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Abstract

Constructing states from sequences of observations is an important component of reinforce-
ment learning agents. One solution for state construction is to use recurrent neural net-
works. Back-propagation through time (BPTT), and real-time recurrent learning (RTRL)
are two popular gradient-based methods for recurrent learning. BPTT requires complete
trajectories of observations before it can compute the gradients and is unsuitable for online
updates. RTRL can do online updates but scales poorly to large networks. In this paper,
we propose two constraints that make RTRL scalable. We show that by either decom-
posing the network into independent modules or learning the network in stages, we can
make RTRL scale linearly with the number of parameters. Unlike prior scalable gradient
estimation algorithms, such as UORO and Truncated-BPTT, our algorithms do not add
noise or bias to the gradient estimate. Instead, they trade off the functional capacity of
the network for computationally efficient learning. We demonstrate the effectiveness of our
approach over Truncated-BPTT on a prediction benchmark inspired by animal learning
and by doing policy evaluation of pre-trained policies for Atari 2600 games.

Keywords: Scalable recurrent learning, online learning, real-time recurrent learning,
cascade correlation networks, agent-state construction, columnar networks, constructive
networks

1. Recurrent Networks for State Construction

Learning by interacting with the world is a powerful framework for building systems that
autonomously achieve goals in complex worlds. A key ingredient for building such systems is
agent-state construction—learning a compact representation of the history of interactions
that helps in predicting and controlling the future. One solution for state construction
is to use differentiable recurrent neural networks (RNNs) learned to minimize prediction
error (Kapturowski et al. 2018; Vinyals et al. 2019).
State construction using neural networks requires structural credit assignment—identifying

how to change network parameters to improve predictions. In RNNs, parameters influence
predictions made many steps in the future, and credit assignment involves tracking the in-
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fluence of the parameters on these future predictions. Two popular algorithms for gradient-
based structural credit assignment are back-propagation through time (BPTT) (Werbos,
1988; Robinson and Fallside, 1987) and real-time recurrent learning (RTRL) (Williams and
Zipser 1989).

We define real-time state construction as the ability of the agent to learn the agent-
state in real-time while interacting with the world. The agent does not postpone learning
to the future by storing data, nor does it have access to specialized hardware that is taken
away at the time of deployment. Instead, it has a fixed amount of computational resources
throughout its lifetime, and there is no distinction between learning and deployment.

Neither BPTT nor RTRL are suitable for real-time state construction. BPTT stores all
past network activations and does sequential operations proportional to the length of the
data stream for estimating the gradient. As a result, it neither scales well nor learns in real-
time. RTRL does not require more per-step computation for longer sequences. However, it
scales poorly to larger RNNs. Both BPTT and RTRL can be approximated for real-time
learning with large networks.

A promising direction to scale gradient-based learning is to approximate the gradient.
Elman (1990) proposed to ignore the influence of parameters on future predictions. The
resulting algorithm is computationally cheap but biased. Williams and Peng (1990) pro-
posed Truncated-BPTT (T-BPTT), an algorithm that tracks the influence of a parameter
on predictions made up to k steps in the future, where k is a hyperparameter called the
truncation length. T-BPTT works well on many benchmarks (Mikolov et al., 2009, 2010;
Sutskever, 2013 and Kapturowski et al., 2018), but cannot reliably learn associations be-
yond its truncation length (Mujika et al., 2018). Tallec et al. (2018) demonstrated T-BPTT
can even diverge when observations have negative long-term effects on a target and positive
short-term effects.

Hochreiter & Schmidhuber (1997) used a diagonal approximation to RTRL (Diagonal-
RTRL) that scales linearly with the number of parameters. Menick et al. (2021) generalized
the diagonal approximation with their algorithm called SnAp-k. Diagonal-RTRL and SnAp-
1 are not blind to all long-term dependencies, but introduce bias in the gradient estimate.
They assume that changing a recurrent feature will not change the values of other features,
an assumption that does not hold in densely connected recurrent networks. SnAp-k for k > 1
is less biased, but scales poorly. Tallec et al. (2017) proposed UORO, a computationally
efficient algorithm for getting unbiased samples of gradients. However, the resulting samples
are noisy and only effective for learning with small step-sizes. Menick et al. (2021) showed
that UORO performs poorly even on simple benchmarks.

Existing methods for scaling gradient-based recurrent learning approximate the gradient
but do not make assumptions about the function class of the recurrent network. In this
work, we propose a different strategy: we propose to limit the function class of the RNNs
such that we can estimate the gradient efficiently and without bias.

We first propose Columnar networks. They are composed of independent, potentially
deep, columns. Each column has a scalar recurrent state, and is independent of other
columns. As a result, the gradient of each recurrent feature is non-zero w.r.t parameters
of exactly one column. The RTRL update for Columnar networks is computationally ef-
ficient: linear instead of quadratic in the number of parameters. Columnar networks lack
hierarchical recurrent features—recurrent features composed of other recurrent features.
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Figure 1: Two families of recurrent networks for which gradients can be efficiently com-
puted without bias or noise. Recurrent networks with a columnar structure use
O(n) operations and memory per step for learning. However, they do not have
hierarchical recurrent features—recurrent features composed of other recurrent
features. Constructive networks introduce hierarchical recurrent features and
learn them in stages to keep learning computationally efficient.

To introduce hierarchy in features, we propose Constructive networks. Constructive
networks learn recurrent features in stages. In each stage, they freeze the existing recurrent
features and learn a single new recurrent feature. They can learn hierarchical recurring
features efficiently. However, they only update one feature at any given time, which can be
slow.

Finally, to overcome the limitations of Columnar and Constructive networks, we propose
Columnar-Constructive networks (CCNs). CCNs learn the network in stages, similar to
Constructive networks. However, instead of learning one feature at a time, they learn
multiple independent columns of features in a single stage, similar to Columnar networks.
CCNs overcome the primary limitations of both Columnar and Constructive networks.

We compare CCNs to RNNs trained using T-BPTT and find that CCNs are more
computationally efficient. As we increase the truncation length of T-BPTT, its performance
improves; however, it also uses more computation and memory. We find that for the
same per-step computation budget, CCNs perform better than T-BPTT, especially when
relatively small agents have to interface with large and complex environments.

