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Abstract

Diagonal linear networks (DLNs) are a toy simplification of artificial neural networks; they
consist in a quadratic reparametrization of linear regression inducing a sparse implicit
regularization. In this paper, we describe the trajectory of the gradient flow of DLNs in
the limit of small initialization. We show that incremental learning is effectively performed
in the limit: coordinates are successively activated, while the iterate is the minimizer of
the loss constrained to have support on the active coordinates only. This shows that the
sparse implicit regularization of DLNs decreases with time. This work is restricted to the
underparametrized regime with anti-correlated features for technical reasons.

Keywords: diagonal linear networks, incremental learning, saddle-to-saddle dynamics,
implicit bias, Lotka-Volterra

1. Introduction

Artificial neural networks are the state of the art for many machine learning tasks (Le Cun
et al., 2015); however, we lack theoretical understanding of this success (Zhang et al., 2021).
Indeed, the parametrization of neural networks induces a non-convex loss, and consequently
it is challenging to analyze the optimization error of gradient descent methods. Moreover,
neural networks can be successful even without any (explicit) regularizer; this challenges
the statistical wisdom in overparametrized settings.

Recent research suggests that these two problems are intertwined: through its non-
convex parametrization, the gradient descent dynamics of neural networks induce an implicit
regularization that controls the statistical performance (Bartlett et al., 2021). However, this
phenomenon is difficult to describe because it is a joint effect of the parametrization, the
gradient descent dynamics and the initialization.

As a consequence, theoretical research has focused on studying implicit regularization
in toy simplifications of neural networks (Soudry et al., 2018; Gunasekar et al., 2017; Li
et al., 2018; Chizat and Bach, 2020; Li et al., 2020). We are interested in an extreme
simplification, called diagonal linear networks (DLNs) (Vaskevicius et al., 2019; Zhao et al.,
2019; Woodworth et al., 2020; HaoChen et al., 2021; Li et al., 2021; Azulay et al., 2021;
Pesme et al., 2021; Pillaud-Vivien et al., 2022; Nacson et al., 2022; Chou et al., 2023).
In fact, it is only a linear regression where regressors 6; are parametrized quadratically;
specifically, in this paper, we parametrize 6; = uf /4. We then perform a gradient descent in
terms of u; and not 0; (see Section 2.1 for more details). This quadratic reparametrization
is loosely argued to have an effect similar to the composition of two layers in a neural

(©2023 Raphaél Berthier.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-1395.html.


https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-1395.html

BERTHIER

network. When started from a small initialization, DLNs were rigorously shown to enforce
an implicit sparse regularization; in an overparametrized setting, DLNs converge to a sparse
interpolator.

Previous works have thus focused on describing the limit point of the dynamics of
DLNSs. Instead, in this work, we study the full trajectory of the continuous-time gradient
flow dynamics. In the limit of small initialization, we show that incremental learning (see,
e.g., Saxe et al. (2019); Gidel et al. (2019); Gissin et al. (2019); Li et al. (2020)) is effectively
performed: as time increases, coordinates are successively activated and the iterate is the
minimizer of the loss constrained to have support on the active coordinates only. The main
contribution of this paper is the description of the time-dependent set of active coordinates,
and the rigorous proof of the convergence to a regressor whose sparsity depends on the
stopping time. The take-home message is that DLNs enforce a sparse implicit regularization
that decreases as the stopping time increases.

As a corollary of our description of the dynamics, we obtain an asymptotic equivalent
of the convergence time to the minimizer of the loss in the limit of small initialization.
It is quite remarkable that such a precise estimate of the global convergence time can be
obtained for a non-convex optimization problem.

For technical reasons, our work is restricted to the special case of anti-correlated feature;
consequently, we study only underparametrized problems (see Section 2.2). However, we
do not expect this restriction to be necessary for incremental learning to occur in DLNs.
We leave the proof of this for future work.

The rest of this paper is organized as follows. In Section 2, we present our setting, our
assumptions and our results. In Section 3, we articulate the related work in more detail.
Sections 4 and 5 prove our results.

Notations. We use bold notations for vectors and matrices: for instance, if 8 € R? is a
multi-dimensional vector, we denote 6; its coordinates. Similarly, if M € R%*? we denote
M;; its entries. If I is a subset of {1,...,d}, we denote I¢ its complement and |I| its
cardinality. We denote 8; € Rl the subvector obtained from 6 € R% by keeping only the
coordinates indexed by i € I. Similarly, if I, J are subsets of {1,...,d}, we denote M,
the submatrix obtained from M by keeping only the rows indexed by ¢ € I and columns
indexed by j € J.

If 0,v € RY, we write @ > v (resp. 8 > v) to denote that for all i € {1,...,d}, ; > v;
(resp. 0; > v;). In particular, @ > 0 (resp. @ > 0) denotes that all coordinates of 8 are
non-negative (resp. positive).

We use the notations (.,.) and .|| to denote the Euclidean dot product and norm
respectively.

2. Main Results

In this section, we first introduce the parametrization of DLNs and the induced gradient
flow dynamics (Section 2.1). Then, we state the assumption that features are anti-correlated
and discuss the consequences (Section 2.2). Finally, we state our results (Section 2.3).
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2.1 Setting
We perform a linear regression of n output variables y1,...,y, € R from n corresponding
input variables a1, . .., x, € R% The traditional approach is to minimize the quadratic loss:
1 n
in. ¢ f(0) = = —(0,x)* b . 1
ggﬂgd{fu 5 (e <,wk>>} (1
k=1

Denote y = (y1,...,yn) € R, X € R the matrix whose rows are x1,...,x, € R? and
X1,..., X4 € R" the columns of the matrix X, i.e., the features of the regression problem.

The quadratic loss f can be expressed as a function of the covariance M = X TX e Rixd
of the features and of the covariance r = X "y between the features and the output:

£(6) = Lyl ~ (r.0) + (6, M6).

