∩ S. Then we
have the following conclusions.

(a) Define for all M > 0

ZM := sup
‖A−A0‖1≤M

|{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| .

Then there exists a universal constant C1 > 0, with λ′ε = 8C1κ0

√
m1+m2

n , such that

ZM ≤ λ′εM

with probability at least 1 − 2 exp (−4 (m1 +m2)). Moreover, let λε = 2λ′ε and λ̃ =
2m1+m2

n λ′ε, we have, for any A ∈ S

|{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| ≤ λε ‖A−A0‖1 + λ̃

with probability at least 1− 2 exp (−2 (m1 +m2)).

(b) λ∗ > 2 ‖∇Qn (A0)‖op with probability 1 − α0. If m1 + m2 > ln (2/α0), then there

exists constant C2 > 0 such that λ∗ ≤ 4C2κ0

√
m1+m2

n with probability at least 1 −
exp (− (m1 +m2)).

(c) A0 is the minimizer of Q (A). Take κ = b1b3/2, if 16
√

2b4+16
b1b3b24

(
λ+λε
κ

)1−q/2
R

1/2
q < 1,

then we have

Q(Â)−Q (A0) ≥ b1b3
2
‖Â−A0‖2F .
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Proof [Proof of Lemma 24] (a) We only prove the first conclusion since the proof of
the second conclusion follows similarly to that of Lemma 22(a). Write h (εik, εjk) =|
(εik − εjk)− 〈ekx>i − ekx

>
j ,A−A0〉| − |εik − εjk|,

ZM = sup
‖A−A0‖1≤M

∣∣∣∣∣∣ 1

n (n− 1)

∑
i 6=j

m1∑
k=1

{h (εik, εjk)− E [h (εik, εjk)]}

∣∣∣∣∣∣ .
For any γ ≥ 0, Markov’s inequality implies

P (ZM > t) = P
(
eγZM > eγt

)
≤ e−γtEeγZM .

Let Mn = bn/2c, the largest integer that is no larger than n/2. Let {σik}, i = 1, . . . , n, k =
1, . . . ,m1 denote a Rademacher sequence independent of {xi, εi}, i = 1, . . . , n. Similar to
the proof of Lemma 22 we have

EeγZM ≤ 1

n!

∑
π

E exp

4γM

∥∥∥∥∥ 1

Mn

Mn∑
i=1

m1∑
k=1

σik

(
xπ(i)e

>
k (m1)− xπ(Mn+i)e

>
k (m1)

)∥∥∥∥∥
op

 .

To bound this term, using the ε-net discretization method in Lemma 22 and the sub-
Gaussion assumption on covariates, similarly we obtain

EeγZM ≤ 2 · 9m1+m2 exp

(
64γ2M2κ2

0C
2
1

Mn

)
for some constant C1. Thus we have

P (ZM > t) ≤ inf
γ≥0

e−γtEeγZM

≤ inf
γ≥0

2 · 9m1+m2 exp
(
C2

1κ
2
0γ

2M2/n− γt
)

= 2 · 9m1+m2 exp

(
− nt2

4C2
1κ

2
0M

2

)
.

Now we take t = 8C1κ0

√
m1+m2

n M , this implies ZM ≤ 8C1κ0

√
m1+m2

n M with probability

at least 1− 2 exp (−4 (m1 +m2)).

(b) The first conclusion follows from the definition of λ∗. Next we give the proof of the
second conclusion. Conditional on {Xi}ni=1. For any γ ≥ 0, Markov’s inequality implies

P (Sn > t | X) = P
(
eγSn > eγt | X

)
≤ e−γtEP|Xe

γSn .

By the ε-net discretization method and the sub-Gaussian assumption on covariates, we have

EP|Xe
γSn ≤ 2 · 9m1+m2 exp

(
16γ2

n
max

u∈N ,v∈M

1

n

n∑
i=1

(
u>xi

)2
)
.
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Assume 16 maxu∈N
1
n

∑n
i=1

(
u>xi

)2 ≤ κ2
0C

2
2 for some constant C2, we have

P (Sn > t | X) ≤ inf
γ≥0

e−γtEP|Xe
γSn

≤ inf
γ≥0

2 · 9m1+m2 exp
(
C2

2κ
2
0γ

2/n− γt
)

= 2 · 9m1+m2 exp

(
− nt2

4C2
2κ

2
0

)
.

Now we take t = 4C2κ0

√
m1+m2

n , this implies Sn ≤ 4C2κ0

√
m1+m2

n with probability at least

1− 2 exp (− (m1 +m2)). Then if m1 +m2 > ln (2/α0), we have λ∗ < 4C2κ0

√
m1+m2

n .

Similar to the discussion of Lemma 22(b), we have that there exists constant C2 and c2

such that 16 maxu∈N
1
n

∑n
i=1

(
u>xi

)2 ≤ κ2
0C

2
2 with probability at least 1−9m1+m2 exp (−c2n).

If n > 4 (m1 +m2) /c2, then we have λ∗ < 4C2κ0

√
m1+m2

n holds with probability at least

1− exp (− (m1 +m2)).

(c) We denote Cov (x1) by J. First we show that

Q (A)−Q (A0) ≥ b1
2
‖J

1
2 (A−A0)> ‖2F ∧

b1b4
2
‖J

1
2 (A−A0)> ‖F

which implies that A0 is the minimizer of Q (A). We define the maximal radius over which
the criterion function can be minorated by a quadratic function

rA0 = sup
r

{
r : Q (A)−Q (A0) ≥ b1

2
‖J1/2 (A−A0)> ‖2F for all ‖J1/2 (A−A0)> ‖F ≤ r

}
.

We claim that rA0 ≥ b4. Note that the empirical loss of multivariate regression is a sum-
mation of m1 empirical loss of linear regression, we have

Q (A)−Q (A0) ≥b1‖J1/2 (A−A0)> ‖2F −
b2
6

m1∑
k=1

EX

{∣∣∣(x1 − x2)> (Ak −A0k)
∣∣∣3} .

