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Abstract

This article aims to seek a selection and estimation procedure for a class of tensor regression
problems with multivariate covariates and matrix responses, which can provide theoretical
guarantees for model selection in finite samples. Considering the frontal slice sparsity and
low-rankness inherited in the coefficient tensor, we formulate the regression procedure as
a group SLOPE penalized low-rank tensor optimization problem based on an orthogonal
decomposition, namely TgSLOPE. This procedure provably controls the newly introduced
tensor group false discovery rate (TgFDR), provided that the predictor matrix is column-
orthogonal. Moreover, we establish the asymptotically minimax convergence with respect
to the TgSLOPE estimate risk. For efficient problem resolution, we equivalently transform
the TgSLOPE problem into a difference-of-convex (DC) program with the level-coercive
objective function. This allows us to solve the reformulation problem of TgSLOPE by
an efficient proximal DC algorithm (DCA) with global convergence. Numerical studies
conducted on synthetic data and a real human brain connection data illustrate the efficacy
of the proposed TgSLOPE estimation procedure.

Keywords: difference-of-convex, false discovery rate, group sparsity, low-rankness, tensor
regression

1. Introduction

Tensor regression modeling, in which the regression coefficients take the form of a multi-way
array or tensor, is an important and prevalent technique for coefficient estimation and/or
feature selection in the high-dimensional statistical learning theory, with wide applications
in many modern data science problems such as neuroimaging analysis, see, e.g., Zhou et al.
(2013); Sun and Li (2017); Raskutti et al. (2019); Ahmed et al. (2020); Han et al. (2022).
In this article, we focus on the tensor regression with multivariate covariates and matrix re-
sponses. Given n independent and identically distributed (i.i.d.) observations {(xi,Yi)}ni=1

with xi ∈ Rp the vector of predictors and Yi ∈ Rp1×p2 the matrix of responses, the regression
model can be expressed as follows

Yi = B∗ ×3 xi +Ei, i ∈ [n] := {1, 2, . . . , n}, (1)

where B∗ ∈ Rp1×p2×p is the unknown coefficient tensor with some inheritance structures like
sparsity and/or low-rankness, Ei, i = 1, . . . , n, are i.i.d. noise matrices whose entries are
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i.i.d. drawn from the Gaussian distribution N(0, σ2). Our goal is to seek a feature selection
and tensor estimation procedure for model (1). A straightforward idea to estimate B∗ is via
optimization problems

B̂ = arg min
B∈Ω

f(B;D),

where Ω is any constraint set of sparse and/or low-rank tensors, f(B;D) can be taken as
the least squares loss or any more general loss function with D = {(xi,Yi)}ni=1 the random
sample set.

1.1 Related Work

One simple approach to estimate the sparse and/or low-rank coefficient tensor is to use
matricization techniques such that the model (1) is degenerated into a linear matrix re-
gression model, in which the estimated tensor B∗ and the response matrix Yi are unfolded
into a p × p1p2 matrix and a p1p2 dimensional vector, respectively. Therefore, a huge
body of relevant work on sparse and low-rank matrix methods can be applied to deal with
the tensor regression problems, see, e.g., variable selection by sparsity penalized methods
(Obozinski et al., 2011; Raskutti et al., 2019; Chen et al., 2021); low-rank matrix estimation
by reduced-rank regression methods (Bura et al., 2018; Fan et al., 2019; Wei et al., 2021)
and nuclear norm penalized methods (Hu et al., 2020, 2021); joint penalized methods for
selection and low-rank estimation (Yu et al., 2022); regularized covariance estimation for
matrix-valued data (Zhang et al., 2022). However, the use of matricization techniques will
not only break the sparse and low-rank structures of tensors, making resulting estimators
difficult to interpret, but also lead to a dramatic increase in dimensionality, which is prone
to over-fitting phenomenon.

Keeping the tensor format for regression models, the existing work can be divided into
two categories from the perspective of different characterizations for the sparsity and low-
rankness of coefficient tensors. One is based on the tensor decomposition, including CP
decomposition (CPD) (Zhou et al., 2013; Sun and Li, 2017; Hao et al., 2020) and Tucker
decomposition (Li et al., 2018; Zhang et al., 2020; Han et al., 2022; Hu et al., 2022). The
other is the method without tensor decomposition, such as imposing sparsity on elements,
fiber vectors, and slice matrices (Raskutti et al., 2019), assuming low-rankness of slice
matrices (Chen et al., 2019; Raskutti et al., 2019; Kong et al., 2020), and considering
Tucker low-rankness of coefficient tensors (Chen et al., 2019).

Focusing on the matrix response tensor regression model (1), limited work has been
done on statistical property analysis and algorithm design. Sun and Li (2017) have con-
sidered an element-wise sparse tensor regression model based on the CPD, and established
a non-asymptotic estimation error bound for the estimator obtained from the proposed
alternating updating algorithm, which compounds the truncation-based sparse tensor de-
composition procedure. Considering the frontal slice sparsity and low-rankness, Kong et al.
(2020) have proposed a two-step screening and estimation procedure and shown that it
enjoys estimation consistency and rank consistency. Hu et al. (2022) have developed a gen-
eralized Tucker decomposition model with features on multiple modes, and investigated the
statistical convergence for the proposed supervised tensor decomposition algorithm with
side information. Nevertheless, these methods may not work well for finite samples, since
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their feature selection results are usually achieved in infinite samples, or unfortunately some
of these are not capable of feature selection.

To seek a mechanism that enables to make inference about the validity of the selected
model in finite samples, Bogdan et al. (2015) have introduced a new convex penalized
method for classical linear regressions inspired by the Benjamini-Hochberg procedure (Ben-
jamini and Hochberg, 1995), namely Sorted L-One Penalized Estimation (SLOPE). They
have shown that SLOPE controls the false discovery rate (FDR) under certain conditions.
Following Bogdan et al. (2015), a recent line of research (Su and Candès, 2016; Bellec et al.,
2018; Brzyski et al., 2019; Luo et al., 2019; Wei et al., 2021) has studied the SLOPE based
methods, including statistical property analysis, algorithm design, etc. One of these work
(Brzyski et al., 2019) has extended SLOPE to group SLOPE (gSLOPE) to deal with the
situation when one aims to select whole groups of regressors instead of single one. This
motivates us to investigate the use of gSLOPE penalty for feature selection and estimation
in the tensor regression framework with finite samples.

1.2 Our Contributions

We consider the matrix response tensor regression model (1) and embed the frontal slice
sparse and low-rank structures for the estimated tensor. Unlike the sparse and low-rank
settings directly on the frontal slices (Kong et al., 2020), we characterize the inherited
structures based on the low-rank, orthogonal decomposition (LROD). Similar to CPD,
the orthogonal decomposition can also reduce the model dimensionality, thereby reducing
the computational complexity of the regression procedure. In addition, the encouraging
sparsity on factor matrices produced by decomposition has been shown not only to yield
asymptotically consistent estimators in high-dimensional settings (Johnstone and Lu, 2009),
but also to simplify visualization and interpretation of data analysis results (Allen, 2012).
It is worth mentioning that there is always an optimal LROD approximation (Sørensen
et al., 2012) for a given tensor, while the rank-k approximation problem for fitting a CPD
tensor is ill-posed for many rank values of k in general (Silva and Lim, 2008). This makes
the LROD tensor regression procedure more stable than those CPD based methods.

To investigate the selection and estimation properties, we develop a sparse and low-
rank tensor regression procedure by formulating it as a gSLOPE penalized LROD tensor
optimization problem, namely TgSLOPE. Then, to measure its feature selection perfor-
mance in finite samples, we define the notion of the tensor group FDR (TgFDR). Under
the column-orthogonality assumption on the predictor matrix, TgSLOPE is shown to con-
trol TgFDR at any given level 0 < q < 1 with appropriate choice of the regularization
parameters. Moreover, the tensor estimator produced by TgSLOPE provably achieves the
asymptotically minimax rate. Overall, our proposed TgFDRT controlling method can also
be minimax optimal with respect to the estimation risk.

To well resolve our proposed TgSLOPE model with Stiefel manifold constraints, we con-
structively reformulate this manifold optimization problem as a difference-of-convex (DC)
program whose objective function is shown to be level-coercive. This allows us to adopt
some globally convergent DC-type algorithm in which the decision variables are updated
by the proximal operator of the gSLOPE penalty. Simulations on synthetic data verify the
TgFDR control, and test the effects of sparsity, model size and LROD rank on TgSLOPE
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(a) Horizontal slices Aj1:: (b) Lateral slices A:j2: (c) Frontal slices A::j3

Figure 1: Slices of a order-3 tensor.

performance respectively. In addition, numerical results on both synthetic data and a real
human brain connection data confirm the superiority of our proposed TgSLOPE procedure
by comparing it with several state-of-the-art approaches.