We evaluate our algorithms on two partially observable benchmarks to estimate values
(prediction). First, we use an existing animal-learning benchmark (Rafiee et al. 2022), which
has low-dimensional inputs and a focus on the need for memory—the only way to make
accurate predictions is to remember information from many steps in the past. Second, to
test the algorithms in more complex image-based environments, we make a new benchmark
based on ALE (Arcade Learning Environment) (Bellemare et al. 2013). We use policies
of pre-trained Rainbow-DQN agents (Hessel et al. 2018 and Fujita et al. 2021). Removing
frame-stacking (Mnih et al. 2015), and frame-skipping in ALE makes the environments
partially observable. We down-scale the observations to make partial observability even
more pronounced. Our prediction benchmark based on ALE is available here.
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2. Problem Formulation

We formulate the goal of a learner as predicting the discounted sum of a cumulant from an
online stream of experience. The agent observes x; € R™ at time ¢ and predicts a scalar y;.
The goal of the agent is to minimize the sum of squared error between the prediction and
the discounted sum of future values of a cumulant ¢, where c is a fixed index of x, i.e., the
agent aims to minimize:

T 00
1 i
LT—kT)=p > = > 7 e 1)
t=T—k j=t+1

where k, and T control the horizon over which the prediction error is accumulated. Note
that the error is measured w.r.t the predictions made over time and not using a final set of
weights.

Our problem formulation can capture various online temporal-prediction and supervised-
learning problems. For example, setting the cumulant to the reward turns our problem into
policy evaluation (Sutton & Barto 2018). Setting v = 0, the problem can represent online
supervised recurrent learning benchmarks. The parameter k£ allows us to smoothly move
between the lifetime and final performance of the agent; by setting k to a small value, we
can measure the performance of the learner at the end of learning; similarly, by setting k
to T', we can measure the lifetime performance of the learner.

Traditionally, learning performance is evaluated on a held-out test set. While the train
and test distinction is important in offline learning, when the learner has access to the
complete data set, it is unnecessary when it sees the data online and is always evaluated on
the next unseen data point before using it for learning.

2.1 Learning with Resource Constraints

We focus on the under-parameterized setting where the environments are more complex
than the learners. The learners have a fixed per-step compute and memory budget, that
they can allocate however they choose. For instance, a learner can pick an expensive
learning algorithm, such as RTRL, and satisfy the compute constraint by using a smaller
recurrent network. Alternatively, it can choose a larger recurrent network, and learn the
network using a computationally efficient learning algorithm, such as T-BPTT with a small
truncation length.

The focus on the under-parameterized setting, online learning, and real-time learning
emphasizes the need of computationally efficient learning algorithms that can be applied
continually. Moreover, since the real-world is significantly more complex compared to even
the largest recurrent networks, the under-parameterized setting is arguably a better proxy
for real-world problems.

2.2 Learning with Recurrent Architectures

In our temporal prediction setting, it is natural to assume that the learner will not fully
observe the state of the environment. Instead, it might need information from its history of
observations for making accurate predictions. Throughout this work, we assume that the
learner attempts to summarize its history using recurrent neural networks (RNNs).
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The dynamics of an RNN can be written as

h; = f (ht—hxtv 0) ) (2)

where h;y € R? is the state of the network, x; is the observation, # are the learnable
parameters, and f is the dynamics function of the network. The recurrent state h; is
linearly weighted with weights w; € R? to make a prediction y; as:

d—1
Yt = Z ht,kwt,k (3)
k=0

where h; j, and wy ;, are the kth element of vectors h; and wy, respectively.
To update the parameters 0; at time ¢, we need the gradient of the prediction with
respect to 6. Using the chain rule, we can write the gradient as

Oyy Oy Ohy
9 _ Oy: Ohy 4
00 oh; 00 (4)

The key question is how to compute % We can obtain a recursive formula for this

expression, which is used by RTRL and by the algorithms we introduce in this work. To
make it clear how we can use the multivariable chain rule, let us explicitly write hy(6) =
f(he—1(0),%¢,8:(0)) where g;(f) = 6. Then the multivariable chain rule gives us

Oh; _Oh gy = Ohy Jhy (5)
00 N 8gt 00 8ht,1 00 ’

where the first term in the sum is the gradient of the state of the network under the
assumption that h; ;1 is not a function of #, and the second term captures the indirect
impact of 6 on Oh; due to its impact on 0h;_1.

This recursive relationship is exploited by two algorithms: BPTT and RTRL. BPTT
stores the network activations and inputs from prior steps and expands equation 4 as:

Oyr _ Oy Oy

96 ~ oh; 06

Oy _ Oy Oy Ogi | Oyr _Ohy Ohyy (©)
96 ~ oh, 0g; 06 ' Oh, o, 06

Oy, Oh, 0gy Oy, Ohy Ohy_10g, 1 Oy Ohy Ohy_q Ohy_o

= Oh, 0g, 90 ' Oh, oy, 0g,_, 00  Oh; Oy dhy 5 06

to compute the gradient. It unrolls the formula back in time, computing and accumulating
gradient until the start of the recursion at ¢ = 0. RTRL, on the other hand, updates the
Jacobian % using equation 5 at every step. To get the gradient w.r.t the prediction, it
uses equation 4.

Both algorithms compute the same gradient, but make different compromises in terms
of computation and memory. RTRL does not require storing past activations and inputs,
as it can update the Jacobian using only the most recent input. However, computing the
Jacobian using equation 5 requires O(|h|?|d|) operations and O(|h||#|) memory. The size

of the parameters |f| in a fully connected RNN is |h|?. RTRL is therefore often said to
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Figure 2: Columnar-Constructive networks (CCNs) combine the ideas from Columnar and
Constructive networks. In each stage, the they learn multiple features that are
independent of each other, just like Columnar networks. Across stages, they learn
hierarchical features, similar to the Constructive networks.

have quartic complexity in the size of the hidden state. BPTT requires O(]0|t) memory
and compute, where t is the length of the sequence. It avoids the bigger memory cost by

computing the product %%% directly, rather than separately computing the Jacobian

and then multiplying by g For sequences shorter than |h|?, BPTT is cheaper than RTRL
for fully connected RNNs.

3. Columnar-Constructive Networks

In this section we develop a new approach for recurrent learning, called Columnar-Constructive
networks (CCNs). CCNs leverage two key ideas: First, RTRL is computationally efficient
for modular recurrent networks where each module has a scalar hidden state; we call these
networks Columnar networks. Second, RTRL is computationally efficient if the recurrent
units are learned in stages, as opposed to simultaneously. We call the incremental learning
approach Constructive networks. Figure 1 visualizes the central ideas behind Columnar
and Constructive networks

Both Columnar and Constructive networks, on their own, show promising results but
have limitations. Columnar networks cannot learn hierarchical features, and Constructive
networks cannot learn multiple features in parallel. We show that their weaknesses can
be overcome by combining the two ideas to create a third system that we call Columnar-
Constructive networks (CCNs).
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3.1 Columnar Networks

Columnar networks organize the recurrent network such that each scalar recurrent feature
is independent of other recurrent features. Let h;j be the kth index of the state vector hy.
Then, in columnar networks,

ht,k = fk(ht—l,k,xta et,k)- (7)

Each f, outputs a scalar recurrent feature and is called a column.! O is the set of
parameters of the kth column. For any i # j, the set 6;; and 6; ; are disjoint. A columnar
network consists of d columns. The output of all columns are concatenated to get the d-
dimensional hidden-state vector hy. Figure 1 (left) shows a graphical representation of a
Columnar network. Note that changing h; has no influence on the value of hy or hs.
Because recurrent features in a columnar network are independent of each other, we can

apply RTRL to each of them individually. To better understand why, let us rederive our
recursive formula for the gradient. For 6, the parameters for the kth column, we have