Note that for all A−A0, if

‖J1/2 (A−A0)> ‖F ≤ b4 ≤
3b1

2
√

2b2
inf

A−A0 6=0

(∑m1
k=1 E

∣∣∣(xi − xj)
> (Ak −A0k)

∣∣∣2)3/2

∑m1
k=1 E

∣∣∣(xi − xj)
> (Ak −A0k)

∣∣∣3 ,

it follows that b1
2 ‖J

1/2 (A−A0)> ‖2F ≥
b2
6

∑m1
k=1 EX

{∣∣∣(x1 − x2)> (Ak −A0k)
∣∣∣3}. Then we

obtain

Q (A)−Q (A0) ≥ b1
2
‖J1/2 (A−A0)> ‖2F for all ‖J1/2 (A−A0)> ‖F ≤ b4.

This implies rA0 ≥ b4. Similar to the proof of Lemma 22(c), we have

Q (A)−Q (A0) ≥ b1
2
‖J

1
2 (A−A0)> ‖2F ∧

b1b4
2
‖J

1
2 (A−A0)> ‖F
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for any A. This implies that A0 is the minimizer of Q (A), and

Q (A)−Q (A0) ≥ b1b3
2
‖A−A0‖2F ∧

b1b3b4
2
‖A−A0‖F

for any A−A0 ∈ C. Similar to the proof of Lemma 22(c), we can prove that

Q(Â)−Q (A0) ≥ b1b3
2
‖Â−A0‖2F .

Appendix E: Proof of Theorem 18

Hereafter we use X̃ and ε̃ to denote aX and aε respectively, and let ζ̃ij = aiεi− ajεj . With
the following lemma and Theorem 1, we can get Theorem 18.

Lemma 25 Suppose that Assumptions 15-17 hold. Assume A0 ∈ Bq (Rq) ∩ S. Then we
have following conclusions:

(a) Define for all M > 0

ZM := sup
‖A−A0‖1≤M

|{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| .

Then we have for a constant C0 > 0, with λ′ε = 8
√

2C0

√
L log(m1+m2)

nm2
and λ̃′ =

8η

√
log(m1+m2)

n , such that

ZM ≤ λ′εM + λ̃′

with probability at least 1 − exp (−4 log (m1 +m2)). Moreover, let λε = 2λ′ε and
λ̃ = 2λ̃′, we have, for any A ∈ S

|{Qn (A)−Q (A)} − {Qn (A0)−Q (A0)}| ≤ λε ‖A−A0‖1 + λ̃

with probability at least 1− exp (−2 log (m1 +m2)).

(b) λ∗ > 2 ‖∇Qn (A0)‖op with probability 1 − α0 if εi’s are symmetric. If m1 + m2 ≥

(3/α0)1/3, then λ∗ ≤
√

5L log(m1+m2)
nm2

with probability at least 1−exp (−2 log (m1 +m2)).

(c) A0 is the minimizer of Q (A). For all A, Q (A)−Q (A0) ≥ 1
c21µm1m2

‖A−A0‖2F .

Proof [Proof of Lemma 25] (a) We only prove the first conclusion since the proof of the
second conclusion follows similarly to that of Lemma 22(a). Due to the special structure
of X̃, we adopt the bounded difference inequality to control the empirical process. Write
h (ε̃i, ε̃j) =| (ε̃i − ε̃j)− 〈X̃i − X̃j ,A−A0〉| − |ε̃i − ε̃j |,

ZM = sup
‖A−A0‖1≤M

| 1

n (n− 1)

∑
i 6=j
{h (ε̃i, ε̃j)− E [h (ε̃i, ε̃j)]} |.
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Note that |h (ε̃i, ε̃j)| ≤ |〈X̃i − X̃j ,A −A0〉| ≤ 4η. Hence if we perturb one observation of
the data set, the value of ZM changes at 4η

n . By the bounded difference inequality, ∀t > 0

P (ZM − E {ZM} > t) ≤ exp

(
− nt2

16η2

)
.

Let Mn = bn/2c, the largest integer that is no larger than n/2. Let σi, i = 1, . . . , n denote
a Rademacher sequence independent of {X̃i, ε̃i}ni=1, we have

E [ZM ] = E

[
sup

‖A‖∞≤η:‖A−A0‖1≤M

1

n!

∣∣∣∣∣∑
π

M−1
n

Mn∑
i=1

{
h
(
ε̃π(i), ε̃π(Mn+i)

)
− Eh

(
ε̃π(i), ε̃π(Mn+i)

)}∣∣∣∣∣
]

≤ 4E

 sup
‖A‖∞≤η:‖A−A0‖1≤M

∥∥∥∥∥M−1
n

Mn∑
i=1

σi

(
X̃π(i) − X̃π(Mn+i)

)>∥∥∥∥∥
op

‖A−A0‖1


≤ 4ME

∥∥∥∥∥M−1
n

Mn∑
i=1

σi

(
X̃π(i) − X̃π(Mn+i)

)>∥∥∥∥∥
op

≤ 8
√

2MC0

√
L log (m1 +m2)

nm2
by triangle inequality and Lemma 29.

Now we take t = 8η

√
log(m1+m2)

n , this gives

ZM ≤ 8
√

2MC0

√
L log (m1 +m2)

nm2
+ 8η

√
log (m1 +m2)

n

with probability at least 1− exp (−4 log (m1 +m2)).

(b) First we show that the symmetrized masks aiXi and noise aiεi are independent.
Without loss of generality, we can calculate

P
(
aiXi = e1(m1)e1(m2)>, aiεi = ν

)
= P

(
ai = 1,Xi = e1(m1)e1(m2)>, εi = ν

)
= P (ai = 1)P

(
Xi = e1(m1)e1(m2)>

)
P (εi = ν)

= P (ai = 1)P
(
Xi = e1(m1)e1(m2)>

)
P (aiεi = ν)

= P
(
aiXi = e1(m1)e1(m2)>

)
P (aiεi = ν) .

Then the first conclusion follows from the fact that {aiXi}ni=1 is independent of {aiεi}ni=1

and ‖∇Qn (A0)‖op has the same distribution as Sn when εi’s are symmetric.