1.3 Notation and Preliminaries

Throughout the article, we denote scalars, vectors, matrices and tensors by lowercase letters
(e.g., a, b), boldface lowercase letters (e.g., a, b), boldface uppercase letters (e.g., A,B),
and calligraphic letters (e.g., A,B), respectively. In addition, zero scalars, vectors, matrices
and tensors are respectively denoted by 0,0,O and O. For a vector a ∈ Rn, we denote
a[1:s] = (a1, . . . , as)

> with s ≤ n. For a matrix A ∈ Rm×n, the ith row and the jth column
are denoted by ai: and a:j , respectively, then writeA[:,1:s] = (a:1, . . . ,a:s) with s ≤ n. Figure
1 shows the horizontal, lateral, and frontal slices of the tensor A ∈ Rp1×p2×p3 , denoted by
Aj1:: ∈ Rp2×p3 ,A:j2: ∈ Rp1×p3 , and A::j3 ∈ Rp1×p2 , respectively. For convenience, we simply
denote the ith row of A as ai and the j3th frontal slice of A as Aj3 .

Given vectors a ∈ Rm and b ∈ Rn, denote the outer product a ◦ b = ab> ∈ Rm×n
and Kronecker product a ⊗ b = (a1b

>, . . . , amb
>)> ∈ Rmn. For matrices A ∈ Rm×q and

B ∈ Rn×q, the Khatri-Rao product is defined as A�B = (a:1⊗b:1, . . . ,a:q⊗b:q) ∈ Rmn×q;
if m = n, the Hadamard product is defined as A ∗ B = [aijbij ] ∈ Rm×q, and the inner
product is defined as 〈A,B〉 =

∑
i,j aijbij . For an order-3 tensor A ∈ Rp1×p2×p3 , the

mode-3 product with a matrix X ∈ Rn×p3 is denoted by A×3X ∈ Rp1×p2×n with elements
(A×3X)i,j,l =

∑p3
k=1Ai,j,kXl,k. We also denote the matricization operator asM3(·), which

unfolds the tensor A along the third mode into the matrixM3(A) ∈ Rp3×p1p2 . Specifically,
(M3(A))k,l = Ai,j,k with l = 1 + (i− 1) + (j − 1)p1. Then the inverse of mode-3 unfolding
can be denoted asM−1

3 (·). The tensor A is called rank-one if it can be written as the outer
product of vectors A = u ◦v ◦w. More about tensor operations can be found in Kolda and
Bader (2009).

Next we introduce some norms. For a vector a ∈ Rn, denote its `2-norm as ‖a‖ =√∑
i a

2
i and `0-norm as ‖a‖0 = ]{i : |ai| 6= 0}. For a matrix A ∈ Rm×n, denote its

Frobenius norm as ‖A‖F =
√∑

i,j a
2
ij and trace as tr(A) =

∑
i=j aij . Write singular

values of A as σ1(A) ≥ · · · ≥ σp(A) with p = min{m,n}. Then the nuclear norm is
‖A‖∗ =

∑
k σk(A) and the spectral norm is ‖A‖2 = σ1(A). We also introduce the notation
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‖A‖r = (‖a1‖, . . . , ‖am‖)> for any matrix A ∈ Rm×n and ‖A‖f = (‖A1‖F , . . . , ‖Ap3‖F )>

for any tensor A ∈ Rp1×p2×p3 .
Moreover, we say that a random variable X has a chi distribution with n degrees of

freedom, written by X ∼ χn, if it is the square root of a chi-squared random variable, i.e.,
X2 ∼ χ2

n. For a proper closed convex function f : Rm×n → (−∞,∞], the subdifferential of
f at any given X ∈ dom(f), says ∂f(X), is defined by

∂f(X) = {G ∈ Rm×n : f(Y ) ≥ f(X) + 〈G,Y −X〉 for all Y ∈ Rm×n},

where each matrix G ∈ ∂f(X) is called a subgradient of f at X. The proximal operator
of f is given by

Proxf (X) = arg min
Z

{
f(Z) +

1

2
‖Z −X‖2F

}
, ∀X ∈ Rm×n.

Given positive scalars a and b, denote a ∼ b if a/b → 1, and a � b if there exist uniform
constants c, C > 0 such that ca ≤ b ≤ Ca.

The remainder of this article is organized as follows. In Section 2, we introduce a
frontal slice sparse and low-rank tensor regression procedure, which optimizes the gSLOPE
penalized LROD tensor optimization problem, and then the identifiability of parameters is
analyzed. Section 3 makes statistical theory analysis for TgSLOPE procedure, including the
TgFDR control at the prespecified level and the asymptotically minimax convergence with
respect to the `2-loss. An efficient and globally convergent pDCAe algorithm is proposed
in Section 4. Section 5 reports some numerical studies to verify the performance of our
proposed TgSLOPE approach. Concluding remarks are drawn in Section 6. All proofs are
deferred to the Appendix.

2. Model

In this section, we propose a feature selection and tensor estimate method for the tensor
regression model (1), which can also be rewritten as

Y = B∗ ×3 X + E , (2)

where Y, E ∈ Rp1×p2×n,X ∈ Rn×p. As discussed above, it is crucial to introduce some
sparse and low-rank structures in order to facilitate estimation of the ultrahigh dimensional
unknown parameters in finite samples. Thus, for the efficient feature selection, we consider
the frontal slice sparsity of the coefficient tensor B∗ based on the low-rank decomposition
in the tensor regression framework (2).

2.1 TgSLOPE Estimate

Assume that the coefficient tensor is LROD, that is, the tensor B∗ admits a rank-K CPD
with column-orthogonal factor matrices. Specifically, the rank-K CPD models a tensor as a
sum of K rank-one tensors (Kolda and Bader, 2009), i.e., B∗ =

∑K
k=1 u

∗
k ◦v∗k ◦w∗k, where the

factor vectors u∗k ∈ Rp1 ,v∗k ∈ Rp2 ,w∗k ∈ Rp, k = 1, . . . ,K. Figure 2 illustrates the rank-K
CPD. Denote the factor matrices composed of the vectors from the rank-one components by
U∗ = (u∗1,u

∗
2, . . . ,u

∗
K) ∈ Rp1×K , V ∗ ∈ Rp2×K and W ∗ ∈ Rp×K respectively. The CPD can
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Figure 2: Illustration of the rank-K CPD of the tensor B∗.

be rewritten as B∗ = [[U∗,V ∗,W ∗]]. The LROD assumes that the factor matrices U∗ and
V ∗ produced by CPD are column-orthogonal. We define the rank of LROD tensor as the
CP rank K. Moreover, we consider the row sparsity settings on the mode-3 factor matrix
W ∗, which can translate to the sparsity of the frontal slices for the tensor B∗.

To identify significant features and estimate the coefficient tensor B∗, we develop a penal-
ized sparse and low-rank tensor regression method which optimizes the following gSLOPE
penalized LROD tensor optimization problem (TgSLOPE)

min
U ,V ,W

1

2

∥∥Y − [[U ,V ,W ]]×3 X
∥∥2

F
+ Pλ

(
‖W ‖r

)
s.t. U>U = V >V = IK ,

(3)

where Pλ(x) =
∑p

j=1 λj |x|(j) is the SLOPE penalty with the regularization parameter

vector λ = (λ1, . . . , λp)
> satisfying

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and λ1 > 0,

and |x|(j) the jth largest component of x in magnitude.

According to the property of the matrix Khatri-Rao product that for any A ∈ Rm×k
and B ∈ Rn×k, (A�B)>(A�B) = (A>A) ∗ (B>B), we have the following lemma.

Lemma 1 For any two column-orthogonal matrices A ∈ Rm×k and B ∈ Rn×k, we have
C = A�B ∈ Rmn×k is column-orthogonal, that is, C>C = Ik.