A strategy to minimize this convex function is to perform a gradient descent, i.e., an Euler
discretization of the gradient flow

d
dé; df
@t~ g T 2 M ®
7j=1
where 6 = 0(t) is a function from R to R?. Tt is widely known that for any initial point,
this gradient flow converges exponentially fast to a minimizer of f.
In this paper, we are interested in the effect of reparametrizing

1

This reparametrization of linear regression is called a diagonal linear network (DLN). We
perform the gradient flow in terms of u € R? instead of 6 € R%: d(ﬁi = —%. Using that
do; = %uidui, we compute the resulting equation in 6;:

dg;, 1 duy 1 df 1 ,df

o it — — 2L

a2 " dt 2 "duy; 4" de;’
and thus

a6 df d

o = ligy =0 | ri- > Mo | (3)

Q j=1

Compare (3) with (2). The reparametrization has added a factor 6; in the derivative of 6;.
This implies that if 6; is initialized at 0, then it remains at 0 in the DLN dynamics (3). In
particular, @ = 0 € R? is a stable point of the dynamics.

In this paper, we are interested in the DLN when initialized close to this stable point.
More precisely, for ¢ > 0, define 8¢ = 0 (t) as the solution of the DLN dynam-
ics (3) initialized from 0©)(0) = (Cie, ..., Cuekd), where C = (Cy,...,C4) > 0 and
k= (ki,...,kq) > 0 are constants.
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2.2 Assumptions

Before we get to a rigorous statement of our results, let us state our assumptions.

(A1) r= X"y > 0, i.e., the covariance r; = (X, y) between the output y and the feature
X ; is positive for all i € {1,...,d}.

The reparametrization ; = iu? constrains the linear regression to have non-negative

weights. In this situation, it is natural to preprocess the data by potentially changing
the signs of the features X1, ..., X4 so that the output is positively correlated with the
features. Assumption (A1) assumes that this pre-processing has been done, and—for
technical reasons—that the correlations are non-zero.

(A2) For all i # j, M;; = (X;, X ;) <0, i.e., the features are anti-correlated.

We assume that once the features have been positively correlated with the output,
they are anti-correlated. This assumption is a strong restriction to the class of studied
problems and weakening it is left as an open problem. A major motivation for this
assumption is that it implies that the trajectories of the DLN dynamics are nonde-
creasing.

Lemma 1 Assume (A1)-(A2). There exists g > 0 such that for all € € (0,e0], for
alli e {1,...,d}, HZ(E) (t) is nondecreasing in t.

The proof of this result is postponed to Appendix B.

As a side comment, note that Assumptions (A1) and (A2) jointly constrain the problem
to be in the underparametrized regime n > d.

Proposition 1 Assume (A1)-(A2). Then M = X" X is positive definite. In particular,
as M € R gnd X € R, we have n > d.

The proof of this result is postponed to Appendix C.

2.3 Statement of the Results

Our main result (Theorem 1 below) states that the DLN spends long periods of time in the
vicinity of fixed points of (3), and describes the times at which transitions occur. To start
with, we describe this family of fixed points, using the notations introduced in Section 1.

Proposition 2 Assume (A1)-(A2). For all I C {1,...,d}, there exists a unique @ > 0
fixed point of (3) with support {i € {1,...,d}|60; > 0} equal to I. We denote this fized

point as 0D, Its non-zero coordinates are (0&’))1 = (M)~ 'r;. There are thus 2% fived

points of (3).
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Figure 1: In dimension d = 2, we show the vector field V(61,602) = (01(r1 — A1161 —
A1202),05(ro — A2101 — Ago02)) associated to the DLN dynamics (3) (gray ar-
rows), its fixed points o) for T {1,2} (black crosses) and the trajectories of
) (t) for ¢ = 10~8 (blue) and & = 10720 (green). In this simulation, n = 3 and
the data X € R™ ¢, y € R" is generated randomly with i.i.d. standard Gaussian
entries, conditionally on the event that Assumptions (A1) and (A2) hold. The

initialization is 8 (0) = (e, ).

The proof that (M;)~! exists and the proof of the proposition are postponed to Ap-
pendix D. We give here a high-level intuition. For each ¢ € {1,...,d}, there are two ways
of canceling out the right hand side of (3): either 6; = 0 or r; — >, M;;0; = 0 For the

fixed point 9(1) the set I C {1,...,d} is the set of coordinates i such that 0 75 0 and

Z M;;0, I) = 0; conversely for ¢ QE 1,0, I) = 0. We say that the coordinates in I are the
active coordmates of 0& ).

If no coordinate is active, we obtain the fixed point 0" =0 of (3). If all coordinates
are active, 0£{1""’d}) = M~ !r is the minimum of f, thus a fixed point of both gradient flows
(2) and (3). In Figure 1, we provide an illustration in dimension d = 2. We show the vector
field defined by the DLN dynamics (3), its 2¢ = 4 fixed points enumerated above and the

trajectories 0°(t) for different values of .
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We are now in position to state our main theorem. Recall that for e > 0, 8¢) = 0 (¢)
is the solution of the DLN dynamics (3) initialized from (%) (0) = (C1¢*', ..., Cye*e), where
C=(Cy,...,Cq) >0and k = (ki,...,kq) > 0 are constants.

Theorem 1 Assume (A1)-(A2). For s > 0, define u(s) as the unique minimizer of the
reqularized and constrained minimization problem

. 1
i 7@+ 6 (1)
and

I(s)={ie{1,....d}|pi(s) >0} .
Then we have the following:

1. The minimizer pu(s) is nondecreasing in s, i.e., for all i € {1,...,d}, ui(s) is nonde-
creasing in s. Consequently, I(s) is nondecreasing in s for the inclusion.

2. Denote s1,...,sq the points of discontinuity of the function s — I(s). For all s > 0,
5 S81,...,5¢,
9 (3 log 1) Ul
IS e—0
Moreover, the convergence is uniform for s in compact subsets of Rso\{s1,...,q}-

3. For all s > 0,
1

slogé

slog%
/ A0 (1) —> p(s).
0 e—0
Moreover, the convergence is uniform for s in compact subsets of R~q.