Next we give the proof of the second conclusion. Conditional on {X̃i}ni=1. For any γ ≥ 0,
Markov’s inequality implies

P
(
Sn > t | X̃

)
= P

(
eγSn > eγt | X̃

)
≤ e−γtEP|X̃e

γSn .
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Recall that Sn = ‖ {n (n− 1)}−1∑
i 6=j

(
X̃j − X̃i

)
sign (εi − εj) ‖op, by the definition of op-

erator norm, we have

EP|X̃e
γSn

= EP|X̃ exp

γ sup
‖u‖2≤1,‖v‖2≤1

{n (n− 1)}−1
∑
i 6=j

u>
(
X̃i − X̃j

)
v sign (εi − εj)


= EP|X̃ exp

(
γ sup
‖u‖2≤1,‖v‖2≤1

1

n!

∑
π

M−1
n

Mn∑
i=1

u>
(
X̃π(i) − X̃π(Mn+i)

)
v sign

(
επ(i) − επ(Mn+i)

))

≤ 1

n!

∑
π

EP|X̃ exp

(
γ sup
‖u‖2≤1,‖v‖2≤1

M−1
n

Mn∑
i=1

u>
(
X̃π(i) − X̃π(Mn+i)

)
v sign

(
επ(i) − επ(Mn+i)

))

=
1

n!

∑
π

EP|X̃ exp

γ ∥∥∥∥∥M−1
n

Mn∑
i=1

(
X̃π(i) − X̃π(Mn+i)

)
sign

(
επ(i) − επ(Mn+i)

)∥∥∥∥∥
op

 .

We denote Zπ = ‖M−1
n

∑Mn
i=1

(
X̃π(i) − X̃π(Mn+i)

)
sign

(
επ(i) − επ(Mn+i)

)
‖op for the simplic-

ity of notation, then we have

P
(
Sn > t | X̃

)
≤ inf

γ≥0
e−γtEP|X̃e

γSn ≤ inf
γ≥0

e−γt
1

n!

∑
π

EP|X̃e
γZπ .

We do not use the ε-net argument to bound the operator norm term, instead we apply
the Matrix Bernstein inequality (Theorem 6.1.1 in Tropp (2015)) to take advantage of
the singleton design under the matrix completion setting. We state the Matrix Bernstein
inequality in Lemma 26 for the sake of completeness. Now we calculate the quantity needed
in Matrix Bernstein inequality. For all permutation π, we have∥∥∥∥∥M−1

n

Mn∑
i=1

(
X̃π(i) − X̃π(Mn+i)

)(
X̃π(i) − X̃π(Mn+i)

)>∥∥∥∥∥
op

= sup
‖u‖2≤1,‖v‖2≤1

M−1
n

Mn∑
i=1

u>
(
X̃π(i) − X̃π(Mn+i)

)(
X̃π(i) − X̃π(Mn+i)

)>
v

By the special structure of X̃, we have ±u>X̃aX̃
>
b v ≤

1
2(u>X̃aX̃

>
a u+ v>X̃bX̃

>
b v), then for

any ‖u‖2 ≤ 1, ‖v‖2 ≤ 1,

M−1
n

Mn∑
i=1

u>
(
X̃π(i) − X̃π(Mn+i)

)(
X̃π(i) − X̃π(Mn+i)

)>
v

≤ (2Mn)−1
n∑
i=1

{
2u>X̃iX̃

>
i v + u>X̃iX̃

>
i u+ v>X̃iX̃

>
i v
}

= 4n−1

(
u+ v

2

)> n∑
i=1

X̃iX̃
>
i

(
u+ v

2

)
.
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Note that
∥∥u+v

2

∥∥
2
≤ 1, we obtain∥∥∥∥∥M−1

n

Mn∑
i=1

(
X̃π(i) − X̃π(Mn+i)

)(
X̃π(i) − X̃π(Mn+i)

)>∥∥∥∥∥
op

≤ 4

∥∥∥∥∥n−1
n∑
i=1

X̃iX̃
>
i

∥∥∥∥∥
op

.

Assume that 4‖n−1
∑n

i=1 X̃iX̃
>
i ‖op ≤ 8L

m2
, then we have

EP|X̃e
γZπ

= EP|X̃

∫ Z

0
γeγydy + 1

=

∫ +∞

0
P
(
Zπ > y | X̃

)
γeγydy + 1 by Fubini’s theorem

≤ γ

∫ +∞

0
exp

(
− 2n2y2

8nL
m2

+ ny
+ γy

)
dy + 1 by Lemma 26 Matrix Bernstein inequality

≤ γ

{∫ +∞

0
exp

(
−nm2y

2

8L
+ γy

)
dy +

∫ +∞

0
exp (−ny + γy) dy

}
+ 1

≤ γ

√
8πL

nm2
exp

(
8γ2L

4nm2

)
+

∫ +∞

0
exp (−ny + γy) dy + 1.

Take t =
√

40L log(m1+m2)
nm2

and γ = nm2t/8L, if n & m2 log (m1 +m2), we obtain

P
(
Sn > t | X̃

)
≤ inf

γ≥0
e−γtEP|X̃e

γZπ

≤ e−5 log(m1+m2)

nm2

8L

√
40L log (m1 +m2)

nm2

√
8πL

nm2
exp

(
5

4
log (m1 +m2)

)
+

1

n− γ
+ 1


≤ e−5 log(m1+m2)

{√
5π log (m1 +m2) exp

(
5

4
log (m1 +m2)

)
+ 2

}
≤ 3 exp (−3 log (m1 +m2)) ,

thus if m1 +m2 ≥ (3/α0)1/3, we conclude that λ∗ ≤
√

40L log(m1+m2)
nm2

.

Finally we show that 4‖n−1
∑n

i=1 X̃iX̃
>
i ‖op ≤ 8L

m2
with high probability. It’s easy to see

that ‖EX̃iX̃
>
i ‖op ≤ L

m2
, then by Matrix Bernstein inequality and n & m2 log (m1 +m2), we

have

P

∥∥∥∥∥n−1
n∑
i=1

X̃iX̃
>
i

∥∥∥∥∥
op

>
2L

m2

 ≤ (m1 +m2) exp

 − L2

m2
2

L
nm2

+ 1
3n

L
m2

 ≤ exp (−2 log (m1 +m2)) .