Following the matricized form of a tensor, we haveM3(B∗) = W ∗(V ∗ �U∗)>. Denote
H∗ = V ∗ �U∗ ∈ Rp1p2×K . Without loss of generality, we assume that K ≤ min{p, p1p2}.
It is known from Lemma 1 that H∗>H∗ = IK . Thus, the TgSLOPE problem (3) can be
simplified as

min
W ,H

L(W ,H) + Pλ
(
‖W ‖r

)
s.t. H>H = IK ,

(4)

where the loss L(W ,H) = 1
2

∥∥M3(Y) −XWH>
∥∥2

F
. The estimator (Ŵ , Ĥ) produced by

(4) and the tensor estimator B̂ are linked via M3(B̂) = Ŵ Ĥ>.
Notably, the LROD tensor decomposition with the additional column-orthogonality on

U and V turns to be a special CPD. While the best CP low-rank approximation of a
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tensor may not exist and the exact CP rank of a tensor is hard to compute, the imposed
column-orthogonality on U and V can make sure that there is always an optimal rank-k ap-
proximation for a given tensor (Sørensen et al., 2012). The resulting approximation tensor
that admits such a special CPD has been coined as an orthogonally decomposable tensor,
which has been studied in the communities of tensor analysis and tensor learning, see, e.g.,
the perturbation bounds and the applications to the unsupervised learning scenario of ten-
sor SVD and the supervised task of tensor regression by Auddy and Yuan (2023), and the
linear convergence of an alternating polar decomposition method for low rank orthogonal
tensor approximations by Hu and Ye (2023). Additionally, Poythressa et al. (2022) have
illustrated that the orthogonally decomposable tensor model has the potential to perform
better than CPD model in terms of predictive performance and model interpretation in
numerical experiments. Technically, the column-orthogonal constraints on factor matri-
ces can help to fix the indeterminacy and the non-uniqueness of CPD, thereby improving
identifiability results of CPD methods (see, e.g., Zhou et al. (2013)).

2.2 Identifiability

The identifiability of parameters is analyzed in this subsection. Considering CPD of a
tensor B = [[U ,V ,W ]], Zhou et al. (2013) have stated that the parameters in the tensor
model is not identifiable due to two complications. One is the indeterminacy coming from
scaling and permutation, and the second is possibly non-uniqueness of decomposition. For
LROD tensor, the scaling indeterminacy can be avoided automatically due to the column-
orthogonal U and V . To fix the permutation indeterminacy, we adopt the convention
that the first row of the factor matrix U is assumed to be arranged in descending order.
Moreover, it follows from the Kruskal’s condition of uniqueness of CPD (Theorem 4b,
Kruskal (1977)) that the LROD is unique up to permutation if k(W ) ≥ 2, where k(W ) is
the k-rank of W defined by the largest integer k such that every subset of k columns of W
is linearly independent. Under the assumptions of determinacy and uniqueness of LROD,
the imposed frontal slice sparsity on coefficient tensor B can be equivalently translated to
the row sparsity settings on the mode-3 factor matrix W , which yields the feasible set of
problem (4) being

BT =
{
B = [[U ,V ,W ]] : U>U = V >V = IK ,

∥∥‖W ‖r∥∥0
≤ s
}
, (5)

where s > 0 is a prescribed parameter that controls the frontal slice sparsity.
We give conditions of global identifiability result in the following proposition. The proof

is presented in Appendix A.

Proposition 2 Consider the tensor regression model (2) with the coefficient tensor B∗ =
[[U∗,V ∗,W ∗]] ∈ BT . Then B∗ is globally identifiable up to permutation if k(W ∗) ≥ 2 and∥∥‖B∗‖f∥∥0

≤ k(X)/2.

Remark 3 For sparse parameter models, Donoho and Elad (2003) have discussed the con-
ditions for the uniqueness of sparse coefficient vector in classical linear regression frame-
works. The identifiability result in Proposition 2 can be regarded as an extension of Corollary
1 (Donoho and Elad, 2003) to the sparse and decomposable tensor regression models. Pro-
vided that the LROD tensor decomposition is unique up to permutation, the full coefficient
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tensor B∗ with the frontal slice sparsity is globally identifiable and thus the LROD of B∗ is
identifiable.

3. Statistical Results

This section is devoted to the TgFDR control and the estimate accuracy for our proposed
TgSLOPE procedure.

3.1 TgFDR Control

FDR is a commonly used error rate that counts the expected proportion of errors among
the rejected hypotheses in multiple testing. In this subsection, we develop the classic FDR
notion to the setting of tensor regression and show that it can be well controlled by our
proposed TgSLOPE.

Definition 4 Consider the tensor regression model (2) and let (Ŵ , Ĥ) be an estimator
given by the optimization problem (4). We define the tensor group false discovery rate
(TgFDR) for TgSLOPE as

TgFDR = E
[

V

max{R, 1}

]
, (6)

where V,R are defined as follows

V = ]{j ∈ [p] : W ∗
j = 0, Ŵj 6= 0}, R = ]{j ∈ [p] : Ŵj 6= 0}

with W ∗
j and Ŵj the jth rows of W ∗ and Ŵ , respectively.

Define the regularization parameters of the TgSLOPE procedure as

λj = σF−1
χK

(
1− q · j/p

)
, j ∈ [p], (7)

where 0 < q < 1, F−1
χK

(α) is the αth quantile of the χ distribution with K degrees of freedom.
We give an upper bound of TgFDR in the following theorem. The technical proof is deferred
to Appendix B.1.

Theorem 5 Consider the tensor regression model (2) with the predictor matrix X satisfy-
ing X>X = Ip. Then, for any solution (Ŵ , Ĥ) given by the TgSLOPE problem (4) with
the regularization parameters in (7), TgFDR obeys

TgFDR = E
[

V

max{R, 1}

]
≤ q · p− s

p

with s the number of nonzero rows of W ∗.

Remark 6 Under the guarantee of the uniqueness for LROD, our row sparsity settings on
the matrix W ∗ can be equivalently interpreted as the sparsity in the frontal slices of the
coefficient tensor B∗. Figure 3 illustrates this equivalence relation. Therefore, the definition
of TgFDR in (6) can be redefined based on the following random variables

TV = ]{j ∈ [p] : B∗j = O, B̂j 6= O}, TR = ]{j ∈ [p] : B̂j 6= O}
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Figure 3: Illustration of the sparsity equivalence relation between factor matrix W ∗ and tensor B∗.
Here the elements of matrices and tensors are zero (gray) and nonzero (color).

with B∗j and B̂j the jth frontal slices of B∗ and B̂, respectively. This indicates that the

estimator B̂ =M−1
3 (Ŵ Ĥ>) given by (4) provably controls TgFDR at any prespecified level

q ∈ (0, 1).

3.2 Estimate Accuracy

This subsection aims to show that TgSLOPE enjoys minimax optimal estimation property
under the assumption that the ground truth B∗ is bounded, that is, max{‖B∗j ‖F , j ∈ [p]} <
∞. We measure the deviation of an estimator from B∗ in the following theorem. The
technical proof is given in Appendix B.2.

Theorem 7 Consider the TgSLOPE optimization problem (4) with the predictor matrix X
satisfying X>X = Ip and the regularization parameters in (7). Then, under p → ∞ and
s/p → 0, the TgSLOPE estimator enjoys the asymptotically minimax rate over Bs = {B :∥∥‖B‖f∥∥0

≤ s}, that is,

sup
B∗∈Bs

E‖B̂ − B∗‖2F ∼ inf
B̃

sup
B∗∈Bs

E‖B̃ − B∗‖2F ,

where the infimum is taken over all estimators B̃ based on date set D = {(xi,Yi)}ni=1.

Remark 8 The asymptotically minimax result in Theorem 7 is an extension of Theorem
1.1 in Su and Candès (2016) (for the SLOPE estimate) and Theorem 2.2 in Brzyski et al.
(2019) (for the group SLOPE estimate) under the classical linear regression frameworks.
In addition, we note that the choice of the regularization parameters in Theorem 7 does not
depend on the sparsity level. In such a sense, TgSLOPE is adaptive to a range of sparsity in
achieving the minimax optimality. It would also be interesting to work on estimation bounds
of minimax rates in a non-asymptotic manner, such as that in Raskutti et al. (2019) and
Hao et al. (2020). We leave this as one of our research topics in the future.
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4. Proximal DCA with Extrapolation

In this section, we propose a proximal difference-of-convex algorithm with extrapolation
(pDCAe) to solve the TgSLOPE optimization problem and establish its global convergence.

4.1 DC Reformulation

Given an optimal solution (Ŵ , Ĥ) of the problem (4), it is known from the orthogonal
Procrustes problem (Gower and Dijksterhuis, 2004) that Ĥ can be determined by Ŵ in the
way that Ĥ = Û[:,1:K]V̂

>, where Û , V̂ are obtained from the SVDM3(Y)>XŴ = ÛDV̂ >

with Û ∈ Rp1p2×p1p2 , D ∈ Rp1p2×K and V̂ ∈ RK×K . Plugging (Ŵ , Ĥ) into the objective
function of problem (4), we obtain that

L(Ŵ , Ĥ) =
1

2

∥∥M3(Y)
∥∥2

F
+

1

2

∥∥XŴĤ>
∥∥2

F
− tr(M3(Y)>XŴĤ>)

=
1

2

∥∥M3(Y)
∥∥2

F
+

1

2

∥∥XŴ∥∥2

F
− tr(DÛ>[:,1:K]Û)

=
1

2

∥∥M3(Y)
∥∥2

F
+

1

2

∥∥XŴ∥∥2

F
− tr(D)

=
1

2

∥∥M3(Y)
∥∥2

F
+

1

2

∥∥XŴ∥∥2

F
− ‖M3(Y)>XŴ ‖∗.