This theorem is proved in Section 4. It states that 0 (slog é) converges to a piecewise
constant function, taking values at the fixed points of the DLN dynamics (3). Moreover, the
set I(s) of active coordinates of the limit is nondecreasing, showing that there are successive
coordinate activations.

We provide an illustration of these successive coordinate activations in Figure 2. Note
that when a new coordinate is activated, all other coordinates are perturbed. Moreover, as
decreases from 1078 to 10~2Y, one can observe that Hil(s))
tion of ) (s log %) and f(OSFI(S))) is becoming a sharper approximation of f (9(5) (s log %))

The set I(s) of active coordinates of the limit is obtained by solving a regularized and
constrained version (4) of the original optimization problem (1). The non-active constraints
at the optimum p(s) correspond to the active coordinates of 0&1(8)).

The regularization term +1(k, 8) in (4) has a decreasing sparse regularizing effect. The
author did not find a finer high-level motivation to explain why I(s) should be defined
through (4); his insights come only from the proof of the theorem. However, Theorem 1.(3)

states a second relation between the DLN dynamics (3) and the optimization problem (4):

log L . N
the average ﬁf; %= d4t0C)(t) of the trajectory converges to the minimizer p(s) as

is becoming a sharper approxima-

e — 0; said différently, the average of the trajectory computes the regularization path
(Hastie et al., 2009, Section 3) of the regularized optimization problem (4).
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Figure 2: Comparison between the coordinates 01(8) (s log %) and their asymptotic approxi-
mation Hifi(s)) (upper plots) and between the losses f (9(6) (s log %)) and f(05<1(s)))
(lower plots). The simulations are run with ¢ = 107° (left plots) and e = 10~
(right plots). In this simulation, n = 5, d = 4 and the data X € R"*¢
y € R” is generated randomly with i.i.d. standard Gaussian entries, condition-
ally on the event that Assumptions (Al) and (A2) hold. The initialization is
0©)(0) = (e,...,e) and thus k= (1,...,1).
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Remark 3 In Theorem 1.(2), it is not possible to have uniform convergence in neighbor-

hoods of s1,...,sq4 as the functions 1S (3 log %) are continuous while 9&1(5))
ous at s1,...,Sq; a uniform convergence would contradict the Arzela theorem (Dunford and
Schwartz, 1988, Section IV.6).

18 discontinu-

The definition of the asymptotic process 0&1(8)) is rather complex as one has to solve
an optimization problem. Nevertheless, in the following corollary, we show that it is still
possible to deduce a simple expression for the convergence time of 8)(¢) to the minimizer

Corollary 1 (convergence time to the minimizer) Assume (A1)-(A2). Foralln >0,
denote

7 = inf {t >0 ‘ He(a) (t) — ei{l’""d})H < ?7}
the hitting time of the ball centered around the minimizer 056{1""’d}) of f and of radius 7.
Then for n small enough,

o (M~ 'k),
1 — Inax A1
log z e—=0 4e{1,...,d} (M ’l“)i

This corollary is proved in Section 5. Note that we describe the hitting time T,gg) only

in the asymptotic limit ¢ — 0, and in this limit, 7'7(,6) / log% is independent of n (for n
small enough). This surprising property is due to the fact that the limit trajectory reaches
the global minimizer 05<{1""’d}) through a last jump of the iterates (see Figure 2) and the
duration of this jump is negligible before log %

3. Related Work

Diagonal linear networks (DLNs). Previous studies of DLNs show that their dynamics select
sparse estimators in an overparametrized setting (Vaskevicius et al., 2019; Zhao et al., 2019;
Woodworth et al., 2020; HaoChen et al., 2021; Li et al., 2021; Azulay et al., 2021; Pesme
et al., 2021; Pillaud-Vivien et al., 2022; Nacson et al., 2022; Chou et al., 2023). Our work
differs from previous studies in two ways: first, we describe the limit of the full trajectory of
the dynamics, but second, we are technically restricted to the underparametrized setting.

Many studies consider the more general quadratic reparametrization 0; = (u? —v?)/4 or
equivalently 8; = u;v;, which do not constrain #; to be non-negative, while our reparametriza-
tion 6; = u?/4 does. However, under our Assumptions (A1) and (A2), the restriction to non-
negative regressors is benign. Heuristically, the regressors 6; are nondecreasing (Lemma 1),
thus they do not “try” to become negative. We thus claim that under the more general
parametrization 6; = (u? — v?)/4, the variables v; would remain negligible and the results
would be the same.

When M = X " X = I, the DLNs dynamics (3) are separable across coordinates and
can be solved using the logistic equation. In this special case, the activation of a coordinate
does not affect the other coordinates. Further, one can check that the coordinates are
activated in the decreasing order of the loss decrease that they induce. In (Vaskevicius
et al., 2019; Zhao et al., 2019; Li et al., 2021), a restricted isometry property or incoherence
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property controls the deviation from this special case. On the contrary, in this paper, we
do not make such an assumption and observe richer phenomena. In Figure 2, we observe
each coordinate activation has a large influence on other active coordinates; moreover, the
coordinate introduced last is the second largest coordinate of the optimum Oi{l""’4}) and
induces the largest loss decrease.

To the best of our knowledge, previous analyses of DLNs have focused on the case where
the initializations 91@(0) = (i of all coordinates have the same order of magnitude, i.e.,
k= (1,...,1). In this paper, we generalize to k # (1,...,1): this has the effect of weighting
the sparse regularizing term of (4).

We believe that the techniques of this paper can be adapted to deeper DLNs, i.e., when
0; x ué, I > 2. One would only need to assume additionally that k&1 = --- = k4. In this
case, the time rescaling to have a limiting trajectory would change from log1/e for [ = 2 to
£2/1=1 for { > 2. Moreover, in this latter case, one observes that the effective regularization

in Theorem 1 depends on the constants C1, ..., Cy (but is still linear in 8). This is observed

by repeating the proof of Section 4, redefining wga) as (0;/¢)*/'~1. We have omitted this
adaptation for simplicity.