Therefore, we conclude that λ∗ ≤
√

5L log(m1+m2)
nm2

with probability at least 1−exp (−2 log (m1 +m2)).
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(c) Similar to the proof of Lemma 22, we have

Q (A)−Q (A0) =E〈X̃i − X̃j ,A−A0〉
{

I
(
ζ̃ij < 0

)
− 1/2

}
+ E

∫ 〈X̃i−X̃j ,A−A0〉

0

{
I
(
ζ̃ij ≤ s

)
− I
(
ζ̃ij ≤ 0

)}
ds.

For the first part,

E〈X̃i − X̃j ,A−A0〉
{

I
(
ζ̃ij < 0

)
− 1/2

}
=

1

2
E〈Xi −Xj ,A−A0〉

{
I
(
ζ−ij < 0

)
− 1/2

}
+

1

2
E〈Xi + Xj ,A−A0〉

{
I
(
ζ+
ij < 0

)
− 1/2

}
= 0.

For the second part,

E
∫ 〈X̃i−X̃j ,A−A0〉

0

{
I
(
ζ̃ij ≤ s

)
− I
(
ζ̃ij ≤ 0

)}
ds

=
1

2
E
∫ 〈Xi−Xj ,A−A0〉

0

{
I
(
ζ−ij ≤ s

)
− I
(
ζ−ij ≤ 0

)}
ds

+
1

2
E
∫ 〈Xi+Xj ,A−A0〉

0

{
I
(
ζ+
ij ≤ s

)
− I
(
ζ+
ij ≤ 0

)}
ds.

Denote the distribution function of ζ−ij by F ∗ (·). By the independence of X and ε,

1

2
E
∫ 〈Xi−Xj ,A−A0〉

0

{
I
(
ζ−ij ≤ s

)
− I
(
ζ−ij ≤ 0

)}
ds

=
1

2
EXi,Xj

∫ 〈Xi−Xj ,A−A0〉

0
{F ∗ (s)− F ∗ (0)} ds

=
1

2
EXi,Xj

∫ 〈Xi−Xj ,A−A0〉

0
f− (ξij) sds

≥ 1

4c2
1

EXi,Xj 〈Xi −Xj ,A−A0〉2.

For the same reason, we have

1

2
E
∫ 〈Xi+Xj ,A−A0〉

0

{
I
(
ζ+
ij ≤ s

)
− I
(
ζ+
ij ≤ 0

)}
ds ≥ 1

4c2
1

EXi,Xj 〈Xi + Xj ,A−A0〉2.

From the above discussion, we conclude that

Q (A)−Q (A0) ≥ 1

4c2
1

EXi,Xj 〈Xi −Xj ,A−A0〉2 +
1

4c2
1

EXi,Xj 〈Xi + Xj ,A−A0〉2.

=
1

c2
1

EXi〈Xi,A−A0〉2

≥ 1

c2
1µm1m2

‖A−A0‖2F ,

which also implies that A0 is the minimizer of Q (A).

40



Robust estimation of low-rank matrix

Appendix F: Collection of Lemmas

In this part, we give some lemmas used in the previous proofs.

Lemma 26 (Matrix Bernstein, Theorem 6.1.1 in Tropp (2015)) Consider a finite
sequence {Zi}ni=1 of independent, random matrices with common dimension m1 ×m2. As-
sume that EZi = 0 and ‖Zi‖op ≤ H for each index k, introduce the random matrix

S =
∑
k

Zi.

Let v (S) be the matrix variance statistic of the sum:

v (S) = max

{∥∥∥E(SS>
)∥∥∥

op
,
∥∥∥E(S>S

)∥∥∥
op

}

= max


∥∥∥∥∥∑

k

E
(
ZiZ

>
i

)∥∥∥∥∥
op

,

∥∥∥∥∥∑
k

E
(
Z>i Zi

)∥∥∥∥∥
op

 .

Then for all t ≥ 0,

P
{
‖S‖op ≥ t

}
≤ (m1 +m2) exp

(
−t2/2

v (S) +Ht/3

)
.

Matrix Bernstein requires the constant bound on ‖Zi‖op , it’s possible to replace this require-
ment by the bound on the weaker ψp-norms of ‖Zi‖op, we have following result which are
very useful in matrix completion problem. Let Z1, . . . ,Zn be independent random matrices
with dimensions m1 ×m2. Define

σ2
Z = max


∥∥∥∥∥ 1

n

n∑
i=1

E
(
ZiZ

>
i

)∥∥∥∥∥
op

,

∥∥∥∥∥ 1

n

n∑
i=1

E
(
Z>i Zi

)∥∥∥∥∥
op

 .

Lemma 27 (Proposition 2 in Koltchinskii et al. (2011)) Let Z,Z1, . . . ,Zn be i.i.d.
random matrices with dimensions p×q that satisfy E (Z) = 0. Suppose that ‖ ‖Z‖op ‖ψp <∞
for some p ≥ 1. Then there exists a constant C > 0 such that, for all t > 0, with probability
at least 1− e−t∥∥∥∥Z1 + · · ·+ Zn

n

∥∥∥∥
op

≤ C max

{
σZ

√
t+ log (m1 +m2)

n
,

‖ ‖Z‖op ‖ψp
(

log
‖ ‖Z‖op ‖ψp

σZ

)1/p
t+ log (m1 +m2)

n

}
.