Therefore, the TgSLOPE problem (4) can be equivalently transformed into
Ŵ = arg min

{
F (W ) = 1

2‖XW ‖
2
F + Pλ

(
‖W ‖r

)
− ‖M3(Y)>XW ‖∗

}
,

Ĥ = Û[:,1:K]V̂
>,where Û and V̂ are from the SVD M3(Y)>XŴ = ÛDV̂ >.

(8)

Denote F1(W ) = 1
2‖XW ‖

2
F and F2(W ) = L

2 ‖W ‖
2
F − F1(W ). Since F1 is gradient

Lipschitz continuous with modulus L = ‖X>X‖2, the convexity of F2 follows. Inspired
by the DC-representable function from Gotoh et al. (2018), we rewrite the optimization
problem in (8) as

min
W∈Rp×K

F (W ) =
L

2
‖W ‖2F + Pλ

(
‖W ‖r

)
︸ ︷︷ ︸

C1(W )

−
(
L

2
‖W ‖2F −

1

2
‖XW ‖2F +N(W )

)
︸ ︷︷ ︸

C2(W )

, (9)

where N(W ) = ‖M3(Y)>XW ‖∗. It is easy to verify that both C1 and C2 are convex,
leading to a DC program as in (9).

By now, we constructively reformulate the manifold optimization problem (4) as a DC
program (9). This allows us to solve the reformulation problem of TgSLOPE by a DC-type
algorithm.

4.2 Proximal DCA

Considering the DC program (9), we first give the subdifferential of N(W ) in the following
lemma, which can be clearly derived from the subdifferential of the matrix nuclear norm
(Watson, 1992) and the chain rule of Theorem 10.6 in Rockafellar and Wets (2009).

10
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Lemma 9 The subdifferential of N(W ) is given by

∂N(W ) = {X>M3(Y)(Ũ[:,1:K]Ṽ
> + W̃ ) : Ũ>[:,1:K]W̃ = O, W̃ V̄ = O, ‖W̃ ‖2 ≤ 1}, (10)

where Ũ , Ṽ are obtained by the SVD of M3(Y)>XW = ŨDṼ >.

The DCA iterative scheme for (9) takes the following form

W (k+1) = arg min
W

{
L

2
‖W ‖2F −

〈
W , (LI −X>X)W (k) +Q

(k)
1

〉
+ Pλ

(
‖W ‖r

)}
= arg min

W

{
1

2

∥∥∥∥W −
(
W (k) − 1

L

(
X>XW (k) −Q(k)

1

))∥∥∥∥2

F

+ Pλ/L
(
‖W ‖r

)}
,

(11)

where Q
(k)
1 ∈ ∂N(W (k)). Then the optimal solution of problem (11) can be computed by

the proximal operator of the penalty function Pλ/L. Specifically,
η(k+1) = arg minη

{
1
2

∥∥‖Q(k)‖r − η
∥∥2

+ Pλ/L(η)
}
,

W
(k+1)
j =

(
ProxPλ/L

(Q(k))
)
j

= η
(k+1)
j

q
(k)
j

‖q(k)j ‖
, j ∈ [p],

(12)

where Q(k) = W (k)−
(
X>XW (k)−Q(k)

1

)
/L. The resulting DCA is called as the proximal

DCA (Gotoh et al., 2018; Wen et al., 2018). Consequently, the W -subproblem is reduced
to identifying the general SLOPE proximal operator, which can be efficiently solved by
FastProxSL1 (Bogdan et al., 2015). Furthermore, in order to possibly accelerate the algo-
rithm, we entertain extrapolation techniques (Nesterov, 2013) in the proximal DCA. The
algorithmic framework is summarized in Algorithm 1.

Algorithm 1 pDCAe for solving TgSLOPE (4)

Initialize W (0) ∈ Rp×K , {β(k)} ⊆ [0, 1) with supk β
(k) < 1, set W (−1) = W (0), k = 0;

1: Choose Q
(k)
1 ∈ ∂N(W (k)) by (10);

2: Compute A(k) = W (k) + β(k)(W (k) −W (k−1)) and update

Q(k) = A(k) −
(
X>XA(k) −Q(k)

1

)
/L;

3: Compute W (k+1) by the two-step form in (12);
4: Set k = k + 1. If the stopping criterion is met, perform the SVD M3(Y)>XW (k) =
U (k)D(k)V (k)> to get

H(k) =
(
U (k)

)
[:,1:K]

V (k)>,

then stop and return B(k) =M−1
3 (W (k)H(k)>); otherwise, go to the step 1.

Note that the pDCAe algorithm is reduced to the general proximal DCA if β(k) = 0 for
all k. Moreover, Algorithm 1 can be coupled with many popular choices of extrapolation
parameters {β(k)} including that used in accelerated proximal gradient (APG) for solving

11
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SLOPE (Bogdan et al., 2015). In our numerical experiments section, we follow Bogdan
et al. (2015) and set θ(−1) = 1,

β(k) =
θ(k−1) − 1

θ(k)
with θ(k) =

1 +
√

1 + 4(θ(k−1))2

2
, ∀k ≥ 0.

4.3 Global Convergence

This subsection is dedicated to the global convergence of pDCAe. We start with the level-
coercivity of the DC function F (W ).

Lemma 10 Let the predictor matrix X in problem (4) be full column rank. Then the DC

function F (W ) in (9) is level-coercive in the sense that lim inf‖W ‖F→∞
F (W )
‖W ‖F > 0.

Based on the level-coercivity as obtained in Lemma 10, the desired global convergence
of pDCAe for solving problem (4) is stated as follows.

Theorem 11 Suppose that the prediction matrix X is full column rank and let {W (k)} be
the sequence generated by Algorithm 1 for solving problem (4). Then the following properties
hold:

(a) The sequence {W (k)} is bounded;

(b) limk→∞ ‖W (k+1) −W (k)‖F = 0;

(c) Every limit point W̄ of the sequence {W (k)} is a stationary point of F in the sense
that

O ∈X>XW̄ + ∂Pλ
(
‖W̄ ‖r

)
− ∂‖M3(Y)>XW̄ ‖∗.

The proofs of results in this subsection are provided in Appendix C.

5. Numerical Experiments

This section gives some experiments on synthetic data and a real human brain connection
data. All numerical experiments are implemented in MATLAB (R2021a), running on a
laptop with Intel Core i5-8265U CPU (1.60GHz) and 16 GB RAM.

5.1 Comparative Methods

We verify the performance of proposed TgSLOPE by comparing it with the following three
approaches:

(a) TBMM: the block majorization minimization (BMM) algorithm proposed by Wei et al.
(2021) to solve the TgSLOPE problem (4), whose corresponding iterative scheme is{

W (k+1) = arg minW
{

1
2‖W −R(k)‖2F + Pλ/L

(
‖W ‖r

)}
,

H(k+1) =
(
U (k+1)

)
[:,1:K]

V (k+1)>,

where R(k) = W (k) −
(
X>XW (k) −X>M3(Y)H(k)

)
/L, U (k+1) and V (k+1) are from

the SVD M3(Y)>XW (k+1) = U (k+1)D(k+1)V (k+1)>;

12
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(b) TgLASSO: the group LASSO penalized LROD tensor regression approach, in which the
pDCAe algorithm in Section 4 is used to solve

min
W ,H

{
1

2

∥∥M3(Y)−XWH>
∥∥2

F
+ λ

p∑
j=1

‖Wj‖ : H>H = IK

}
,

where λ > 0 is the tuning parameter;

(c) TLRR: the LROD tensor regression (without sparse penalty), in which the pDCAe is
applied to solve

min
W ,H

{
1

2

∥∥M3(Y)−XWH>
∥∥2

F
: H>H = IK

}
.

In our numerical experiments, we simply adopt the stopping criterion proposed by Wen

et al. (2018) for all approaches, i.e., ‖W
(k)−W (k+1)‖F

max{‖W (k)‖F ,1}
≤ ε with some given tolerance ε > 0.

5.2 Synthetic Data

In our numerical experiments on synthetic data, we adopt the measures including TgFDR
defined in (6) and the tensor power (TP) to evaluate selection performance of the estimator
B̂ generated by a given method. Here TP is defined as

TP = E(T )/s, where T = ]{j ∈ [p] : B∗j 6= O, B̂j 6= O} and s = ]{j ∈ [p] : B∗j 6= O}.

For estimation accuracy, we evaluate the performance of B̂ in terms of the relative group
estimate error (RgEE) and the mean squared error (MSE) defined respectively as

RgEE =

∥∥‖B̂‖f − ‖B∗‖f∥∥2∥∥‖B∗‖f∥∥2 , MSE =
∥∥(B̂ − B∗)×3 X

∥∥2

F
/np1p2.