Finally, we note that when a ¢? penalization on u (or on w and v) is added to f, DLNs
are related to iterative reweighted least-squares, a reparametrization of the Lasso problem
appreciated for computational purposes, see (Bach et al., 2012, Section 5) or (Poon and
Peyré, 2021). However, in this paper, there is no explicit /2 penalty on w and thus no
explicit ¢! penality on 6.

Incremental learning. Incremental learning describes some learning curves observed in hu-
man and machine learning that are almost piecewise constant: they consist of stages where
little progress is made, separated by sharp transitions. For instance, this phenomenon oc-
curs in non-diagonal linear networks (Saxe et al., 2019; Gidel et al., 2019; Gissin et al., 2019;
Arora et al., 2019; Chou et al., 2020; Li et al., 2020), in tensor decomposition (Ge et al.,
2021; Razin et al., 2021, 2022; Hariz et al., 2022) and in shallow ReLU networks (Boursier
et al., 2022). In general, obtaining a mathematical description of the process—of the times
of the transitions and the progress made—is mathematically challenging. To the best of
our knowledge, existing works obtain a rigorous and complete mathematical description
only in “separable” cases where the learning dynamics can be separated into several one-
dimensional learning dynamics. For instance, Gissin et al. (2019) study DLNs but only in
the special case M = I;. As a consequence, a major contribution of our work is to describe
precisely some non-separable incremental learning dynamics.

Heteroclinic networks. From a dynamical systems perspective, the dynamics (3) form a
heteroclinic network (Bakhtin, 2011): it has several fixed points (also called saddle points)
(0&1)) 1c{1,...,a} connected by geodesics of the flow. Such a dynamical system spends large
amounts of time in the vicinity of fixed points, with sharp transitions between them. In our
case, this is closely related to incremental learning. For our dynamical system, we describe
the sequence of visited fixed points and the transition times. The paper of Jacot et al.
(2021) attempted a similar study for linear networks; we prove rigorously such results in
the special case of diagonal linear networks.

Lotka—Volterra equations. To finish, we note that the quadratic system (3) of ordinary differ-
ential equations are Lotka—Volterra (LV) equations (Hofbauer and Sigmund, 1998; Baigent,
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2017). Traditionally, in mathematical biology, these equations represent the evolution the
populations sizes 61, ...,60; of d interacting species. The parameter r; represents the in-
trinsic growth of population ¢ while the parameter M;; represents the interaction between
populations i and j.

This point of view, and in particular the paper of Goh (1979), inspired the author to use
the function (10) in the proof of Theorem 1. In general, our paper can be interpreted as a
study of LV equations for cooperative and symmetric interactions from infinitesimal initial
population sizes. To the best of our knowledge, such a study did not exist in the literature
on LV equations; its implications will be the subject of a forthcoming paper.

4. Proof of Theorem 1

In this proof, we use both time variables ¢t and s, with ¢ = slog % As it is frequent in the
literature on ordinary differential equations (ODEs), we abusively use the same notation
for functions of ¢ and s. For instance, by convention, 8®)(s) := 8®)(t) with ¢ = slog 1 In
fact, we often drop the dependence on time. For instance, 8(5) := 0(5)(5) =9 (t).

We start with a crude estimate of the trajectories 0(5)(t) that is useful several times
later in the proof.

Lemma 2 The trajectory 0 (t) is bounded uniformly for e € (0,1] and t € Rsg, i.e., there
exists a constant B > 0 such that Ve € (0,1],Vt € R, |0 (t)|| < B.

Proof As Equation (3) is a (reparametrized) gradient flow of f, f is a Lyapunov function,
i.e.,

d d 2
d df do; f
Lo =S4 _ N (SL) <o,
Thus for all € € (0,1], for all £ > 0,

F(09(1)) < £(69)(0)) < Zl(lopﬂfw(s)(o». (5)

This supremum is finite as f is continuous and 6 (0) is uniformly bounded for ¢ € (0, 1].
Further, as M is positive definite (Proposition 1),

1 1
£(8) = Llyl> ~ (r.6) + L(6.06) 500 s 6] .
Thus the uniform bound (5) implies a uniform bound on |8 (t)]|. ]

The central idea of the proof of Theorem 1 is to keep track of the size of the coordinates of
6 (t), in order to be able to determine which coordinates of 8%)(t) are activated depending

on time t. More precisely, define

()
1 ;
w? =SB )

loge

10
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) ©

Equivalently, this gives 91(8 = ¢%i . This logarithmic transformation of the coordinates is

particularly convenient because its time derivative is affine in 0.

dw®  dt dw® 1 1 a4 < (
A VD I R Y T o
ds ds dt <og€> Ggg)loge dt (3); " "
or, using the vector notation w®) = (w§€)7 e ,wfie))a
dw® — MO© — .
ds

Our proof technique determines the limit of w®) as ¢ — 0. The limit is described as the
Lagrange multiplier of an optimization problem closely related to (4). We start with a brief
reminder on duality in optimization.

Proposition 4 Let g,z € R?. The two following statements are equivalent:

1. z is the unique minimizer of the constrained optimization problem

. 1
06%17%20 {(q, 0) + 5(0, MO)} . (7)

2. There exists w € R? such that (w, z) is the unique solution of

w=q+ Mz,

w =0, z>0, w'z=0.

The four conditions above form a so-called linear complementarity problem (LCP),
where g and M are the parameters and w and z are the variables.