Lemma 28 Let {Xi}ni=1 be i.i.d. with distribution Π on X which satisfies Assumptions
15 and 16. Assume that (σi)

n
i=1 are i.i.d. Rademacher random variables independent of

{Xi}ni=1. Then, there exists an absolute constant C∗ > 0 that depends only on K and such
that, for all t > 0 with probability at least 1− e−t we have∥∥∥∥∥ 1

n

n∑
i=1

σiXi

∥∥∥∥∥
op

≤ C∗max


√
L (t+ log (m1 +m2))

nm2
,
√

logm2
(t+ log (m1 +m2))

n

 .
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Proof We apply Lemma 27 to Zi = σiXi. We first estimate σZ and ‖ ‖Z‖op ‖ψ2 . Note that
Zi is a zero-mean random matrix which satisfies ‖Zi‖op ≤ |σi|, hence ‖ ‖Zi‖op ‖ψ2 ≤ ‖σi‖ψ2

,
together with the fact that the ψ2 norm of a Rademacher random variable σi is equal to
‖σi‖ψ2

=
√

1/ log 2, we have ‖ ‖Z‖op ‖ψ2 ≤
√

1/ log 2. Then we compute E
(
ZiZ

>
i

)
= R

and E
(
Z>i Zi

)
= C, where C and R is the diagonal matrix with Ck and Rj on the diagonal

respectively. This and the fact that the Zi are i.i.d. imply that σ2
Z = maxi,j (Ci, Rj) ≤

L/m2. Note that maxi,j (Ci, Rj) ≥ 1/q together with the concavity of the logarithm imply

that
√

log(‖ ‖Z‖op ‖ψp/σZ) ≤
√

logm2. Hence the statement of Lemma 28 follows.

We choose the parameter t to be t = log (m1 +m2) . Next we use Lemma 28 to bound the
expectation of the largest singular value of the sum of masks.

Lemma 29 Let {Xi}ni=1 be i.i.d. with distribution Π on X which satisfies Assumptions
15 and 16. Assume that {σi}ni=1 are i.i.d. Rademacher random variables independent of
{Xi}ni=1. Then, for n > 2m2 log2 (m1 +m2) /L, there exists an absolute constant C0 > 0
such that

E

∥∥∥∥∥ 1

n

n∑
i=1

σiXi

∥∥∥∥∥
op

≤ C0

√
L log (m1 +m2)

nm2
.

Proof This lemma is obtained by integrating the tail probability of Lemma 28.

Appendix G: Algorithms and Complexity Analysis

G1: Proximal Gradient Algorithm for the Rank Matrix Lasso

In this subsection, we propose an accelerated proximal gradient (APG) algorithm to solve
the minimization (4). Specifically, to minimize a penalized loss function, i.e.,

min
A
{Qn(A) + λ‖A‖1} , (G.1)

we employ the quadratic function

QMajor(A; A(l)) = Qn(A(l)) +
〈
∇Qn(A(l)) , A−A(l)

〉
+ (L/2)‖A−A(l)‖2F (G.2)

to locally “majorize” Qn(A) for the t-th iteration (Fan et al., 2018), where L is a constant
such that in a neighborhood of A(l) we have Qn(A) ≤ QMajor(A; A(l)) and the equality can
be attained at A(l). Then, we solve

min
A

LMajor(A; A(l)) = min
A

{
QMajor(A; A(l)) + λ‖A‖1

}
(G.3)

and set the solution as A(l+1), which gives

Qn(A(l+1)) + λ‖A(l+1)‖1 ≤ LMajor(A
(l+1);A(l)) ≤ LMajor(A

(l);A(l)) = Qn(A(l)) + λ‖A(l)‖1.

While typically (G.1) does not have a closed-form solution, the minimizer in (G.3) can
be expressed using the singular value soft-thresholding operator (see e.g. Toh and Yun
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(2010)): for any given M ∈ Rm1×m2 , Soft(M; τ) = U>Mdiag{(σi(M) − τ)+}VM. Here
M = U>Mdiag{(σi(M))}VM is the singular value decomposition of M. Detailed description
and explicit mathematical expressions are provided in Algorithm 1. In our simulations, the
tol we picked is 10−4 for all the trials, and the maximal iteration T = 100. We take
L(0) = 10−4Lmax, and set Lmax = 3 × 10p which is empirically found good enough for
convergence in most scenarios.

Algorithm 1: Accelerated proximal gradient algorithm for the rank matrix lasso

Input: Observed data (yi,Xi), for i = 1, · · · , n; tuning parameter λ? by (8); floor
curvature L(0); ceiling curvature Lmax; updating rate η; t(0) = t(1) = 1;
convergence tolerance tol and maximal iteration T ; initial estimate
A(0) = A(1) = 0.

Output: Estimator Â.

1 Set B(l) = A(l) + t(l−1)−1
t(l)

(A(l) −A(l−1)).

2 Calculate the sub-gradient G(l) = ∇Qn(A)|A=B(l) .

3 Set L = min{ηL(l−1), Lmax}.
4 while L < Lmax do

5 Compute S = Soft
(
B(l) − L−1G(l);L−1λ?

)
;

6 Calculate Qn(S) and QMajor(S; B(l));

7 if Qn(S) ≤ QMajor(S; B(l)) then

8 Set A(l+1) = S, L(l) = L
9 break

10 else
11 Set L = min{L/η, Lmax}.

12 Compute t(l+1) =
1+
√

1+4(t(l))2

2 .
13 Repeat above steps until the stop criterion is meet:

‖A(l+1) −A(l)‖F /‖A(l)‖F ≤ tol or the maximal number of iteration T is hit. Set
Â = A(l+1).

Remark 30 The suggested APG is kind of a “first-order” algorithm, while some second-
order algorithms, such as quasi-Newton algorithms, are available for tackling nuclear norm
penalization problems. In Appendix H2, we implement a state-of-the-art quasi-Newton al-
gorithm proposed by Becker et al. (2019) for solving the rank-based optimization and make
a comparison with Algorithm 1. An interesting trade-off is that, while the second-order
method has certain advantage on the total steps for convergence, it generally requires more
time in each step since first-order methods have to be implied to solve the subproblems. Our
empirical results reveal that the proposed APG algorithm is at least comparable with the
quasi-Newton algorithm in terms of average computation time.