Oy Oy by _ Edj ye Oy _ Oy Ol

00, Ohy 00y — Ohy j 00 Ohy i, 00y

All except one term in the summation above are zero because 6 does not influence hy ;

when j # k. Therefore, we only have to compute %hg: with RTRL. Like before, we can

write this recursively using hy ,(0x) = f (he—1£(0k), X¢, 8:(0r)) where g¢(0)) = 0, giving

3ht,k . 8ht,k@+ 8ht,k 8ht71,k

69k N 8gt %k 8ht_17k 89k (8)

Computing and storing this Jacobian only costs O(|6;x|) memory and compute for each
column because |h: ;| = 1 for a single column. The cost for all the columns is

O(16z11) + O(|0c.2]) + - - - + O(|6e.n]) = O([64])- 9)

Therefore, RTRL for Columnar Networks scales linearly in the size of the parameters. In
this work, we implement each column as a single LSTM cell with a hidden size of one. We
provide the explicit gradients in Appendix B.

3.2 Constructive Networks

In Constructive networks, we learn the recurrent network one feature at a time. Features
learned later can take as input all features learned before them; the opposite is not allowed—
feature learned earlier cannot take as input features that would be learned later. We eluci-
date the multi-stage learning process in a small Constructive network in Figure 1 (right).
Dotted lines represent parameters that are being updated at every step, whereas solid lines
represent parameters that are fixed.

In the first stage, the learner learns the incoming weights of hi, which is connected to
the input features z, but not to he or hs. Note that we are omitting the time index for

1. This terminology comes from the connection to structure observed in brains (Mountcastle 1957).
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brevity, and hy is the same as h; 1. Once the incoming and the recurrent weights of hy are
learned, the learner freezes them and goes to stage 2. In stage 2, it learns the incoming
weights of hs. ho can use both x and hy as the inputs. The outgoing weight of hj—wi—is
not fixed and continues to be updated. Similarly, in the 3rd stage, both hy and hy are frozen
and fed to hg as input. In each stage, the newly introduced feature can be connected to all
prior features.

In this staged learning approach, the learner never learns more than one feature at a
time. As a result, the effective size of the hidden state of the learning system is just one,
and RTRL can be applied cheaply. In fact, since only a small subset of the network is being
learned at any given time, Constructive networks use even less per-step computation than
Columnar networks. They introduce one additional hyperparameter—steps-per-stage—that
controls the number of steps after which the learner moves from one stage to the next.

Constructive networks are similar to prior work on recurrent cascade correlation net-
works (Fahlman, 1990). The main differences are that (1) cascade correlation networks
learn new recurrent units by maximizing correlation with the error whereas Constructive
networks use the gradient w.r.t the prediction error and (2) cascade correlation networks
learn on a batch of data, whereas Constructive networks learns from an online stream of
data. The two differences are arguably minor. Rather, the bigger novelty is to combine
Constructive networks with Columnar networks, as discussed in the next section.

3.3 Columnar-Constructive Networks

Columnar-Constructive networks (CCNs), as the name suggests, are a combination of
Columnar and Constructive networks. In CCNs, we keep the multi-stage approach of the
Constructive networks; however, instead of learning a single feature in every stage, the
learner learns multiple independent features.

A two-stage CCN is shown in Figure 2. In stage one, the learner learns the incoming
weights of h; and ho. Since hy and hy are independent of each other, they are equivalent
to a Columnar network with two features, and can be learned efficiently together. In the
second stage, the learner freezes the incoming and recurrent weights of hy and ho, and learns
the incoming weights of h3 and hy4; the new features take both h; and ho as inputs. Once
again, hs and h4 are independent of each other and can be learned efficiently in parallel.

CCNs inherit the hyperparameters from Columnar and Constructive networks. Addi-
tionally, they have one new hyperparameter—features-per-stage—that controls the number
of recurrent features learned in each stage

3.4 Feature Normalization

A key to making our system work is online feature normalization. Unlike dense recurrent
networks, features in our constructive and CCN networks can have varying number of in-
coming weights. This discrepancy can change the scale of each feature, making it hard to
learn using a uniform step-size. To address the varying scales, we propose online feature
normalization. Our feature normalization is similar to an online version of batch normal-
ization (Ioffe and Szegedy 2015). Prior work has shown feature normalization to be helpful
for recurrent networks in the batch setting (Cooijmans et al. 2017).
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To normalize a feature, we maintain an online running estimate of its mean and variance.
We then use the running estimates to normalize the feature to have zero mean and unit
variance. Additionally, if the variance of a feature goes below a threshold, we set it to
a small number e—a hyperparameter—to prevent the normalized feature from getting too
large. Capping the maximum value of the feature is important to prevent unstable behavior.
Given the unnormalized feature h;, the normalized feature izj is computed as:

R B s — 1y
hej = Mg T My (10)

max(e, oy ;)
where ptj = pr—138 + (1 — B)h
0'1527] = J?—l,jﬁ + (1 - ﬁ)(,ut,] - htyj)(iutflzj - ht’j)'

We set 8 = 0.99999 for all our experiments. o, and 0371- are initialized to be 0 and 1
respectively. € is tuned; the values used in this work are shown in Table 1 in Appendix A.1.

4. Experiments on an Animal Learning Benchmark

We start by evaluating the methods on a recently proposed benchmark inspired by animal
learning (Rafiee et al., 2022). The trace patterning task (Rafiee et al., 2022) is an online pre-
diction task that requires the learner to identify associations between vectors—conditional
stimuli (CS)—and scalars—unconditional stimuli (US)—seen after a time delay. The goal is
to predict the discounted sum of the US. Correct predictions require the ability to discrimi-
nate between patterns that lead to US from those that do not. The time delay between the
CS and US necessitates retaining information from the past for making accurate predictions.

In our instantiation of trace patterning, the delay between the CS and US is uniformly
randomly sampled to be between 24 and 36 steps after every CS, and is called the inter-
stimulus interval (ISI). The delay between the US and next CS is uniformly randomly
sampled to be between 80 and 120 steps after every US, and is called the inter-trial interval
(ITT). The CS consists of 6 features. When CS is present, three of the six features in the CS
vector are one. Since (g) is twenty, the CS vector can represent twenty different patterns.
Ten randomly chosen patterns are followed by US=1 after ISI ~ Ugy 36 steps, whereas
the remaining ten do not activate the US. Additionally, the observation has five random
features that are not predictive of the US. The learner has to ignore the random features
to make accurate predictions.