The linear complementarity problem is widely studied; see for instance the monograph
of Cottle et al. (2009) or Appendix A. In this connection with the quadratic programming
problem (7), the variable w should be seen as the Lagrange multiplier associated to the
constraint & > 0. The LCP expresses the Karush-Kuhn-Tucker (KKT) conditions for
optimality to hold. More precisely, w = q + Mz is a condition of stationarity of the
Lagrangian; w > 0 and z > 0 are respectively dual and primal feasibility conditions; and
w'z = 0 is a complementarity slackness condition. Put together, the conditions w > 0,
z>0and w'z =0 impose that for all i € {1,...,d}, either w; = 0 or z = 0.

Proposition 4 is classical; nevertheless we detail the appropriate references in Ap-
pendix E.

(e) _ logoy”
i loge

We are now in position to describe the asymptotic behavior of w . Define

2E)(s) = /OS du 6@ (u).

11
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Proposition 5 Let (w(s), z(s)) be the unique solution of the linear complementarity prob-
lem

w=k—-—sr+ Mz,

w =0, z>20, w'z=0.

(8)

Then w'®)(s) and 29)(s) converge respectively to w(s) and z(s) as € — 0, uniformly on
compact subsets of R>q.

Proof In this proof, we define ¢y > 0 as in Lemma 1 and B > 0 as in Lemma 2. Further
we take e1 = min (50, %) and assume that € < 1.
Fix S > 0 and define the continuous functions

0 s €[0,5] > (w(s),2)(s)) € (RY?,

¢ s €[0,5] = (w(s), z(s)) € (RY)?.
We want to show that (&) — ¢ uniformly as e — 0. First, we use the Arzela—Ascoli theorem
to check that the set {p() e € (0,e1)} is relatively compact in the space of continuous
functions from [0, 5] to (RY)2. The reader can consult the monograph of Dunford and

Schwartz (1988, Section IV.6) for a reference on the Arzela-Ascoli theorem for real-valued
functions; the multidimensional extension is straightforward.

e For £ € (0,¢1), s € [0, 5], we bound [ (s)||2 = [|w'® (s)]|> + [|25)(s)||>. We bound
the two terms separately.

— From Lemmas 1 and 2,
Cieh = 007(0) < 017(s) < B,
thus (loge < 0),

(e)
log B g w(a) _ log Gf < log C; n

%

loge loge  loge

As £ < 1/2, loge is bounded away from 0. This shows that wl(s) is bounded
uniformly for € € (0,¢1] and s € [0, S].

— From Lemma 2,
129 (s)] < / dul|0) (u)|| < sB < SB.
0

The two points above show that ||¢(®)(s)||? is bounded uniformly for e € (0,&;] and

s €10,5].

e The square norm of the derivative

2 2

dz(©)
ds

dw®
ds

dep®
ds

s s (s)

<o of' o

12
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is bounded uniformly for & € (0,¢1] and s € [0, S] by Lemma 2. Thus the set {¢(®)
(0,e1)} is equicontinuous.

The two points above show that we can apply the Arzela—Ascoli theorem: {((®), e € (0,£1)}
is relatively compact in the space of continuous functions from [0, 5] to (R%)2. To conclude
on Proposition 5, it is then sufficient to show that the only subsequential uniform limit of
pE) ase = 01is .

Let ¢’ = (w’, 2) be a subsequential uniform limit of &) = (w(®), 2(9)) as e — 0. There
exists £(n) € (0,e1] such that e(n) — 0 and @) — &’ uniformly as n — co. Then
wE™) 5 w' and zE™) — 2/ uniformly as n — co. We check that (w’, 2') is a solution of
the LCP (8).

e First,
d dw(E™) dz (M)
= (M) (g) = — (e(n) — —
o (w (s)—k+sr— Mz (s)) P (s)+r—M o
= MOCEM)(s) —r 4+ — MOEM)(s)
=0.

Thus w ™) (s) — k + sr — M2zEM)(s) is constant in s, equal to its initial value
wE™)(0) — k. Moreover, for all i,

n log Cie(n)*: log Cj
wl(s( ))(0) = og Cie(n)™ ks — og C, 0.
loge(n) loge(n) n—oo

Thus wEM™)(0) — k = wEM)(s) — k + sr — M2 (s) = 0 as n — oco. By identifi-
cation of the limit, we have w'(s) — k + sr — M 2/(s) = 0.

e Second, using Lemma 2 and that loge(n) < 0,

w(g(n))(s) _log Hl(a(n))(s) y log B
: ~ loge(n) 7~ loge(n)’

thus taking n — oo, we obtain w’ > 0.

e Third, we have z(s(”))(s) > 0 trivially from the definition, and thus taking n — oo,
we obtain 2’ > 0.

e Finally,

w(s(n)>(S)Tz<s<n)>(S)‘< &) ()0 ()

i

_Zylogﬁ |/ du0
|loge(n

“Ogs ,ZIlog@ ()6 (s).

13
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where in this last inequality we use Lemma 1. The function x +— |logz|z can be
continuously extended in 0; it is thus bounded on [0, B]. Thus

sd
max_|logz|x.

) (T xlem) (o) « 2%
v (s) 2 ()] < |log e(n)| z<(0,B]

Taking n — oo, we obtain w’(s) 2'(s) = 0.

The four points above show that for all s € [0, 5], (w'(s), 2/(s)) is a solution of the LCP (8).

As the solution is unique (Proposition 6), ¢’ = (w’, 2’) = (w, z) = . Thus ¢ is the unique

subsequent limit of () as e — 0. Thus (®) ¥ uniformly on [0, S]. |
e—

We now show how the proof of Theorem 1 essentially follows from Proposition 5.
Proof [Proof of Theorem 1] First, note that it is shown in Proposition 4 that there is
a unique minimizer to (4). We continue by proving successively the three points of the
theorem.

(1) The fact that p(s) is nondecreasing follows from the connection with the LCP (Propo-
sition 4) and the antitonicity property of the solution of the LCP (Proposition 7). We
detail this argument.