Remark 31 While “smooth + nonsmooth” optimization has been extensively studied (Nes-
terov, 2013; Lee et al., 2014; Chambolle and Dossal, 2015), the global convergence rates
of the APG method for “nonsmooth + nonsmooth” optimization has not been fully under-
stood (Bian and Wu, 2021). Current theoretical progress on this issue typically involves
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some modification on the procedure. For example, Yu et al. (2010) uses a “tightest pseudo
quadratic fit” in the proximal step, which gives global convergence in objective function value.
However, this would render the subproblem hard to solve, especially for the nuclear norm
penalization. Another popular direction is to locally approximate the the loss function by
smoothing methods (Nesterov, 2005; Zhang and Chen, 2009; Bian and Chen, 2020; Bian
and Wu, 2021), but a careful tuning procedure is generally required. It is still not clear
whether these solutions with certain guarantee of global convergence can be extended to our
objective function and tuning scheme, but this certainly warrants future research.

G2: Complexity Analysis

We present an analysis of the time complexity of the entire algorithm including both parts
of parameter selection and optimizations. We take the trace regression as an example
for careful investigation, but other models such as multivariate regression can be studied
analogously. Our standpoint is the primitive form of the algorithm without taking special
structural blessing (such as sparse matrices or factor matrices) into consideration. For trace
regression models, the complexity of Algorithm 1 can be decomposed into the following
steps:

Pivotal tuning. Computing the summation of the gradient is of order O(nm1m2).
Uses SVD for obtaining the operator norm of∇Qn(A) requires O(m1m2 min{m1,m2}). It is
usually redundant to perform a full SVD. There are other algorithms that are less expensive,
like power iteration or Lanczos bidiagonalization (Baglama and Reichel, 2005; Larsen, 2004).
Hence, the total complexity with B rounds of simulations is about O{B(nm1m2 +m2

1m2)}
(assume m1 ≤ m2). In most problems, n is typically required to be larger than m1 and
m2 to achieve successful recovery. Therefore, the complexity for Pivotal tuning is basically
O(Bnm1m2).

APG optimization The following steps contribute most significantly to the computa-
tion costs: (1) Subgradient calculation in Step 2, which by our previous argument, takes
O(nm1m2) operations for the problems of interest. (2) SVD in Step 5. In medium scale
problems full SVD can be directly applied, which takes O(m1m2 min{m1,m2}) operations.
Again, utilizing other algorithms for structured problems could overcome this barrier and ac-
celerate the program significantly. (3) Calculation of the objective value and the majorized
value in Step 6. The former involves a sorting of the residuals in O(n log n) operations and
summation of n linear products. The latter demands a calculation of Qn(B(l)) as well as
two inner products for the first-order and quadratic approximation terms (see (G.2)). Thus
the dominant part takes up to O(nm1m2) operations.

From the above analysis we can conclude that APG proceeds with the complexity of
O(nm1m2) each iteration, which aligns well with the Pivotal tuning step. Our simulation
provides evidence that the time for parameter selection and for optimization remains in
a similar magnitude among various models and settings. Empirically, the pivotal tuning
usually takes less time than the APG program. These results justify the superiority of
pivotal tuning compared with some conventional methods like cross-validation in matrix
settings.

In Appendix H1, we also discuss how to make our algorithm scalable to large-scale
structured matrix recovery problems and verify its effectiveness via a simulation study.
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Appendix H: Additional Simulations Results

H1: Adaptivity to Large-Scale Problems: Large-Scale Matrix Completion

Real-life application typically involves computation of large matrices, especially for matrix
completion problem. By taking advantage of the structure of the problem(like sparsity in
matrix completion scenarios) as well as state-of-art algorithms for handling operator norm
and SVD computation(Larsen, 1998; Baglama and Reichel, 2005; Larsen, 2004), our pro-
gram can be adapted to large-scale structures and demonstrate the computational efficiency
gain of pivotal tuning. For example, large-scale matrix completion problems are endowed
with a perfect sparse structure. Then instead of the O(nm1m2) costs we only need O(n)
operations for calculating the sub-gradients and objective values(with O(n log n) rounds of
sorting), which is undoubtedly a striking improvement over the direct summation. Fur-
thermore, instead of performing full SVD each time, a more appealing trick is to gradually
increase and explore the rank as the program progresses(Toh and Yun, 2010). With this
strategy we typically only need to focus on several largest eigen-pairs in each iteraction, for
which many fast algorithms exist. In our large-scale implementation we use the PROPACK
package by Larsen (2004) to achieve this convenience, rendering our algorithm perfectly
scalable to large matrix computation problems(m1,m2 as high as 5× 104). As a concluding
remark, some other improvements are also possible in large-scale extensions. For exam-
ple, it is appealing to take advantage of robust distributed programs and parallelization
algorithms. See for example Chen et al. (2020).

Here we report some numerical results on large-scale matrix completion problems. For
operator norm and SVD calculation we make use of the lansvd function in PROPACK.
We consider m = 5 × 103, 1 × 104, 5 × 104 and r = 10. The ground truth A0 and the
noise are generated similarly to our small-scale matrix completion setting. Each time we
sample N = 6 · df observations, where the degree of freedom of a matrix df = r(m1 +
m2 − r) = r(2m− r). Table S.3 summarised the results. The results demonstrate both the
computational efficiency and the statistical accuracy of the proposed algorithm.

Noise Dimension ‖Â−A0‖2F Rank Tuning(s) Solving(s) Iteration

Gaussian
5× 103 0.180(8.7e-4) 10.0(0) 4.77 13.8 39.9
1× 104 0.180(6.9e-4) 10.0(0) 9.85 26.8 36.4
5× 104 0.179(3.4e-4) 10.0(0) 57.4 225 32.0

Cauchy
5× 103 0.004(6.6e-5) 10.0(0) 4.74 34.5 84.0
1× 104 0.004(7.5e-5) 10.0(0) 9.86 70.5 84.4
5× 104 0.004(2.0e-5) 10.0(0) 58.7 723 87.4

Table S.3: Simulation for large-scale matrix completion

H2: Comparison of First-Order and Second-Order Algorithms

Our main trials are based on a first-order algorithm. The population version of the proposed
loss function has higher order curvature which is coarsely represented by a constant diagonal
matrix in first-order methods. We now frame a quasi-newton algorithm for minimizing the
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rank-based objective, attempting to borrow information from second-order geometry of the
formulation.