A visual representation of experience from the trace patterning benchmark without
random features with an ISI of 3 and ITI of 7 is shown in Figure 3. The vertical dimension
shows the observations, and the horizontal represents time. At the fourth time-step, three of
the six features are one. After three more steps, the US becomes active. Then no features
are active for ITI number of steps. After I'TI steps, the CS again becomes active. The
second pattern of the CS is not followed by US. At the bottom of Figure 3, we show the
ground truth return that the learner has to predict to minimize the prediction error.

4.1 Experimental Setup

We compare CCNs to T-BPTT, Columnar networks and Constructive networks. All net-
works use the LSTM cell architecture (Hochreiter & Schmidhuber 1997) for recurrence.
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Figure 3: Visualization of the stream of experience for the trace patterning task. At each
step, the learner sees a vector of length seven. The first six values are the CS, and
the last is the US. CS is either a vector of zeros, or three of the six values are one.
The CS can represent 20 different patterns. Ten of these patterns activate the US
after ISI number of steps, whereas others do not. The learner has to predict the
discounted sum of the value of US in the future. The bottom part of the figure
shows the ground-truth prediction for the task.

For T-BPTT, we use a fully connected LSTM network. T-BPTT introduces another
hyperparameter—the truncation length k. To keep the per-step computation constant,
learners using a larger truncation lengths have fewer features.

We use TD(A) (Sutton 1984, 1988; Tesauro 1995) for learning. The full algorithm is in
Appendix A.2. We set the per-step compute budget to =~ 4,000 floating point operations
and treat multiplication, addition, division, and subtraction as one operation each. We use
A =0.99, and v = 0.90 and report the learning curves for 10 million steps. At each point in
the curve, we plot the error over the previous 100,000 data-points—we plot £(¢— 100, 000, t)
as a function of t.

For each method, we individually tune the step-size, €, steps-per-stage, features-per-
stage, and the truncation length; we report the results for the best performing configuration.
Details of hyperparameter tuning are in Appendix A.1. The Columnar networks, Construc-
tive networks, and CCNs have 10, 5, and 16 features respectively. The number of features
in Constructive networks is dictated by the rate at which features are added. Because we
only learn for 10 million steps, and use 1 million steps-per-stage, Constructive networks end
up using significantly less compute than the allocated compute budget. T-BPTT uses a
truncation length of 15, and has four features.

10
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Figure 4: Performance of our algorithms, and the best performing T-BPTT on the trace
patterning task. All methods can learn to make accurate predictions. Both
Columnar and Constructive networks learn well, exceeding and matching the
performance of best T-BPTT, respectively. CCNs combine the strengths of both
and performs the best. All plots are averaged over 100 seeds, and the shaded
areas are +- standard error.

4.2 Results

We start by looking at the learning curves for all four methods in Figure 4. All three
approaches learn to reduce the prediction error over time. Among our algorithms, Con-
structive networks perform the worst, demonstrating that learning one feature at a time
is limiting. Both CCNs and Columnar networks reliably converge to a good solution and
outperform the best T-BPTT. CCNs perform the best, demonstrating the usefulness of
hierarchical features.

We further investigate the sensitivity of T-BPTT to the value of truncation length.
We first consider the impact of reallocating resources, allowing T-BPTT to have bigger
networks with shorter truncation lengths and vice-versa. We see from Figure 5 that when the
truncation length is much smaller than the longest dependency in the learning problem—
36—the performance drops significantly. T-BPTT performs the best when it selects a
smaller network (four features) and longer truncation (k = 15).

We conduct another experiment where we allow T-BPTT to use more computation
than the allocated budget. We fix the number of features to 10 and use different truncation
lengths. We report the results in Figure 6. Networks with the largest truncation length—
red line—perform almost as well as CCNs. However, they use around seven times more
per-step computation than CCNss.

11
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Figure 5: Different versions of T-BPTT on the trace patterning task. FEach curve is denoted
by two numbers: a:b. The first number indicates the truncation length of T-
BPTT, and the second number indicates the number of features in the learner.
For example, 30:2 means an LSTM with two features trained with a truncation
length of 30. All versions use roughly the same amount of computation. We see
that different values of truncation result in very different performances. Large
networks trained with small truncation lengths—3:10 and 5:8—perform the worst
showing the impact of the bias introduced by truncation. Smaller networks with
longer truncation lengths—15:4, 30:2, and 20:3—perform better. All lines are
averaged over 100 random seeds. The gray dotted line shows the performance of
CCNs after learning for 10 million steps.

5. Experiments in the Arcade Learning Environment

To evaluate our algorithms on more complex problems, we introduce a benchmark based
on the Arcade Learning Environment (Bellemare 2013). Since our goal is to study state
construction in the prediction setting, we use policy evaluation for pre-trained Atari policies,
as opposed to reward maximization, as our benchmark.

We use the model zoo of Chainer-RL (Fujita et al. 2021) to get pre-trained Rainbow-
DQN (Hessel et al. 2018) agents. For each game, we use the pre-trained agents to collect
50 million interactions. The policies use action-repeat (Machado et al., 2018) and frame-
skipping. Additionally, at the beginning of each episode, we take i ~ U[; 39 no-op actions
to make the trajectories stochastic. We clip the rewards to be in the range (—1,+1).

Typically, Atari agents employ frame-stacking and frame-skipping to reduce partial
observability. Since our goal is to study how well algorithms construct agent-states au-
tonomously, we do not employ frame-stacking and frame-skipping. Additionally, we down-
scale the frames to 16 x 16—256 features—to make the partial observability even more
pronounced. We visualize the downscaled observations of four games in Figure 7 and see

12
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Figure 6: LSTMs with 10 hidden units trained using truncation lengths of 1, 2, 5, 8, 10, and
15. For each truncation length, we independently tune the step-size parameter.
As the truncation length increases, the performance improves at the expense of
more computation. The sensitivity of performance to truncation length highlights
the impact of bias introduced by truncation. All lines are averaged over 100
random seeds and the shaded regions correspond to +- standard error. The gray
dotted line shows the performance of CCNs after learning for 10 million steps.

that single frames do not have sufficient information for making accurate predictions. Fi-
nally, we append the action and the previous reward to the game frame.

The final observation vector given to our learners has 275 features—256 values for the
down-scaled frame, 18 for the one-hot encoded action, and one for the reward.

5.1 Experimental Setup

We compare our methods to T-BPTT. All methods use LSTMs as the recurrent architecture
and TD()) for learning.

Each method has a per-step compute budget of ~ 50k operations. We set v to 0.98
and A to 0.99. The remaining parameters—e, steps-per-stage, truncation length, and step-
size—are tuned independently for each method. The details of the hyperparameter tuning
are in Table A.1. We pick hyperparameters that give the best results averaged over all the
environments.