Recall that p(s) is the unique minimizer of
1

1 1 1
in. 0) + =(k,0) = =||y|? “k—7,0)+=(0, M6
i L5(0)+ 20k.6) = Sllyl? + (Tk-r.60) + 50.00)}

Thus by Proposition 4, there exists v(s) € R? such that (v(s), u(s)) is the unique
solution of the LCP

v = %kz —r+Mp,
v>0, p>0, v p=0.
Let us make a side remark for later purposes. We rewrite the LCP above as
sv =k —sr+ M(su),
sv >0, spu >0, (sv) " (sp) =0.

Thus (sv(s),sp(s)) is a solution of the LCP (8), of which (w(s),z(s)) is also the
solution. By unicity of the solution of the LCP (Proposition 6),

z(s) = sp(s). 9)

We now return to the proof of point (1) of the theorem. Consider s; < s3. Then
(v(s1), pu(s1)) (resp. (v(s2), p(s2))) is the unique solution of the LCP with parameters
qV = %k — 7 (resp. q? = ékz —r) and M. Note that as k > 0, gV >q@. As M
is symmetric positive definite (Proposition 1) with non-positive off-diagonal entries
(Assumption (A2)), we apply the antitonicity property (Proposition 7) and obtain
that p(s1) < p(s2).

14
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(3) Abusing again on the notation of the time indexations, we have

1 slog% 1 s 1
L / 160 (1) = - / 16 (u) = 20)(s).
0

slog % 0
By Proposition 5, z()(s) converges to z(s) uniformly on compact subsets of Rxq.
Thus 12()(s) converges uniformly to 12(s) on compact subsets of R-g. (Note that

as the factor 1/s diverges at 0, we need to consider compact subsets bounded away
from 0.) As 2z(s) = pu(s) (Equation (9)), this concludes point (3) of the theorem.

(2) Fix p € {1,...,9,9 + 1} and u,v € Ry¢ such that s,_1 < u < v < s, (with the
conventions sgp = 0, sq11 = 00). Let I be the constant value of I(s) for s € (sp_1, Sp).
To prove point (2) of the theorem, it is sufficient to show 6 (s log %) Q HSKI)
uniformly for s € [u, v].
For 0 € R?, define
Vo) =3 (91- — ") 10g 91-) . (10)
i€l
The function V is inspired from a Lyapunov function used in the study of Lotka—
Volterra equations (Goh, 1979). Here, we show that V' is “almost” decreasing on the
interval (sp—1,sp). We first compute

GV 5 3 (07 0t (r— (nr0) ) "

2

Using the definition of eff) in Proposition 2, we have
(MGSFI))J = Mllai{} + MIICGi{}C =M M;}r;+M0=rp,
thus we can rewrite (11) as
d
a@ (e)y — () _ pD) Yy _ (e)
B0« 30 o) (), - (0

— (69— 0 M(© — o)) — S0 ((nre®) — (M) ) .
<0€ 0 M(6© — o )> %9 ((Mo ) (Mas))

Fix «/, v’ such that s, < v/ <u <v <v' < s, We integrate the equality above for
s e [u,v]:

VOW) - VeDW) = [ s vie®)

- (log i) /u ds%Vw@))
= (e[ [ 00— ot7p100 )
S5 [ a9 ((ar0"),~ (10 )]

il

15
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Denote Apin(M) the minimal eigenvalue of M. By Proposition 1, Apin(M) > 0.

[ oot < g [ oo o)
- sl v <e<€><uf>>—v<e<a><v'>>>

(12)

Take g9 > 0 as defined in Lemma 1 and now assume ¢ < min(1,&g) so that both
Lemmas 1 and 2 apply. Then we have the following estimates:

e Fix i ¢ I. From Lemma 2, there exists a constant C independent of £ such that

[ (o107), - (a009) )| < [ st

:C(v'll/ ds@@—u’l,/ ds@,gg))
v Jo u Jo

Using Theorem 1.(3), this last quantity converges as e — 0 to v/u;(v') — u/p; (u'),
which is equal to 0 as i ¢ I. We thus have

/ ds 6 ((Mei”)i - (M0(5)>i) 0. (13)

e—0

e Further, if s = v or s =0/,

V(0 (s) = 3 (017(s) — 011086 (s >)

1€l (14)
= Z 91(5) <10g ) Z 9
i€l el

by the definition of wz(s) in Equation (6). The first term ), ;0 Z ( ) is bounded
independently of ¢ by Lemma 2. Further, for all i € I, p;(s) > 0 and thus by
Equation (9), zi(s) > 0. By the complementary slackness of z(s) and w(s), we
must have w;(s) = 0. As a consequence, using Proposition 5,

), () ( ) _
29*,1'% (s) —5r 2_ Ouiwils) = 0.
icl el

Returning to Equation (14), we obtain that
© (o L ©) (o 1
V(0¥ (u')) =o | log - V(e w)=ollog—| . (15)

16
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Putting together Equations (12), (13) and (15), we obtain

/ ds[0© — o2 — 0. (16)
w e—0
To conclude on uniform convergence, we use an elementary argument based on mono-
tonicity:
m[ax] 055)(5) - 99 = m[ax] max (956)(5) — Gili), 95}2 - 91(6)(5)) . (17)
s€|u,v ’ s€|u,v ’ ’

By Lemma 1, for all s € [u,v] and s’ € [v,v], 955)(3) — Gi”? < 0(5)(3’) — 0 thus

A *,0 0

© (o) _ D) < 1 v © ¢y _ o)
61 (s) — 6 \v,_v/v as’ (019(s) — 01} .