Meanwhile, to evaluate the time efficiency of our proposed pDCAe algorithm, the CPU time
(Time) is reported for each testing instance.

The ground truth is simulated via B∗ = M−1
3 (W ∗H∗>) ∈ Rp1×p2×p, in which W ∗ ∈

Rp×K is generated in a similar manner as in Brzyski et al. (2019) with s nonzero rows.
Specifically, each nonzero row of W ∗ is generated from the uniform distribution U [0.1, 1.1]
and then we scale it such that ‖w∗j‖ = a

√
K with a =

√
4 ln(p)/(1− p−2/K)−K. The

explanation of such a special simulation procedure is presented in Appendix D. The column-
orthogonal matrix H∗ ∈ Rp1p2×K is simulated as the first K left singular vectors of a
p1p2 × p1p2 matrix with i.i.d. standard normal distributed entries. The response tensor
Y ∈ Rp1×p2×n is simulated by Y = B∗×3X + E , where the entries of the noise tensor E are
i.i.d. drawn from N(0, 1).

We first verify the TgFDR controlling performance of TgSLOPE under the following
two situations of the predictor matrix X ∈ Rn×p: (a) the orthogonal design, where X is
generated from the orthogonalization for a n × p matrix with i.i.d. standard normal dis-
tributed entries; (b) the commonly used Gaussian random design, such as in Kong et al.
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(a) Orthogonal design
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Figure 4: Estimated TgFDR and TP with n = 2000, p = 1000, p1 = p2 = 10,K = 20 under the
orthogonal and Gaussian situations of the matrix X. Bars correspond to ±SE (standard
error), black dotted lines represent the ‘nominal’ TgFDR level q · (p− s)/p.

(2020), where the predictor vectors xi, i = 1, · · · , n are i.i.d. drawn from Gaussian distri-
bution N (0,C), where C is a p × p covariance matrix with the element Cj1j2 = 0.5|j1−j2|

for any j1, j2 ∈ [p]. The orthogonal situation works with the regularization parameter se-
quence defined in (7). For Gaussian random design, we select regularization parameters of
TgSLOPE according to Procedure 2 of Brzyski et al. (2019).

Set n = 2000, p = 1000, p1 = p2 = 10,K = 20 and sparsity s = 25 : 25 : 250. We perform
100 independent replications for each sparsity and target TgFDR level (q = 0.05, 0.1). As
shown in Figure 4 (a), TgSLOPE maintains a comparable TgFDR with the ‘nominal’ level
and reports the estimated tensor power TP =1 for all testing instances. For the Gaussian
situation, TgSLOPE reports the relatively low TgFDR with the strong power, especially
for the sparse cases as shown in Figure 4 (b). The reported TgFDR of TgSLOPE does not
exceed the ‘nominal’ level of the case q = 0.1 in all sparsity settings except for the case
s = 250.

In the following numerical comparisons, we consider the Gaussian random situation in
which the entries of X are i.i.d. drawn from N(0, 1/n), and test the effect of sparsity s,
model size p and LROD rank K respectively under the target TgFDR level q = 0.05. For
TgLASSO, the tuning parameter is selected by 5-fold cross-validation.

Sparsity effect: set n = 3000, p = 1000, p1 = p2 = 10 and K = 20. We test the
performance of four approaches under various sparsity with s = 25 : 25 : 250. Simulation
results report TP =1 for all competitors in each testing instance. In addition, average
results based on 100 independent replications have been shown in Figure 5. (i) Figure 5
(a) illustrates that TgSLOPE and TBMM have significant superiority in terms of TgFDR,
with TgFDR below ‘nominal’ for all testing sparsity. (ii) TgLASSO fails to control TgFDR,
although it reports the relatively small RgEE and MSE as shown in Figure 5 (b) and (c).
(iii) Figure 5 (d) shows that TgSLOPE reports a relatively short CUP time, especially in the
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Figure 5: Average results with various sparsity under n = 3000, p = 1000, p1 = p2 = 10,K = 20
and for the Gaussian random design situation of X. Bars correspond to ±SD (standard
deviation). In (a), black dotted lines represent the ‘nominal’ TgFDR level q · (p− s)/p.

cases of small sparsity. (iv) It is intuitive that those four methods tend to have comparable
performance as the sparsity increases.

Model size effect: in this example, we test the effect of model size p comparing among
four approaches. Set n = 3000, p1 = p2 = 10,K = 20 and the sparsity s = 0.02p with model
size p = 2000, 4000, 6000. In each testing instance, all these competitors report TP =1.
Moreover, Table 1 collects the average results based on 100 independent replications for
each model size. (i) As suggested in Table 1, TLRR gives the worst performance. For the
other three approaches, all of the four evaluation metrics tend to become larger as the model
size grows. (ii) Similar to the results shown in Figure 5, TgLASSO fails to control TgFDR,
while TgSLOPE and TBMM can maintain the TgFDR below the ‘nominal’ TgFDR level
for all testing model sizes, with predictable sacrifice on the estimation accuracy. (iii) We
can also see from Table 1 that TgSLOPE gives the smaller TgFDR than TBMM for the
model size p = 6000, and it reports the least CPU time for all cases.

LROD rank effect: we now examine the impact of LROD rank on the four approaches
under p1 = p2 = 10 and p1 = p2 = 20, respectively. Set n = 1000, p = 2000 and the sparsity
s = 0.02p. It is known from Kolda and Bader (2009) that LROD rank K ≤ {p1p2, pp1, pp2},
then we set LROD rank K = 5 : 5 : 50. All testing instances are simulated based on 100
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Size Method TgFDR RgEE MSE Time(s)

p = 2000 TLRR 0.980 5.10e-0 (6.24e-2) 7.77e-4 (1.89e-6) 3.325

TgLASSO 0.891 3.44e-2 (3.97e-3) 1.92e-4 (4.45e-6) 1.566

TBMM 0.006 5.59e-2 (3.91e-3) 2.02e-4 (2.73e-6) 2.242

TgSLOPE 0.007 5.59e-2 (3.91e-3) 2.02e-4 (2.76e-6) 1.081

p = 4000 TLRR 0.980 3.92e-0 (4.26e-2) 9.28e-4 (2.45e-6) 10.163

TgLASSO 0.921 3.50e-2 (2.16e-3) 2.40e-4 (4.70e-6) 3.727

TBMM 0.008 6.46e-2 (3.28e-3) 2.70e-4 (3.48e-6) 6.104

TgSLOPE 0.008 6.45e-2 (3.27e-3) 2.70e-4 (3.49e-6) 2.962

p = 6000 TLRR 0.980 1.69e-0 (1.71e-2) 9.19e-4 (2.94e-6) 15.146

TgLASSO 0.924 3.66e-2 (2.17e-3) 2.77e-4 (5.16e-6) 6.179

TBMM 0.025 6.91e-2 (3.78e-3) 3.24e-4 (4.02e-6) 9.108

TgSLOPE 0.014 6.88e-2 (3.75e-3) 3.24e-4 (4.01e-6) 5.666

Table 1: Average results with different model size under n = 3000, p1 = p2 = 10,K = 20, s = 0.02p
for the Gaussian random design situation of X. Standard deviations are presented in
brackets.

independent replications. Simulation results report that TP =1 for all the competitors.
Figure 6 depicts changes of the four evaluation metrics with the increase of LROD rank.
(i) Our proposed TgSLOPE procedure works well in terms of TgFDR, especially for small
LROD ranks. See, e.g., as shown in Figure 6 (a) and (b), TgSLOPE and TBMM report
the lower TgFDR than the ‘nominal’ level as K ≤ 25. (ii) Figure 6 (g) and (h) illustrate
that TgSLOPE reports a relatively short CPU time, especially compared with TBMM. For
example, as p1 = p2 = 20 and K ≤ 35, the CPU time reported by TgSLOPE is no more
than 1/5 of that of TBMM. (iii) For the fixed tensor size, we can see from Figure 6 (a)
and (b) that the TgFDR tends to become larger as the LROD rank increases. In addition,
with the increase of the LROD rank, Figure 6 (c) and (d) show that RgEE reduces, while
Figure 6 (e) and (f) show that MSE grows. This may give us some inspiration to choose a
moderate LROD rank.