Algorithm 2: Proximal quasi-Newton algorithm for the rank matrix lasso

Input: Observed data (yi,Xi), for i = 1, · · · , n; pivotal tuning parameter α;
updating rate η; convergence tolerance tol and maximal iteration T ; initial
estimate A(0); tuning parameter L.

Output: Estimator Â.
/* Pivotal tuning */

1 Calculate λ? using the pivotal tuning scheme with confidence level α.
/* Start optimization */

2 Repeat

3 Choose B(l) to be a Hessian approximation at A(l).
4 Solve the subproblem for a searching direction using a first-order forward-backward

splitting algorithm:

∆A(l) ← arg minD Qn(A(l)) +
〈
∇Qn(A(l)) , D

〉
+ (DV )>B(l)DV + λ?‖A(l) + D‖1.

5 Select t(l) with a backtracking line search;

6 Update: A(l+1) = A(l) + t(l)∆A(l).

7 until: ‖A(l+1)−A(l)‖F /‖A(l)‖F ≤ tol or the maximal number of iteration T is hit.

8 Set Â = A(l+1).

We consider several details regarding the implementation of the algorithm:

• Steps to update the Hessian approximation matrix(Step 3 in Algorithm 2). Since we
are targeting problems involving large matrices, it is a necessity to avoid saving or
loading dense Hessian matrices. To this end, we pursue using limited memories Hes-
sian approximation schemes. Two simple yet admirable options in the literature are
SR1 update(Becker and Fadili, 2012; Becker et al., 2019) and BFGS update(Lee et al.,
2014), which provide rank-1 and rank-2 updates respectively. Concretely speaking,
let

dS(l) = {A(l) −A(l−1)}V , dG(l) = {∇Qn(A(l))−∇Qn(A(l−1))}V .

The 1-step SR1 update gives:

B(l) = B(l)
0 + u(l)u(l)>,

where

u(l) =
v(l)v(l)>

v(l)>dS(l)
, v(l) = dG(l) − B(l)dS(l).

The 1-step BFGS gives:

B(l) = B(l)
0 + u1

(l)u1
(l)> − u2

(l)u2
(l)>,
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where

u
(l)
1 =

dG(l)√
dG(l)>dS(l)

, u
(l)
2 =

B(l)dS(l)√
dS(l)>B(l)

0 dS(l)
.

If we simply choose B(l) to be a constant diagonal matrix, we recover our first-order
proximal gradient algorithm.

Note that an arbitrary step of updates can be implemented for these two schemes,
which generally do not cost much more space due to the compact representation
formula available(Nocedal and Wright, 2006). However, LSR1 generally with more
steps generally performs less effectively than LBFGS due to the indefiniteness issue.

• Steps to update the stepsize. Many powerful schemes are suggested for updating the
stepsize by the literature. We adopt a line search procedure with backtracking(Boyd
et al., 2004). See Section 3 of Lee et al. (2014) for more details.

• Solver for the subproblem in Step 4. Step 4 breaks down to a “quadratic + nuclear
norm penalty ” type problem, which can be efficiently solved by first-order solvers. In
our implementation, we adopt our Algorithm 1 which, in the case of quadratic smooth
part, performs in the same spirit as the NNLS method by Toh and Yun (2010).

Below we run some synthetic simulation based on the multivariate regression model(m =
80, N = 6320, and the ground truth is generated in the same way as the simulation in our
main context) to compare the computational efficiency and statistical accuracy of first-order
and second-order algorithms. Table S.4 presents the comparison of first-order and second-
order implementations(with 1-step limited memory SR update and 1-step limited memory
BFGS update, termed as LSR1 and LBFGS respectively). In Table S.5 we compare BFGS
approximation with different steps of storage. The “Error” column in the tables is measured
by ‖Â−A0‖2F .

Method Criterion
Noise

Gaussian Cauchy Lognormal

First order

Error 9.48e-2(3.97e-3) 3.21e-4(1.23e-5) 1.28e-6(1.59e-7)
Rank 5.00(0) 5.00(0) 5.00(0)

Iterations 32.0 35.3 56.6
Time(s) 2.22 2.51 3.88

LSR1

Error 9.48e-2(3.97e-3) 3.21e-4(1.29e-5) 1.48e-6(3.30e-7)
Rank 5.00(0) 5.00(0) 5.00(0)

Iterations 28.1 31.8 51.7
Time(s) 4.81 4.77 7.48

LBFGS

Error 9.48e-2(3.98e-3) 3.20e-4(1.36e-5) 1.49e-6(3.38e-7)
Rank 5.00(0) 5.00(0) 5.00(0)

Iterations 24.5 29.2 35.3
Time(s) 4.19 4.33 4.95

Table S.4: Comparison of first order and second order implementation of RML
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Method Criterion
Noise

Gaussian Cauchy Lognormal

1-step LBFGS

Error 9.52e-2(4.11e-3) 3.19e-4(1.35e-5) 1.45e-6(3.04e-7)
Rank 5.00(0) 5.00(0) 5.00(0)

Iterations 24.5 29.4 35.9
Time(s) 4.15 4.34 5.06

5-step LBFGS

Error 9.52e-2(4.12e-3) 3.19e-4(1.26e-5) 1.41e-6(2.34e-7)
Rank 5.00(0) 5.00(0) 5.00(0)

Iterations 25.3 30.8 41.1
Time(s) 4.26 4.59 6.22

10-step LBFGS

Error 9.52e-2(4.12e-3) 3.19e-4(1.25e-5) 1.34e-6(1.84e-7)
Rank 5.00(0) 5.00(0) 5.00(0)

Iterations 25.2 31.1 42.1
Time(s) 4.25 4.65 6.51

Table S.5: Comparison of BFGS with different steps of approximation for multivariate re-
gression

Here is a brief summary for the tables:

• Accuracy of solutions. As we can see from the results, under the specified tolerance,
all methods give quite accurate solutions. There is no clear superiority among the
tested solvers. For second-order methods, both rank-1 update(LSR1) and rank-2
update(LBFGS) are able to recover the true estimand in a decent manner.