For each environment, we learn for 30 million steps and measure the average return error
for the final 500k steps i.e., £(29,500,000, 30,000,000). Since different games have vastly
different scales of returns, we normalize the errors before plotting them. For each game, we
divide the error of all methods by the error achieved by T-BPTT in that game. As a result,
the normalized error for the T-BPTT baseline is one in all games, whereas the performance

13
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Freeway Breakout

Figure 7: Environments down-scaled to 16 x 16. A single frame does not have sufficient
information for making accurate predictions. For instance, in Pong, the ball
is often not visible in a single frame. However, by looking at the sequence of
frames, we can estimate the position and the direction of the ball. This partial
observability due to down-scaling makes 16 x 16 Atari an interesting benchmark
for studying state construction.
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Figure 8: The performance of CCNs compared to the best T-BPTT on the Atari prediction
benchmark. In most games, CCNs achieve lower prediction error than T-BPTT.
In many games, CCNs reduce the prediction error by many folds. There are no
games in which T-BPTT outperform CCNs by a large margin. All errors are
averaged over 20 random seeds, and the error margins are +- standard error.

of other methods is relative to that achieved by T-BPTT. For instance, a relative error of
0.5 for a method means that its error was half of T-BPTT.

5.2 Results

We report the normalized error across all environments for CCNs and T-BPTT in Figure 8.
CCNs perform better than T-BPTT in most environments. In many environments, they
achieve over 5x lower error, whereas even in the worst case of Breakout, the error is only

20% more than T-BPTT.
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Figure 9: The averaged relative error achieved by the three proposed methods on the Atari
prediction benchmark. Both Constructive and Columnar networks perform better
than T-BPTT. CCNs perform the best, demonstrating they effectively combine
the strengths of Columnar and Constructive networks. All results are averaged
over 20 seeds and the error bars represent +- standard error.

We also look at errors achieved by Constructive and Columnar networks and report them
in Figure 9. For brevity, we only report the average normalized error over all environments.
All three of our methods improve over T-BPTT. CCNs perform the best, demonstrating
that combining Columnar and Constructive networks is useful.

We visualize the predictions made by CCNs and T-BPTT at the end of learning in
Figure 10 on six environments. We pick three environments that favor CCN and three
that favor T-BPTT. Both methods can learn to make accurate predictions. Predictions
made by CCNs are closer, on average, to the ground truth returns than the predictions
made by T-BPTT. The difference is most pronounced in Pong, and Freeway, where CCNs
make near-perfect predictions. In BeamRider, both methods are unable to learn accurate
predictions. One reason could be that the downsampled 16 x 16 frame does not have suffi-
cient information for predicting the returns. Nonetheless, the Atari prediction benchmark
provides significant evidence that CCNs outperform T-BPTT.

5.3 Sensitivity of T-BPTT to Truncation Length

To give a complete picture of the performance of T-BPTT, we investigate the impact of the
number of features and truncation length on its performance in two experiments.

In the first experiment, we fix the truncation length to 8 and vary the number of features
from 2 to 15. In the second experiment, we fix the number of features to 8 and vary the
truncation length from 2 to 15. We report both results in Figure 11. We see that increasing
both the number of features and the truncation length improves the performance of T-
BPTT.
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Figure 10: Predictions made by T-BPTT and CCNs on six Atari environments after learn-
ing for 30 million steps. The red lines are predictions made by CCN, the green
lines are those made by T-BPTT, and the dotted grey lines are the ground truth
returns. CCNs make qualitatively better predictions on most environments. The
difference is most pronounced in Pong, and Freeway, in which CCNs make near-
perfect predictions. T-BPTT achieves slightly lower error on CrazyClimber and
Krull. Both algorithms struggle to make accurate predictions on BeamRider.

6. Conclusions and Future Directions

In this paper, we showed that by either restricting connections between recurrent neurons—
Columnar networks—or learning a recurrent network in stages—Constructive networks—we
can make RTRL computationally efficient. Moreover, unlike T-BPTT, our algorithms do
not depend on sequential operations and can be parallelized. In the under-parameterized
setting, our methods outperform T-BPTT. Moreover, they can learn networks with billions
of parameters using roughly the same amount of resources needed for the deployment of
similarly sized models. Because the learning algorithms are computationally efficient, there
would be no need to disable learning at the time of deployment, and our systems could
learn continually.

One major limitation of our approach is that in both Constructive Networks and CCNs,
most of the features are frozen as time goes by. There are two routes to address this
limitation. First, we can change the frozen features very slowly. The gradient should
remain mostly accurate since these slowly changing features are effectively frozen from the
timescale of the fast-changing features. Second, we can combine our approach with online
weight and feature pruning. Instead of only adding features to grow the size of the network,
we can instead continually replace the least useful features with new features, and learn
them, as proposed by Dohare et al. (2023).
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Figure 11: Impact of capacity and truncation length on the performance of T-BPTT on
the Atari prediction benchmark. To generate the graph on the left, we fix the
truncation length to 8, and vary the number of features. As the network gets
larger, the performance improves. The error of an LSTM using two features is
twice as much as an LSTM using 15 features. To generate the graph on right,
we fix the number of features to 8, and vary the truncation length of T-BPTT.
We see that bias introduced by smaller truncation length hurts performance.
The errors in both plots are normalized such that the average error is one when
number of features/truncation length is 15.

Another open question in this work is to investigate if the restrictions introduced by
CCNs make RNNs less general. A theoretical understanding of the subclass of functions
learnable by CCNs would help identify when, or even if, these networks might be insufficient
for a given problem. Prior work (Giles et al. 1995 and Kremer 1995) has analyzed the limita-
tions of Recurrent Cascade-Correlation (RCC) networks, which are similar to Constructive
networks. Kremer (1995) showed that RCC cannot learn certain Finite State Automata
with linear threshold and sigmoid activations. It is not yet clear if CCNs suffer from similar
problems; the argument used by Kremer (1995) might not extend to the complex LSTM
architecture used in our networks. Alternatively, the ability to learn multiple features in
parallel might allow CCNs to not have the same limitations as RCC networks.
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Appendix A. Hyperparameters and Ablations

We provide details of the hyperparameters, and some ablatations in the following sections.
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A.1 Hyperparameter Settings

We tune the solution-specific hyperparameters for all the methods independently. For each
configurations, we use five random seeds and look at the performance over all five seeds to
pick the best hyperparameters. We then run the best hyperparameter configuration for 100
seeds for reporting the trace patterning results and 20 seeds for reporting the Atari results.
List of all the hyperparameter, and their values are given in Table 1.