>1/2

1/2
0©)(s') — 9&0”2) '

Using Hoélder’s inequality, we obtain

1 v 2
01 (s) - 0\1) < — < / as' (617(s) — o'1))

1 v
< / ds’
v —wv v

Similarly,

D

0 (s'") — 6"

() _ g (g) < 2 " as
*,0 2 ~= /7u — U/ ”

Finally, plugging these estimates back in Equation (17) and using Equation (16), we
obtain

max 01(5)(5) e

D < max 1 / ds’
s€[u,v] v — v

*,7

0(5)(5,) _ 0&1) Hz) 1/2 |

09 - o)) 1/2)

1 u
d /
ol

— 0.
e—0

This being true for all i € {1,...,d}, we conclude that 6 converges to 0&1) uniformly

on [u,v] and thus point (2) of the theorem holds.
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5. Proof of Corollary 1

We first study under which condition on s we have I(s) = {1,...,d}. By definition of I(s),
this is equivalent to having p(s) > 0 and thus I(s) = {1,...,d} if and only if f(8)+ 1 (k, )
is minimized at a positive point. Note that

1 1 1 1
f(o) + 7<k’0> = 7Hy”2 - <T - 7k70> + 7<0)M0>
s 2 S 2
is minimized at M ! (r — %k) thus
1
I(s)={1,....d} & M 'r— gM’lkz >0

(18)
&85> Sy, Sy 1= MAX ——————

Consider s > s,. From Theorem 1.(2),

e—0

10 <S log 1) — gl{Ldh)
€
Take 7 > 0. Then there exists e; > 0 such that for all € < €1,

()

Thus Tr,ss) < slog%. This being true for all ¢ < €1, we have limsup,_, ng”il/a < s. This
()

being true for all s > s,, we have limsup,_,, bg’il/g < Sy

()
We are left with showing that lim inf._,g 10;”71/6 > s,. We assume that 7 < min; Oifjl""’d}),
which is possible as from Proposition 2, Hi{l""’d}) > 0. Consider s < s,. Then from (18),

I(s) # {1,...,d} thus we can consider i ¢ I(s). Assume further that s # s1,...,s,. Then
by Theorem 1.(2),

1 s
91(6) (S lOg 6) — Qilz( )) =0.

e—0 )

Denote v = min; Hi;{]-l""’d}) —1n > 0. There exists €5 > 0 such that for all € < e,

955) (5 log i) <v. (19)

Define ¢p as in Lemma 1 and assume £ < min(egg,e3) so that both Lemma 1 and Equa-
tion (19) apply. Then for all ¢ < slog %,

v.

956) t) < Gga) (8 log 1) <
€ / (Equation (19))

(Lemma 1)

18
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Thus

Hg(@ (1) gi{lv--wd})H >
> HSiL...,d})

(L)) _
*J

—v > minf v=m.
J
This being true for all ¢ < slog %, this gives Tygg) > slogé. This being true for all € <
(¢)
min(eg, £2), this gives liminf._, 102771/5 > s. This being true for all s < sy, 5 # s1,...,5q,

()
this gives liminf._,q 10;"71/(2 > Sy

()
We thus conclude that lim._,g 107;71/5 = S4.

6. Conclusion

In this paper, we have shown how the implicit regularization of DLNs is generated by
incremental learning with successive coordinate activations. We obtain a sharp description
of the incremental learning process using an associated regularized optimization problem
with decreasing regularization.

An immediate open question is to obtain a similar description without the anti-correlation
assumption (A2). This would cover the overparametrized setting. In this case, it should be
necessary to parametrize 0; = (u? — v?)/4 (as in the article of Vaskevicius et al. (2019), for
instance) so that the sign of #; is not constrained.

Further, we leave open whether our strategy can be adapted to study incremental learn-
ing in matrix factorization problems and more general neural networks, as well as the

statistical benefits of the induced implicit regularization.
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Appendix A. Properties of the Linear Complementarity Problem

This section gathers a few properties of the linear complementarity problem (LCP) from
the monograph of Cottle et al. (2009). Let ¢ € R? and M € R%*9. We recall that the LCP

associated to the parameters ¢ and M is the problem of finding (w, z) € (Rd)2 such that

w=q+ Mz,
; (20)
w =0, z>0, w z=20.

Proposition 6 Assume that M is symmetric positive definite. Then the LCP (20) has a
unique solution.

This result is provided in the monograph of Cottle et al. (2009, Theorem 3.1.6) (actually
without the symmetry requirement).

Proposition 7 (antitonicity property) Assume that M is symmetric positive definite,
with non-positive off-diagonal entries. Consider gV < q® and let (w1, 2z1), (w2, 22) be
the unique solutions of (20) with ¢ = gV, q® respectively. Then z1 > zs.

Proof This result is provided in the monograph of Cottle et al. (2009, Theorem 3.11.9).
Indeed, the fact that M has non-positive off-diagonal entries means that M is a Z-
matrix in the sense of Cottle et al. (2009, Definition 3.11.1). Further, M is a symmetric
positive definite matrix, thus M is a P-matrix in the sense of Cottle et al. (2009, Section
3.3). Thus M is a K-matrix in the sense of Cottle et al. (2009, Definition 3.11.1). Thus
Theorem 3.11.9 of Cottle et al. (2009) applies. [ |

Appendix B. Proof of Lemma 1
The DLN dynamics (3) form an autonomous ordinary differential equation (ODE)

a6

d
3 =Y, (T(6)); =0; | ri — ;Mijej : (21)

We first show that the set
d
Q=140>0|Vie{l,....d}ri—Y My;t>0
j=1

is positively invariant for this ODE, i.e., if 8(0) € @, then 0(t) € Q for all ¢ > 0. The proof
is based on Nagumo’s theorem, see the original result of Nagumo (1942) or the recent in-
troduction of Blanchini and Miani (2008, Section 4.2) for instance. Heuristically, Nagumo’s
theorem states that @ is positively invariant if the vector field ¥(@) points “in” the set @
if 8 is on the boundary of Q.
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More precisely, for € € @, denote
ACt(0)= ie{l,...,d} TZ'—ZMUQJ':O
J
the set of active constraints at 8 and
To(0) = ¢ v € RY| Vi€ Act(0),— > Myv; >0
J

the tangent cone to @) at 6 (Blanchini and Miani, 2008, Eq. (4.6)). Then Nagumo’s
theorem (Blanchini and Miani, 2008, Corollary 4.8) states that @ is positively invariant for
the dynamics (21) if for all 8 € Q, ¥(0) € Tp(0).