5.3 Human Brain Connection Data

In this subsection, we test our proposed TgSLOPE comparing with the other three ap-
proaches on a real human brain connection (HBC) data from the Human Connectome
Project (HCP), which aims to build a network map between the anatomical and functional
connectivity within healthy human brains (Van Essen et al., 2013). The preprocessed HBC
data set is provided by Hu et al. (2022), in which the response is a 68×68 binary matrix with
entries encoding the presence or absence of fiber connections between 68 brain regions-of-
interest, the predictor matrix is collected from different personal features for each observed
individual. After removing those missing values, the HBC data set consists of 111 individ-
uals and 549 personal features, including gender, age, etc. (The HBC data can be found
at https://wiki.humanconnectome.org/display/PublicData/). For HBC analysis, the pre-
dictor matrix is normalized to have unit column vectors. We choose the tuning parameters
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Figure 6: Simulation results with different LROD rank under n = 1000, p = 2000, s = 0.02p for
the Gaussian random design situation of X. Left column: p1 = p2 = 10, right column:
p1 = p2 = 20. In (a) and (b), black dotted lines represent the ‘nominal’ TgFDR level
q · (p− s)/p.
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Figure 7: Average results with the different LROD rank based on 20 randomly 8:2 splits for HBC
data set.

via a BIC-type criterion on the whole data set, which minimizes

BIC = ‖Y − B̂ ×3 X‖2F +
(∥∥‖B̂‖f∥∥0

+ p1 + p2

)
K log(np1p2).

In addition, the number of discovered features (termed as Discovery), the mean squared
prediction error (MSPE) and the CPU time are adopted to evaluate the performance of
four competitors. Here, Discovery and MSPE are defined respectively as

Discovery = ]{j ∈ [p] : (B̂training)j 6= O},
MSPE = ‖Ytest − B̂training ×3 Xtest‖2F /p1p2ntest,

where B̂training is the estimator for the training set, Xtest, Ytest and ntest are the predictor
matrix, response tensor and the sample size of the testing set, respectively.

For HBC data, the experimental results in Zhang et al. (2016) have revealed that the
whole-brain functional magnetic resonance imaging (fMRI) signals can be well characterized
by sparse representations, which is supportive on the interpretability with fewer significant
features in the HBC data analysis. In this regard, it may be reasonable to recognize the
performance superiority of a method with the smaller Discovery and the comparable or even
less MSPE. We will test the performance of our proposed approach in such a sense with
comparison to other three methods.

Notably, the rank of true coefficient tensor is unknown in real data applications. We first
test the performance of four approaches under different LROD ranks. Set the tolerance for
termination in algorithms to be ε = 10−4. For each LROD rank selected from 1 to 12, HBC
data set is randomly divided into 80 percent of training set and 20 percent of testing set
20 times. The average numerical results are depicted in Figure 7. We can see from Figure
7 (a) that small LROD ranks would be sufficient for an acceptable prediction errors of all
methods, which suggests us to fit the true rank with a relatively small value. In addition, as
shown in Figure 7 (b), TLRR fails to feature selection for all rank testing instances, while
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ε Method MSPE Discovery Time(s)

10−4 TLRR 0.0837 536.30 2.766

TgLASSO 0.0848 28.45 9.396

TBMM 0.0840 242.50 7.137

TgSLOPE 0.0838 47.95 8.171

10−5 TLRR 0.0831 536.20 9.363

TgLASSO 0.0844 27.70 30.561

TBMM 0.0833 121.90 92.278

TgSLOPE 0.0833 47.15 29.724

10−6 TLRR 0.0836 537.20 25.629

TgLASSO 0.0861 26.70 111.271

TBMM 0.0838 73.65 668.040

TgSLOPE 0.0838 49.60 99.964

Table 2: Average results with BIC selected LROD rank and different tolerance ε based on 20 ran-
domly 8:2 splits for HBC data set.

the other three methods all report the sparse numerical approximate estimates reflected
by relatively small values of Discovery, with the smaller MSPE compared to TLRR. This
further supports the reasonability of taking the group sparsity of coefficient tensor into
consideration for HBC data set.

To test the comparative performance of four methods, we next choose the combination
of LROD rank and regularization parameters via the BIC criterion. Table 2 collects the
average results with different tolerances ε = {10−4, 10−5, 10−6} based on 20 independent
replications, which demonstrate the superior performance of TgSLOPE among all compara-
tive methods. Specifically, as shown in Table 2, TLRR reports the competitive MSPE with
TgSLOPE, but unsurprisingly fails to feature selection for all tolerance settings. In addi-
tion, TgLASSO gives the larger MSPE than TgSLOPE in all testing instances, although it
has the fewest discovered features.

For the method of TBMM, it solves the same optimization model (4) by the alternating
minimization scheme. While our proposed TgSLOPE method solves problem (4) by pDCAe
based on the DC reformulation (8). We can see from Table 2 that these two algorithms
report the similar MSPE in different tolerance settings. While the Discovery generated
by TBMM is larger than that of TgSLOPE, and the difference of the values for Discovery
decreases as the tolerance ε of the numerical algorithms reduces, as shown in Table 2
Columns “ε” and “Discovery”. In addition, TgSLOPE reports the less CPU time than
TBMM, especially for the small tolerance ε = 10−6. One possible explanation for the
superior efficiency of TgSLOPE is that pDCAe has more power of achieving numerical
approximate coefficient tensor solution with higher estimate accuracy, leading to better
performance on time efficiency and group sparsity reflected by Discovery. The comparison
results on Discovery, MSPE and CPU Time of both algorithms with varying ε have been
collected in the boxplots in Figure 8.

19



Chen and Luo

Figure 8: Boxplot for results of TBMM and TgSLOPE with BIC selected LROD rank and different
tolerance ε based on 20 randomly 8:2 splits for HBC data set.

6. Conclusions

In this article we propose a sparse and low-rank tensor regression method, which optimizes
a gSLOPE penalized low-rank, orthogonally decomposable tensor minimization problem.
Under the assumption of column-orthogonality for the predictor matrix, we show that our
proposed TgSLOPE procedure controls TgFDR at a pre-set level, and achieves the asymp-
totically minimax convergence with respect to the produced estimation risk. This pro-
vides theoretical guarantees for feature selection and coefficient estimation in finite samples.
Moreover, a globally convergent pDCAe algorithm is applied to solve the TgSLOPE estima-
tor by constructively reformulating our TgSLOPE problem into a DC program. Numerical
experiments verify the superiority of our method in terms of TgFDR control, estimation
accuracy and CPU time against three state-of-the-art approaches.

For the TgSLOPE method, it would be interesting to investigate statistical properties in-
cluding TgFDR control and estimate accuracy in more general cases besides the orthogonal
design. Moreover, Luo et al. (2019) propose a sparse semismooth Newton-based augmented
Lagrangian method (Newt-ALM) to solve the SLOPE model of the classical linear regression
(Bogdan et al., 2015) and show that Newt-ALM offers a notable computational advantage in
the high-dimensional settings comparing with the first-order algorithms, such as APG and
alternating direction method of multipliers (ADMM). How to design the robust and highly
efficient Newton-type algorithm for TgSLOPE based models is also one of our research topic
in the future.
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Appendix A. Proof of Proposition 2

To check the identifiability for the frontal slice sparse and LROD tensor coefficient B ∈ BT
defined in (5), we need to state that the equation system produced by tensor regression
model (2), i.e., Ȳ = B ×3 X, has a unique solution B∗ satisfying B∗ ∈ BT . Under the
uniqueness guarantee k(W ∗) ≥ 2 of the LROD tensor decomposition B∗ = [[U∗,V ∗,W ∗]]
(Kruskal, 1977, Theorem 4b), it suffices to show that

B∗ = arg min
B∈Rp1×p2×p

∥∥‖B‖f∥∥0
, s.t. Ȳ = B ×3 X

is a unique solution. Following the matricized form of a tensor, the above optimization
problem can be equivalent to

min
B∈BM

∥∥‖B‖r∥∥0
, (13)

where BM = {B ∈ Rp×p1p2 : M3(Ȳ) = XB}. Thus, it suffices to prove that problem (13)
has a unique solution B∗ =M−1

3 (B∗) under the condition that
∥∥‖B∗‖r∥∥0

≤ k/2, where k
is the k-rank of the matrix X.

Assume on the contrary that B̃ ∈ BM is another optimal solution of (13), which gives
that

∥∥‖B∗‖r∥∥0
=
∥∥‖B̃‖r∥∥0

, ∆ = B∗ − B̃ 6= O and X∆ = O. This further indicates that

there exist
∥∥‖∆‖r∥∥0

columns of X which are linearly dependent. By virtue of the definition
of the k-rank of X, it yields that

k <
∥∥‖∆‖r∥∥0

≤
∥∥‖B∗‖r∥∥0

+
∥∥‖B̃‖r∥∥0

≤ k,

where the second inequality is from the fact that `0-norm obeys the triangle inequality, and
the last inequality from

∥∥‖B̃‖r∥∥0
=
∥∥‖B∗‖r∥∥0

≤ k/2. Contradiction arrives and the proof
is completed.