Symbol Hyperparameter Environment Hyperparameter values
« Step-size All 172,373,173,
374,174,379
[£1:P2:¢  Adam parameters All 0:0.9999:1e~8
0% Discount factor Trace 0.90
y Discount factor Atari 0.98
A Eligibility trace decay rate Both 0.99
k:d Truncation:Hidden features (T-BPTT) Trace 2:13, 3:10, 5:8, 8:5,
10:5, 15:4, 20:3, 30:2
k:d Truncation:Hidden features (T-BPTT) Atari 15:2, 8:5, 5:7,
4:10, 2:25
Hidden features (Columnar) Trace 5
Hidden features (Columnar) Atari 6
Features-per-stage (CCN) Trace 4
Features-per-stage (CCN) Atari 5
Steps-per-stage (CCN) Trace 2.5 million
Steps-per-stage (CCN) Atari 10 million
Steps-per-stage (Constructive) Trace 1 million
Steps-per-stage (Constructive) Atari 3 million
Total steps Trace 10 million
Total steps Atari 30 million
Seeds for parameter sweep Both {0,1,2,3,4}
Seeds for best parameter configuration Trace {0,1,---,99}
Seeds for best parameter configuration Atari {0,1,---,19}
€ Min division term (CCNs and Constructive) Both {0.01,0.001}

Table 1: Hyperparameter sweeps used for comparing algorithms

A.2 TD Learning for Temporal Predictions
We use TD()) for learning predictions as described in Algorithm A.2. Every observation is

processed once, and the target from the previous step is cached for computing the TD-error.
Our implementation is similar to the one used in TD-Gammon (Tesauro 1995).
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Algorithm 1 TD(\) for online prediction
Require: A differentiable learner vy
Require: Step-size parameters «
Require: Discount factor

Initialize x as first observation

Initialize eligibility z to O

y = vp(x)

while true do

Observe next x and the cumulant ¢

y = vp(x)
S=c+yy —y
z = Mz + Vug(x)
0 =0+ adz
y=y

end while

A.3 Impact of Normalization on The Performance of CCNs

We run ablations without the online feature normalization and find that feature normal-
ization is indeed an essential component to make our networks work in a stable way. We
compare the best performing CCNs with CCNs without normalization in Figure 12 and see
that normalization improves performance. The normalized CCNs have both lower average
error and variance.

We do a similar experiment on the Atari prediction benchmark and report the perfor-
mance of CCNs without normalization relative to CCNs in Figure 13 for ten million learning
steps. We use CCNs with 4 features-per-stage, and 2.5 million steps-per-stage. We find that
feature normalization improves the performance significantly on almost all games.

A.4 Impact of Hyperparameters on The Performance of CCNs

We study the impact of the two important hyperparameters—steps-per-stage and features-
per-stage—by conducting two experiments. In the first experiment, we fix the steps-per-
stage to 2.5 million and vary the number of features from 1 to 6. We report the results in
Figure 14 (left). We use the same value of step-size—0.0001—for all curves. The results
show that CCNs scale with more computation, and increasing the number of features-per-
stage improves the performance monotonically.

In the second experiment, we fix the features-per-stage to 2 and vary the steps-per-stage
and report the results in Figure 14 (right). The impact of steps-per-stage on performance
is complex. A small steps-per-stage improves early learning, as the learner is adding more
features quickly. However, if the value of steps-per-stage is too small—0.5 million in our
experiment—the asymptotic performance is poor. Our guess is that freezing a feature too
early is detrimental to the quality of the feature. An interesting future direction would be
to automate when a feature is to be frozen. This could be done by waiting for a feature to
converge before freezing it.
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Figure 12: Impact of feature normalization on performance. The performance of CCNs is
significantly worse when feature normalization is not used.
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Figure 13: The impact of feature normalization on the performance of CCNs on the Atari
prediction benchmark. We run both methods for 10 million steps and tune their
hyper-parameters independently. The results exclude some games on which
CCNs without normalization diverged. Feature normalization significantly im-
proves the perfomance. All results are averaged over 15 runs and the error bars
are +- standard error.

A.5 Implementation Details

We implement all methods in C++. For columnar, constructive, and CCN approaches, we
use the update equations derived in Appendix B. We verify the correctness of the gradients
computed by our derived equations, and our implementation of T-BPTT by comparing
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Figure 14: The impact of features-per-stage and steps-per-stage on the performance of
CCNs.

them to the gradients computed by PyTorch for networks initialized to have the same
parameters. The gradients given by our implementation and those by PyTorch match
exactly. Our C++ implementation avoids the overhead of Python and PyTorch, and is
around 50x faster for small recurrent networks as compared to PyTorch. Having a fast
and efficient implementation was crucial for performing large hyperparameter sweeps and
reporting statistically significant results by averaging over multiple seeds.

A.6 Compute Infrastructure used for Experiments

We run all experiments on large CPU clusters. A single run of the trace patterning task for
10 million steps takes around 1 minutes on a single CPU, whereas a single run on Atari for
30 million steps takes around 2 hours. Both experiments take less than 2 GB of ram per
run. We used 1,000 CPUs spread across the Cedar, Narval, and Beluga clusters provided
by The Digital Research Alliance of Canada for running the experiments.

A.7 Equations for Estimating Compute Used by Each Method

Every method uses roughly the same amount of computation per-step. We estimate the
amount of compute used by each method by looking at its architecture and the learning al-
gorithm. These estimates are not exact, and there may be some minor differences depending
on how these methods are implemented in practice. However, the principle largely remains
the same. And we have verified from our empirical observations that these estimates are
close to what we observe.

Let |h| be the number of hidden features, |z| be the number of input features, k be the
truncation length, and u be the features-per-stage parameter. Then the total amount of
computation used by an LSTM cell for a single forward pass can be estimated using the
following equation:

4|h| + 4|z + 4

where the number four is due to the four gates used by an LSTM cell. In T-BPTT, we used
a fully connected LSTM so the total number of features would be |h|. Forward pass of a
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fully connected LSTM would use:
|h|(4|h| + 4]z| + 4) = 4|h|* + 4|h||z| + 4|h|

operations. Finally, T-BPTT requires k times more computation for computing the gradi-
ent, bringing the total cost to:

4|h|? + 4|h||z| + 4|h| + k(4|h|* + 4|h||z| + 4|h])
—(k + 1) (1A + 4|hl|z| + 4/h])
For columnar, constructive and CCN, first we see from Appendix B that recursively com-
puting the gradient is roughly six times more expensive than the forward pass of the LSTM,
which, according to our empirical observations, is an overestimation. The number six comes
from the observation that TC and TW are used in six operations for each parameter when
estimating gradients. All computations other than those involving TC and TW can be

cached and reused. Total compute used by a single columnar cell for the forward pass,
therefore, is:

4+ 4|z +4
since hidden state = 1 for a single column. Compute used by |h| cells is:
7] (4]z] + 8).
Adding compute used by the learning algorithm, we get:
1| (4]z| + 8) + 6[R|(4]z| +8)

In the CCN approach, on average, an LSTM cell takes as input L}gl hidden states. As a
result, the compute used for a single forward pass by a single recurrent feature is given by:

h
4|2’ + 4|z| + 4,
and for |h| features it is:

|R|(2|h] + 4|x| + 4).