• Number of iterations. In terms of total steps of iterations, generally the rank-1 and
rank-2 update(LBFGS) can reduce the steps that the algorithm requires to converge
under a variety of noisy perturbations. The rank-2 update(LBFGS) appears more
powerful than rank-1 update(LSR1) in accelerating the convergence.

• Time per iteration and total running time. Although the second-order schemes
witness a reduction in the steps needed for convergence, they pay the cost of addi-
tional time consumption per iteration step. This is mostly due to the fact that one
needs to seek the optimal solution for a sub-problem(see Algorithm 2 step 4), which
again relies on first-order solvers, thus leading to more rounds of singular value de-
composition. It is notable that a reduction in the number of iteration steps does lend
a large improvement in sparse vector-variate problems, since solving L1 penalization
breaks down to subproblems that involves much less computation burden than matrix
settings(Lee et al., 2014; Becker and Fadili, 2012). Therefore, the blessing of itera-
tion steps and the curse of per step convergence time become a negligible trade-off in
nuclear norm penalization problems.

• Sensitivity to the choice of initial curvature. First order methods can be re-
garded as second order methods with an extremely simple Hessian approximation
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scheme(constant diagonal). However, it is in general trickier to specify an initial cur-
vature parameter. A small specification might render the iteration divergent, while an
overly large number would shrink the length of steps the algorithm can take. However,
second-order programs can cleverly circumvent this issue since they are endowed with
the capability of adapting themselves gradually to the appropriate scale of the Hessian
structure. Therefore, while more time is required in our matrix-variate optimization
settings, we do further free ourselves from the dilemma of curvature tuning and obtain
more numerical stability of the solutions.

• Space of memory for the second-order implementation. The second-order
limited memory implementation like BFGS can proceed with different space of mem-
ory to store the Hessian information within each step. While the statistical accuracy
appears less sensitive to the Hessian memory space, more complex Hessian structure
could add more numerical stability in certain cases(see the Cauchy and Lognormal
column of Table S.5).

H3: Influence of the Choice of α0 on the Estimation Error

In our theory, the number 1−α0 can be regarded as the “confidence level” in the sense that
our non-asymptotic bounds on the estimation error will be controlled at the optimal rate
with probability close to 1 − α0. To see how the size of α0 influence the estimation error,
we conduct some simulations in Figure S.7 under the same setting as Example 4.1 with
m1 = m2 = 40. We show the estimation error of our estimator. In the three pictures on
the left, we consider three errors, fixed sample size n = 1600, and varying α0 belonging to
{0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. For different random errors, when
α0 is not very small, the estimation error is not so sensitive to the choice of α0. But when
α0 approaches zero, the estimation error will increase rapidly, because the selected λ will
be relatively large. In the three pictures on the right, we consider three errors, three α0’s
and varying sample sizes. The α0 affects estimation error much less than sample size. In
order for the optimal estimation rate to hold with high probability and good numerical
performance, we suggest taking 1− α0 ∈ [0.8, 0.9].

H4: Vertical Outliers and Leverage Points

In robust statistics, vertical outliers and leverage points are also worthy of attention. In
this section, we compare the performance of different methods in these two cases.

For the vertical outliers, we consider the same setting as Example 4.1 with m1 = m2 =
40, n = 3200. The random errors are sampled from N (0, 0.25)+a ·N (10, 1), where a follows
the binomial distribution bino(1, π). The π represents the average proportion of vertical
outliers. We show four methods’ performance at different vertical outliers proportions in
the left of Figure S.8. Our method is still robust to vertical outliers.

Our method is not applicable to situations where leverage points exist. In our method,
the selection of regularization parameter λ is related to the covariates. The existence of
leverage points may cause λ to be very large, affecting the estimation error. We consider
the settings in Example 4.1: m1 = m2 = 40, n = 3200, and the error is Gaussian N (0, 0.25).
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(a) Gaussian (b) Gaussian

(c) Cauchy (d) Cauchy

(e) Lognormal (f) Lognormal

Figure S.7: The influence of the choice of α0 on estimation error of RML
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Figure S.8: The influence of vertical outliers and leverage points on estimation error

Consider that X is generated in the following way,

X = Z1 + a · Z2,

where Z1 is composed of N (0, 1) entries, Z2 is composed of N (10, 1) entries, and a follows
the binomial distribution bino(1, π). The π represents the average proportion of leverage
points. We show four methods’ performance at different leverage point proportions in the
right of Figure S.8. As the proportion of leverage points increases, the performance of all
methods collapses rapidly.

H5: Additional Simulations for Examples 4.1

In this section, we present the additional simulation results for Examples 4.1 in the main
text. We compare the performance of the proposed method with its competitors when
the features come from highly correlated designs with different correlation strengths. In
Example 4.1, we consider two correlation structures under sample size n = 3200: (i) The
autoregressive covariance structure: Cov(vec(X)) = (aij), aij = a|i−j|. (ii) The blockwise
diagonal Toeplitz covariance matrix, of which each block along the diagonal is set to be

1 (p−2)a
p−1

(p−3)a
p−1 · · · a

p−1 0
(p−2)a
p−1 1 (p−2)a

p−1 · · · 2a
p−1

a
p−1

...
. . .

...

0 a
p−1

2a
p−1 . . . (p−2)a

p−1 1

 ,
where p = m1m2/200. Throughout, we refer a ∈ (0, 1) as the correlation strength. We show
the performance of different methods under varying correlation strengths in Figure S.9. As
the correlation increases, the estimation errors of all methods rise, and the proposed rank
matrix lasso method still outperforms all competitors.
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(a) Gaussian AR (b) Gaussian Toep

(c) Cauchy AR (d) Cauchy Toep

(e) Lognormal AR (f) Lognormal Toep

Figure S.9: Log Frobenius Errors for matrix regression under different correlations
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Anja Wille, Philip Zimmermann, Eva Vranová, Andreas Fürholz, Oliver Laule, Stefan
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