We now check that this latter condition is satisfied. Let 8 € @ and i € Act(0). We need
to show that — 3. M;; (¥(6)); > 0. We have

=D My (¥(6)); =~ > M0 (Tj - Mjk9k>
J J k
= —Mmez (7“7; — Z Mzk0k> — Z M,»jGj (Tj — Z M]k‘%c) .
k k

J#i

For the first term, we have i € Act(@) and thus r; — ), M;;0;, = 0. For the sum, we
have M;; < 0 (Assumption (A2)), 6; > 0 and r; — >, M0, > 0 (because § € Q). Thus
we indeed have — 3, M;; (¥(9)); > 0 and thus ¥(6) € Tp(6). We conclude that @ is
positively invariant.

As 1) (0) = (Cief1, ..., Cyebd) — 0 as e — 0 and r > 0, there exists g9 > 0 such that
Ve € (0,e0],0©(0) € Q. Thus Ve € (0,e0],Vt > 0,09 (t) € Q. Thus Ve € (0,e0],Vt >
0,vi e {1,...,d},

J
d

do;

EI@,‘ ri—;Mi]ﬂj ZO

Appendix C. Proof of Proposition 1

Consider the block matrix

(x| ) (x]0)-

From Assumptions (A1)-(A2), M is a matrix with non-positive off-diagonal entries. Thus
there exists u € R such that A = plgq — M is a matrix with non-negative entries.
Moreover, from Assumption (A1), for i € {1,...,d}, A; g11 = Ags1,; = r; > 0. This implies
that A is irreducible (see Cottle et al., 2009, Section 2.2 for a definition). By the Perron-
Frobenius theorem (Cottle et al., 2009, Theorem 2.2.21), the largest eigenvalue of A is
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simple and there exists an eigenvector v with positive entries associated to this eigenvalue.
As a consequence, the smallest eigenvalue A of M = ul;,; — A is simple and associated to
v.

We now have two cases:

o If the smallest eigenvalue A is positive, then M is positive definite and thus so is the
principal submatrix M.

o If A =0, then ker M = {a®,« € R}. We want to show that ker M = {0}. Consider
v € R% such that Mv = X" Xv = 0. This implies that Xv = 0. (This can be seen,
for instance, using a singular value decomposition of X.) Then we perform the block
computation

v Moy

v — —
Thus | — | € ker M = {av,a € R}. As v > 0, elements of ker M have all entries
0

non-zero or all entries equal to 0. Thus it must be that v = 0. This concludes that
ker M = {0} and thus that M is positive definite.

Appendix D. Proof of Proposition 2

Let I C {1,...,d}.

We first prove that (M H)_l exists. The matrix M ;; has non-positive off-diagonal
entries thus M; is a Z-matrix in the sense of Cottle et al. (2009, Definition 3.11.1).
Further, M ; is a symmetric positive definite matrix as a principal submatrix of a positive
definite matrix (Proposition 1). Thus M is a P-matrix in the sense of Cottle et al. (2009,
Section 3.3). Thus My is a K-matrix in the sense of Cottle et al. (2009, Definition 3.11.1).
From Theorem 3.11.10 of Cottle et al. (2009), (M ;)~! exists and has non-negative entries.

Thus, we can define o) ¢ rd by the equations (Bil))j = (M)~ tr; and (Bil))lc =0.

We check that (0&1))1 > 0. Fix i € I. Then 9&9 =il ((MH)_I)ij rj = 0 from
Assumption (A1) and the fact that (M;)~" has non-negative entries. Moreover, assume

(1)

by contradiction that 9*{2- = 0. As from Assumption (Al), 7 > 0, we have for all j € I,

((MH)*l)ij = 0. Thus a full row of (M ;)™ ! is 0, which contradicts the fact that (M ;)"
is invertible. Thus for all i € I, 61"} > 0.
We now check that 8 is a fixed point of (3). Fixi e {1,...,d}. If i € I,

d
ri— Miﬂi? =ri— > M (M)~ 'rr), = (rr = M (Myp)~'ry), = 0.
=1 jel
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(2

If i ¢ I, by definition, Gf) = 0. In both cases, Gi{i) <ri — Z?:1 M”Gi]])) = 0. As this is true

for all i € {1,...,d}, this proves that Bil) is a fixed point of (3).
We now take a fixed point 8 of (3) with support /, and show that @ = 9&1). It is sufficient
to show the equality on the support of the vectors, namely that 8 = (GS‘I))I = (Mj) vy

Consider 7 € I. As 0 is a fixed point, 6; (ri — 2?21 Mij9j> = 0. But as 7 € I, the first
factor is non-zero. Thus r; — Z;l:l M;i6; =r; — Zje[ M;;6; = 0. With vector notation, we
proved r; — M ;07 = 0, which gives the claimed equality.

Appendix E. Proof of Proposition 4

In this proof, we use convex duality (Boyd and Vandenberghe, 2004, Section 5.5). The
Lagrangian associated to (7) is

L(6,w) = (q,6) + %(0,M0> — (w,8)

where w € R? is the Lagrange multiplier associated to the constraint @ > 0. As the
optimization problem (7) is convex, the KKT conditions are necessary and sufficient for
optimality. The stationarity condition is

0=VeL(O,w)=q+ M6 —w,

the feasibility conditions are @ > 0 and w > 0, and the complementary slackness condition
is w'@ = 0. At this point, we have proven the equivalence between:

1. z is a minimizer of the constrained optimization problem

1
in. 60)+=(0, M6)\ .
06%17%20{@ ) 2< >}

2. There exists w € R? such that (w, z) is a solution of

w=q+ Mz,

w =0, z>0, w'z=0.

We are left with proving that the solutions of both problems are indeed unique. For the
LCP, this is given by Proposition 6 as M is positive definite (Proposition 1). We can then
use the equivalence shown above to prove that the constrained optimization problem (7)
has a unique solution.
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