Since we learn u features at a time, the total estimated compute per step for CCN networks
is given by:

|h|(2]h| + 4|x| +4) + 6u(2|h| + 4|x| + 4).
For constructive networks, we can substitute u = 1 in the equation above.
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Appendix B. Forward-mode Gradient Computation for an LSTM Cell

Here we derive the update equations for recursively computing the gradients of a single
LSTM based recurrent column. Each column has a single hidden unit. Because all columns
are identical, the same update equations can be used for learning in columnar, constructive,
and the CCN approach. We compared the gradients estimated using the derived equa-
tions with the gradient computed using BPTT in PyTorch without truncation on random
trajectories, and found them to match exactly.

The state of an LSTM column is updated using following equations:

i(t) = (WL zp(t) +uh(t — 1) + b;) (11)
f(t) = oW/ ap(t) + ush(t — 1) + by) (12)
o(t) = c(WZxxy(t) + uoh(t — 1) + b,) (13)
9(t) = d(Wy wi(t) + ugh(t — 1) + b,) (14)
c(t) = f(t)e(t — 1) +i(t)g(t) (15)
h(t) = o(t)¢(c(t)) (16)

where o and ¢ are the sigmoid and tanh activation functions, h(t) is the state of the column
at time t and Wl xy(t) = Y 1 Wi, xx(t). The derivative of o(z) and ¢(x) w.r.t to x are
o(x)(1 —o(z)) and (1 — ¢?(x)) respectively.

Let the length of input vector x be m. Then, W;, W; W, and W, are vectors of
length m whereas u;, bj,uyz,bs, uo, b, ug and by are scalars. We want to compute gra-
dient of h(t) with respect to all the parameters. We derive the update equations for

Oh(t) Oh(t) dh(t) Oh(t) OR(t) Oh(t) dh(t) Oh(t) dh(t) Oh(t) Oh() 6h(t) .
AW, > Bu; » Ob; » W, Bus > Oby 1 OW, dug * Oby » OW, iy , and b, 1D the following sec-
tions.

Oh(t)
B.1 S~
Wi = (Wi, , Wiy, -+, W, ) is a vector of length m. Since all elements of W; are symmetric,

we show gradient derivation for W;, without loss of generality. Let

THy, (1) = g%(f) (By definition) (17)
THy, (0) =0 (By definition) (18)
TCw, (1) = g;g) (By definition) (19)
TCy, (0) == 0 (By definition) (20)
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Then
THyw;, (t) = 83/2-. (o(t)p(c(t))) From equation 16 and definition 17
= o(t)agg(;/(:)) + qS(c(t))g;V(? Product rule of differentiation
=o(t)(1 — ¢*(c(t))) g;‘(/éj ¢(C(t))g?/v(2 Derivative of ¢(x) is (1-¢*(z))
=o(t)(1— ¢2(c(t)))TCW,L.j (t) + ¢(c(t))g(;‘(/? From definition 19
g%(;;) = ag/ij o(Wxz(t) + uoh(t — 1) + by) From equation 13
=o(y)(1 - a(y))uoTHWij (t—1) Where y equals W2 x(t) + uoh(t — 1) + b,
TCWZ-]. (t) = g;l(/t) From definition 19
= mf/ij (f)e(t —1)+1i(t)g(t)) From equation 15
= f(t)TCWij (t—1)+c(t— 1)?{;(;) Product rule and definition 19
0
+ i {0o0)
= f(t)TCWij t—1)+c(t—1) gﬁ(j) Product rule
0 0i
+iy 280+ g o1

Where gradient of g(t) w.r.t W;, is:
og(t) _ 0
oWi, oW,

— (1= 6*(9))u THw, (¢ — 1)

(W, x(t) + ugh(t — 1) + by)

, gradient of f(t) w.r.t W;, is:

0
= WU(W}%(Q +uph(t —1) + by)

L

= o(y)(1 ~ o(y))usTHiw, (1~ 1)

24

From equation 14

Where y equals Wgac(t) +ugh(t —1) + by

From equation 12

Where y equals W?I(t) +uph(t — 1)+ by
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and gradient of i(t) w.r.t W;, is:

ity 0
oW, oW,

=o(y)(1—o(y)) (xj(t) + uiTHWij (t — 1)) Where y equals WiTx(t) +uih(t—1)+b;

o(Wea(t) +uih(t — 1) +if) From equation 11

)

The derivation shows that using two traces per parameter of W;, it is possible to compute
the gradient of h(t) w.r.t W; recursively. We provide the derivations for parameters u; and
b; below. We skip the step-by-step derivations for the remaining parameters as they are
similar.

Oh(t
B.2 s

TH,,(t) = Bu, (By definition) (21)
TH,,(0):=0 (By definition) (22)
TC,,(t) = agl(t? (By definition) (23)
TC,,(0):=0 (By definition) (24)

25



JAVED, SHAH, SUTTON, AND WHITE

TH,,(t) = 6(1- (o(t)p(c(t))) From equation 16
= O(t)ﬁgb(cu('t)) + gb(c(t))a;(f) Product rule
=o(t)(1 — qbz(c(t)))a(;:@ + gb(c(t))aaol(f) Derivative of ¢(x) is 1 — ¢*(z)
= o(t)(1 — ¢*(c(t)))TCy,(t) + qﬁ(c(t))agit) Using definition 23
8801(&75) = 630(W0Ta:(t) + uoh(t — 1) + b,) Using equations 13
=o(z)(1 —o(z))usTHy, (t — 1) Where z equal WEx(t) + uoh(t — 1) + b,
TC,,(t) = B(;(Lt) Definition 23
= B?L- (ft)e(t —1) +i(t)g(t)) From equation 16
_ of(t)
= f()TCy,(t—1)+c(t — 1)37% Product rule
0
+ o (i(t)g(0)
= f()TCy(t—1)+c(t — 1)8555) Product rule
+i(t) aagi? +g(t) a;i?
Gradient of g(t) w.r.t u; is:
%9(t) _ iqﬁ(VVTa?(t) +ugh(t —1) +by)  From equations 1
ou.  oul p g g quations 16

= (1 - ¢*(y))ugTHy, (t — 1)

, gradient of f(t) w.r.t u; is:
of@) _ 0
8114‘ - 8ui
=0o(y)(1 —o(y))usTHy,(t - 1)

o(Wa(t) + ugh(t — 1) + by)

and the gradient of i(¢t) w.r.t u; is

oi(t)

— T . _ .
0w, 8uiU(WZ x(t) +uih(t — 1)+ b;)