Appendix B. Proofs for Section 3

B.1 Proof of Theorem 5

Assume that (Ŵ , Ĥ) is a local minimizer of the TgSLOPE problem (4). Let Ĥ⊥ ∈
Rp1p2×(p1p2−K) such that [Ĥ, Ĥ⊥] is orthogonal. Then the loss function of problem (4)

L(W , Ĥ) =
∥∥[M3(Y)−XWĤ>][Ĥ, Ĥ⊥]

∥∥2

F

=
∥∥M3(Y)Ĥ −XW

∥∥2

F
+
∥∥M3(Y)Ĥ⊥

∥∥2

F
.

Together with the column-orthogonality of the predictor matrix X, we have

Ŵ = arg min
W∈Rp×K

{
1

2

∥∥Ŷ −W∥∥2

F
+ Pλ

(
‖W ‖r

)}
, (14)
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where Ŷ = X>M3(Y)Ĥ ∈ Rp×K . It follows from (2) that

Ŷ = W ∗H∗>Ĥ +X>M3(E)Ĥ,

which implies that Ŷ follows the matrix normal distribution N (W ∗H∗>Ĥ, σ2Ip ⊗ IK).
Note that (14) is a convex problem with strongly convex, piecewise linear-quadratic objec-
tive function and hence admits a unique optimal solution. Similar to the proximal operator
for gSLOPE (Brzyski et al., 2019), the optimization problem (14) can be solved in two steps η̂ = arg minη

{
1
2

∑p
j=1

(
‖ŷj‖ − ηj

)2
+ Pλ(η)

}
,

Ŵj = η̂j
ŷj
‖ŷj‖ , j ∈ [p].

(15)

Define Vη = ]{j ∈ [p] : W ∗
j = 0, η̂j 6= 0}, Rη = ]{j ∈ [p] : η̂j 6= 0}. It suffices to show

that

E
[

Vη
max{Rη, 1}

]
≤ q · p− s

p
.

Without loss of generality, assume that W ∗
j = 0 for 0 ≤ j ≤ p− s and W ∗

j 6= 0 otherwise.
By the definition of TgFDR, we derive that

E
[

Vη
max{Rη, 1}

]
=

p∑
r=1

1

r
E
[
Vη1{Rη=r}

]
=

p∑
r=1

1

r

p−s∑
j=1

E
[
1{η̂j 6=0}1{Rη=r}

]
=

p∑
r=1

1

r

p−s∑
j=1

Pr
(
η̂j 6= 0, Rη = r

)
,

(16)

where 1{·} = 1 if the event occurs, and 1{·} = 0 otherwise. Next we focus on the events

{η̂j 6= 0, Rη = r}, j = 1, . . . , p− s, r = 1, . . . , p. Denote Y = (ŷ1, . . . , ŷj−1, ŷj+1, . . . , ŷp)
> ∈

R(p−1)×K , λ = (λ2, . . . , λp)
> ∈ Rp−1. Applying the simplified TgSLOPE problem (14) to

Y with tuning parameter λ, the optimization problem is given by

W = arg min
W∈R(p−1)×K

{
1

2

p−1∑
j=1

∥∥yj −Wj

∥∥2
+ Pλ

(
‖W ‖r

)}
.

Define R
j

= ]{j ∈ [p− 1] : W j 6= 0}. It follows from Lemmas E.6 and E.7 in Brzyski et al.
(2019) that {

‖Ŷ ‖r : η̂j 6= 0, Rη = r
}
⊂
{
‖Ŷ ‖r : ‖ŷj‖ > λr, R

j
= r − 1

}
,

where ‖Ŷ ‖r = (‖ŷ1‖, . . . , ‖ŷp‖)> with ‖ŷj‖2 ∼ χ2
K

(
‖W ∗

jH
∗>Ĥ‖2

)
, j = 1, . . . , p. Then we

have

Pr(η̂j 6= 0, Rη = r) ≤ Pr(‖ŷj‖ > λr, R
j

= r − 1)

= Pr(‖ŷj‖/σ > λ∗r) Pr(R
j

= r − 1)

≤ q · r
p

Pr(R
j

= r − 1),
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where λ∗r = F−1
χK

(
1− q · r/p

)
, the equality is due to the independence between ‖ŷj‖ and R

j
,

the last inequality follows from the definition of the tuning parameters in (7). Therefore,
TgFDR in (16) can be bounded by

E
[

Vη
max{Rη, 1}

]
≤

p∑
r=1

1

r

p−s∑
j=1

q · r
p

Pr(R
j

= r − 1)

=

p−s∑
j=1

q

p

p∑
r=1

Pr(R
j

= r − 1) = q · p− s
p

.

The proof is completed.

B.2 Proof of Theorem 7

Let (Ŵ , Ĥ) be an optimal solution of the problem (4). Then B̂ =M−1
3 (Ŵ Ĥ>). Under the

column-orthogonality assumption on the predictor matrix X, we know that the statistically
equivalent model of (2) is

Ỹ =M3(B∗) +X>M3(E), (17)

which has the distribution N (M(B∗), σ2Ip ⊗ IK). Denote B̃ as the set of all coefficient
tensors for which only the elements in the first column of the mode-3 unfolded matrix are
possibly nonzero and the rest are fixed to be zero. Let B̃s = Bs ∩ B̃. Then, for any B∗ ∈ B̃s,
(17) is reduced to a general Gaussian sequence model with length p and sparsity at most
s. As s/p→ 0, this sequence model has minimax risk (1 + o(1))2σ2s log(p/s) (Donoho and
Johnstone, 1994). Thus, we have

sup
B∗∈B̃s

E
∥∥M(B̂)−M(B∗)

∥∥2

F
∼ (1 + o(1))2σ2s log(p/s),

which yields that

sup
B∗∈Bs

E‖B̂ − B∗‖2F ≥ (1 + o(1))2σ2s log(p/s).

We next show that the `2-loss which measures the deviation of the TgSLOPE estimator
from the ground truth B∗ is bounded above by (1 + o(1))2σ2s log(p/s). For simplicity,
we assume that ‖w∗j‖ 6= 0 for j ≤ s and ‖w∗j‖ = 0 otherwise. Denote µj = ‖w∗j‖ and

νj = ‖Ĥ>H∗w∗j‖. Then, it follows from the proof of Theorem 5 that Ŵ can be obtained
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by the two step format (15), in which ‖ŷj‖2 ∼ χ2
K(ν2

j ), j = 1, . . . , p. The `2-loss is

E‖B̂ − B∗‖2F
(a)
= E‖Ŵ Ĥ> −W ∗H∗>‖2F = E

[
p∑
j=1

‖Ĥŵj −H∗w∗j‖2
]

(b)

≤ E

[
p∑
j=1

(‖Ĥŵj‖+ ‖H∗w∗j‖)2

]
(c)
= E

[
p∑
j=1

(‖ŵj‖+ ‖w∗j‖)2

]
,

= E

[
s∑
j=1

(‖ŵj‖+ ‖w∗j‖)2

]
+ E

[
p∑

j=s+1

‖ŵj‖2
]

= E

[
s∑
j=1

(η̂j + µj)
2

]
︸ ︷︷ ︸

E1

+E

[
p∑

j=s+1

η̂2
j

]
︸ ︷︷ ︸

E2

,

where (a) comes from B̂ =M−1
3 (Ŵ Ĥ>), (b) is due to the triangle inequality and (c) follows

from the column-orthogonality of Ĥ and H. Thus, it suffices to show

E1 ≤ (1 + o(1))2σ2s log(p/s) and E2 = o(1)2σ2s log(p/s).

To proceed, define random variables ψ2
j = ψ2

j,1 +ψ2
j,2 + · · ·+ψ2

j,K and φ2
j = (ψj,1 +νj)

2 +

ψ2
j,2 + · · ·+ψ2

j,K with i.i.d. ψj,k ∼ N(0, 1), j ∈ [p], k ∈ [K]. Then ψ2
j ∼ χ2

K and φ2
j ∼ χ2

K(ν2
j )

for all j ∈ [p]. Denoting φ = (φ1, φ2, . . . , φp)
>, we have

E
∥∥η̂[1:s] + µ[1:s]

∥∥2
= E

∥∥η̂[1:s] − φ[1:s] + φ[1:s] + µ[1:s]

∥∥2

≤ E
(∥∥η̂[1:s] − φ[1:s]

∥∥+
∥∥φ[1:s] + µ[1:s]

∥∥)2

≤
∥∥λ[1:s]

∥∥2
+ E

∥∥φ[1:s] + µ[1:s]

∥∥2
+ 2
∥∥λ[1:s]

∥∥E∥∥φ[1:s] + µ[1:s]

∥∥,
(18)

where the last inequality is obtained by
∥∥η̂[1:s] − φ[1:s]

∥∥ ≤ ∥∥λ[1:s]

∥∥, owing to Fact 3.3 of
Su and Candès (2016) with conditions φ2

j and ‖ŷj‖2 are i.i.d. for any j ≤ s. Moreover,

it follows from Inglot (2010) that as s/p → 0, F−1
χK

(
1 − q · j/p

)
∼
√

2 log(p/(q · j)) for all
j ≤ s, which yields ∥∥λ[1:s]

∥∥2 ∼ 2σ2s log(p/s). (19)

Then, it is easy to see that

|φj + µj |2 =
∣∣∣√(ψj,1 + νj)2 + ψ2

j,2 + · · ·+ ψ2
j,K + µj

∣∣∣2
≤
∣∣∣√ψ2

j,2 + · · ·+ ψ2
j,K + |ψj,1|+ νj + µj

∣∣∣2
≤
(√

2(ψ2
j,1 + ψ2

j,2 + · · ·+ ψ2
j,K) + νj + µj

)2

≤ 4ψ2
j + 2(νj + µj)

2.

(20)
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Plugging µj = ‖w∗j‖ and νj = ‖Ĥ>H∗w∗j‖ into the part |νj − µj | derives that

|νj + µj |
(a)

≤ ‖Ĥ>H∗w∗j +w∗j‖ =
∥∥(Ĥ +H∗)>(M3(B∗))j

∥∥
≤
∥∥(M3(B∗))j

∥∥‖Ĥ +H∗‖2 ≤
∥∥(M3(B∗))j

∥∥(‖Ĥ‖2 + ‖H∗‖2
)

(b)

≤ 2
∥∥(M3(B∗))j

∥∥,
(21)

where (a) follows from the Cauchy-Schwarz inequality, (b) comes from the fact that ‖Ĥ‖2 =
‖H∗‖2 = 1 for the column-orthogonal matrices Ĥ and H∗. Setting ᾱ = max{‖B∗j ‖F , j ∈
[p]}, we know that (νj − µj)2 ≤ 4ᾱ2. Combining with (20) and (21), we obtain

E
∥∥φ[1:s] + µ[1:s]

∥∥2
= E

[ s∑
j=1

(φj + µj)
2

]
≤ E

[ s∑
j=1

(4ψ2
j + 8ᾱ2)

]
= 8sᾱ2 + 4E(ζ2) = 4s(2ᾱ2 +K),

(22)

where ζ2 =
∑s

j=1 ψ
2
j ∼ χ2

sK . Therefore, combining with (18), (19) and (22) yields that

E1 ≤ (1 + o(1))2σ2s log(p/s) + 4s(2ᾱ2 +K)

+ 2
√

4s(2ᾱ2 +K)
√

(1 + o(1))2σ2s log(p/s)

∼ (1 + o(1))2σ2s log(p/s),

(23)

where the last step makes use of s/p→ 0.

We claim that E2 = o(1)2σ2s log(p/s) in the following. Note that |φj | = |ψj | ∼ χK since
νj = 0 for j > s. Denote |ψ|(1) ≥ · · · ≥ |ψ|(p−s) as the order statistics of |ψs+1|, . . . , |ψp|. It
follows from the proof of Lemma 3.3 in Su and Candès (2016) that

E

[
p∑

j=s+1

η̂2
j

]
≤

p−s∑
j=1

E(|ψ|(j) − λs+j)2
+,

where x+ = max{0, x}. Then, we can partition the sum into three parts

p−s∑
j=1

E(|ψ|(j) − λs+j)2
+ =

bAsc∑
j=1

E(|ψ|(j) − λs+j)2
+

+

bapc∑
j=dAse

E(|ψ|(j) − λs+j)2
+ +

p−s∑
j=dape

E(|ψ|(j) − λs+j)2
+,

for a sufficiently large constant A > 0 and a sufficiently small constant a > 0. Note that
Lemmas F.1, F.2 and F.3 given by Brzyski et al. (2019) show that each part is negligible
compared with 2σ2s log(p/s). This indicates that E2 = o(1)2σ2s log(p/s) and consequently
completes the proof together with (23).
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Appendix C. Proofs for Section 4

C.1 Proof of Lemma 10

Denoting σ1 ≥ σ2 ≥ · · · ≥ σK as singular values of W , we can obtain that

‖W ‖2∗ =

(
K∑
i=1

σi

)2

≤ K
K∑
i=1

σ2
i = K‖W ‖2F . (24)

In addition, we know from the singular value inequality (Chatelin, 1983) that σi+j−1(AB) ≤
σi(A)σj(B) for 1 ≤ i, j ≤ K, i + j ≤ K + 1, which implies that ‖AB‖∗ ≤ ‖A‖∗‖B‖∗ for
any two matrices A ∈ Rp1p2×p and B ∈ Rp×K . Together with (24), we derive that as
‖W ‖F →∞,

F (W )

‖W ‖F
=
‖XW ‖2F /2 + Pλ

(
‖W ‖r

)
− ‖M3(Y)>XW ‖∗

‖W ‖F

≥
‖XW ‖2F /2 + Pλ

(
‖W ‖r

)
‖W ‖F

− ‖M3(Y)>X‖∗‖W ‖∗
‖W ‖F

≥
‖XW ‖2F /2 + Pλ

(
‖W ‖r

)
‖W ‖F

−
√
K‖M3(Y)>X‖∗ →∞,

where ‘→’ is from the fact that the inequality ‖XW ‖2F ≥ σ2
p(X)‖W ‖2F holds with σp(X) >

0 when X is full column rank. This completes the proof.

C.2 Proof of Theorem 11

It follows from Lemma 10 that the DC function F in (9) is also level-bounded, that is, the
level set  Lα = {W ∈ Rp×K : F (W ) ≤ α} is bounded for any α ∈ R. In addition, we know
from Wen et al. (2018) that pDCAe enjoys the global convergence if F is level-bounded.
Thus, using Lemma 10, the desired properties in (a)-(c) are consequences of Theorem 4.1
in Wen et al. (2018).

Appendix D. Scaling of nonzero ground truth in simulations

In simulations, we generate the row sparsity factor matrix W ∗ ∈ Rp×K in a similar manner
as in Brzyski et al. (2019), where each nonzero row of W ∗ is scaled such that ‖w∗j‖ = a

√
K

with a =
√

4 ln(p)/(1− p−2/K)−K. This specific form allows the generated signals to
be comparable to the maximal noise such that nonzero signals (i.e., significant variables)
can be identified with moderate power. We give the calculation of the scale value a in the
following.

Considering the case of the column-orthogonal predictor matrix, the TgSLOPE esti-
mator Ŵ can be obtained from (14). We see from (14) that the identification of the R
significant variables (where the number, R, is determined by λ) corresponds to discovering
indices of the R largest values among ‖ŷ1‖, . . . , ‖ŷp‖. Note that ŷ1, . . . , ŷp are generated
respectively by the random vectors Ŷj = (Ŷj1 , . . . , ŶjK )>, j = 1, . . . , p, where

Ŷj = vj + Ej ∼ N (vj , σ
2IK)
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with vj = Ĥ>H∗w∗j and i.i.d. random noise vectors Ej = Ĥ>(M3(E))>X:j ∼ N (0, σ2IK)

for j = 1, . . . , p. Thus ‖Ŷj‖ =
√∑K

k=1 Ŷ
2
jk

has a χK distribution with the noncentrality

parameter ‖vj‖ and ‖Ej‖ has a central χK distribution for j ∈ [p]. Then, the nonzero
‖vj‖ (or the nonzero w∗j ) could be perceived as a strong signal and thus be identified by
TgSlOPE if with high probability the value ‖ŷj‖ generated from the noncentral χ distri-
bution Ŷj is large compared to the background noise produced by the random disturbance
Ej with central χK distributions. Otherwise, the signal could be easily covered by random
disturbances. Theorem H.1 of Brzyski et al. (2019) gives that for independent variables
Z1, . . . Zp with Zj ∼ χ2

K , j ∈ [p], one has

E
(

max
j∈[p]
{Zj}

)
≤ 4 ln(p)

1−m−2/K
.

Thus an idea is to use the quantity
√

4 ln(p)/(1−m−2/K) as the upper bound on the ex-
pected value of maximum over p independent χK-distributed variables. To investigate the
discovery performance of TgSLOPE in simulation, we aim at E(‖ŷj‖) =

√
4 ln(p)/(1−m−2/K),

which yields the setting that ‖vj‖ =
√

4 ln(p)/(1−m−2/K)−K since E(‖ŷj‖) ≈
√
‖vj‖+K.

Note that ‖vj‖ = ‖Ĥ>H∗w∗j‖ ≤ ‖Ĥ‖2‖H∗‖2‖w∗j‖ = ‖w∗j‖ due to the column-orthogonality

of Ĥ and H∗. In such a sense, we use the value
√

4K ln(p)/(1− p−2/K)−K to scale ‖w∗j‖
in our simulations. This yields signals comparable to the maximal noise such that nonzero
signals can be detected with moderate power.
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