Where y equals WgT:c(t) +ugh(t — 1) + by

From equations 1

Where y equals W}‘Fm(t) +ugh(t—1) 4 by

Using equations 1

=o(y) (1 —o(y)) (h(t—1) +wTH,(t—1)) Wherey equals WZ-Tx(t) +uih(t —1) + b;
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B.3 %
TH,y,(t) = 8§£t) (By definition) (25)
TH;, (0):=0 (By definition) (26)
TCy,(t) :== 8acl(f) (By definition) (27)
TC, (0):=0 (By definition) (28)
0 .
TH,y,(t) = 0 (o(t)p(c(t))) From equation 16
= o(t)a(ﬁ(gclf)) + qﬁ(c(t))agg) Product rule
=o(t)(1 — ¢2(c(t)))a§l()zt) + qb(c(t))a;l()f) Derivative of of ¢(z) is 1 — ¢*(x)
= o(t)(1 — ¢*(c(t)))TCy, (t) + ¢(c(t))8§g) From definition 27
do(t) O T _
o %U(Wo x(t) + uoh(t — 1) + bo) From equations 13
=o(y)(1 —o(y))uoT Hp,(t — 1) Where y equal WX z(t) + uoh(t — 1) + b,
TCy,(t) = 8(;(? From definition 27
= %(f(t)c(t —1)+i(t)g(t)) From equation 15
= f(t)TCy,(t —1)+c(t —1) 8(;575) Product rule
0
b il
= f(t)TCp(t —1)+c(t—1) 3;(525) Product rule
0 0i
=i 280+ g0 20

Where gadient of g(t) w.r.t b; is:

dg(t)
ob;

= aabﬁb(fo(t) +ugh(t —1) +by)  From equation 14

= (1 — ¢*(y))ugTHy, (t — 1) Where y equal WgTa:(t) + ugh(t — 1) + by
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, gradient of f(t) w.r.t b; is:

oft) 0 T :
9, %U(Wf x(t) +uph(t — 1) +bf)  From equation 12
=o(y)(1 —o(y))usTHy,(t —1) Where y equal W?x(t) +ush(t — 1)+ by

and gradient of i(t) w.r.t b; is:

%i(t) = i(I(I/ViTﬂr:(t) +uih(t —1) + b;) From equation 11
ob;  0b;
=o(y)(1 —o(y)) (wTHy,(t—1)+1)  Where y equal W z(t) + bih(t — 1) + b;
Oh(t
B.4 —aw(fj

The derivations for the remaining parameters is analogous to what previous derivations.
The final equations are as follows.

ggyfj — (1 62(9))(uyTHw, (t ~ 1))
ggyfj_ = 0(y)(1 ~ o(y))(a; + ugTHw, (1)
ot
W(Vfi — ()1 - o(y)(wT Hy, (t ~ 1)) )
gvgg — o(y)(1 = o(y)) (w,THyy, (¢ — 1))
TCw,, = f()TCy,(t—1) +c(t - 1) ag;f) +i(t) 8;2? +9(t) a;l()?
do(t)
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B.5 i
2%2 = (1 - ¢*())(ugTHy,, (t — 1))
gfw(i) =0o(y)(1 = o(y))(usTHw,, (t = 1))
86;(;&) =o(y)(1 —o)uTHw, (t —1)
folt 0
a;é.oi = o(2)(1 - o(2))(z; +uoTHw, (t — 1))
TCw, = JOTC,y (6= 1)+t - )T i) 20 1 () 1)
B O
g%(/z = (1 - ¢*(y))(x; + ugTHyy, (t — 1))
giéz =0o(y)(1 = o(y)(usTHw, (t - 1))
g;(;) =o(y)(1 —o(y)(wT Hw, (t - 1))
80(% (31)
oW, o(z)(1 = o(2))(uTHw, (t 1))
TCw,, = SOTCy (1= 1)+t - )T i) 20 1 4 2
do(t)

THng = 0(75)(1 - ¢2(C(t)))TCW9j (t) + ¢(C(t)) aWij
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Oh(t)
B.8 G
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090) _ (1~ 62(4)) g THa, (t - 1))

ou,
88{5? = 0(y)(1 = o(y)) (usTHy, (t — 1))
%iiﬂ = o(y)(1 = o(y) (WTHy, (t - 1))
- (32)
0805;‘) = o(@)(1 = 0(2))(usT Hy, (£~ 1) + h(t = 1))
TC,, = f()TCy,(t — 1) + c(t — 1)855) +i(t) 8;15:) + g(t)agg)
- do(t)
THu, = oft)(1 = *(e()TCuy (1) + (elt)) -
889 O — (1= 62()) (g TH (¢ - 1)
uys
655;) = o(y)(1 = o(y))(usTHay (¢ = 1) + h(t — 1))
%Z'I(L’;) =o(y)(1 —o(y))(w;THy,(t — 1))
(33)
‘96015;) — 0 (2)(1 — 0(2))(uoT Hy, (t — 1))
TCy, = F(E)TCy, (t — 1) + ¢(t — 1)855) +ilt) aész Lttt 8632)

TH,, = oft)(1 = 6 (e0))TCy (1) + olelt) 7
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O9) _ (1 — 62(9)) (g T Hay (¢ — 1) + h(t — 1)

Oug
8(55:) = o(y)(1 = 0(y))(usTHy, (t — 1))
%ig) = o(y)(1 - 0(y)) (wTH,, (t - 1))
80(tg) (34)
G, = (@)1= 0 (@) (T Hu, (¢~ 1)
TCu, = FOTCyy(t 1) + cft — 1>6§sz i) aééf gt aaz(f)
THy, = o(t)(1 = ¢*(c()))TCu, (1) + $(c(t)) Z‘;Sj
8@9{?) = (1 - ¢*(y))(ugTHy, (t — 1) + 1)
g
85()(” = o(y)(1 = o(y))(us THy, (t - 1)
g
aalz()? = 0(y)(1 — o(y))(wTHy, (t — 1))
(35)
ng) = o(2)(1 — o(x)) (u,T Hy, (t — 1))
TCy, = f(1)TCi, (t — 1) + c(t — 1)8§b(f) +i(t) 835) +9(t) %Z)
THy, = o(t)(1 — ¢2(c(t)))TCbg (t) + Qb(c(t))g;[(/éj
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B.11 %(}5)
a:?gb(;) = (1= ¢*(y))(ugTHy, (t — 1))
%fb(;) =o(y)(1 —o(y))(ufTHy, (t — 1)+ 1)
8515? = o(y)(1 = o(y)) (wiT Hp, (t - 1))
(36)
do(t)
8bf = O’(x)(l — O'(x))(uOTHbf(t _ 1))
TGy = JOTCy (b = 1) +elt = 1>6§sz Lo 835 0 851(,?
THy, = o(t)(1 — ¢*(c(t)))TCy, (t) + ¢(C(t))g%(/2
B.12 %
(‘)gb(:) = (1= ¢ () (ugTHy, (t - 1))
85;(;) =o(y)(1 —o(y))(ufTHy, (t —1))
ac;z()t) = 0(y)(1 = o(y))(wT Hy,(t - 1))
80(;) (37)
b, =o(z)(1 —o(z))(uTHp, (t—1)+1)
TGy, = f(TCyy(t = 1)+ eft 1>8§sz Lty 835 - g(t)agé?
=o — %(c . 0o(t)
THy, = o(t)(1 = ¢~(c(t)))TCy, (t) + o( (t))awij
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