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Abstract

Simultaneous inference after model selection is of critical importance to address scientific
hypotheses involving a set of parameters. In this paper, we consider a high-dimensional
linear regression model in which a regularization procedure such as LASSO is applied to
yield a sparse model. To establish a simultaneous post-model selection inference, we propose
a method of contraction and expansion (MOCE) along the line of debiasing estimation in
that we investigate a desirable trade-off between model selection variability and sample
variability by the means of forward screening. We establish key theoretical results for
the inference from the proposed MOCE procedure. Once the expanded model is properly
selected, the theoretical guarantees and simultaneous confidence regions can be constructed
by the joint asymptotic normal distribution. In comparison with existing methods, our
proposed method exhibits stable and reliable coverage at a nominal significance level and
enjoys substantially less computational burden. Thus, our MOCE approach is trustworthy
in solving real-world problems.

Keywords: Debiasing, Forward screening, LASSO, Simultaneous inference.

1. Introduction

We consider the linear model with a response vector y = (y1, ..., yn)T and an n × p design
matrix X,

y = Xβ∗ + ε, (1.1)

where β∗ = (β∗1 , · · · , β∗p)T ∈ Rp denotes an unknown p-dimensional true regression coeffi-

cients, and ε = (ε1, . . . , εn)T is an n-dimensional i.i.d. random errors with mean zero and
variance σ2In, where In is the n × n identity matrix. All columns in X are normalized to
have mean zero and `2-norm 1. The sample covariance matrix of the p predictors and its
corresponding population covariance matrix are denoted by S = 1

nX
TX and Σ, respectively.

Let A = {j : β∗j 6= 0, j = 1, . . . , p} be the support of β∗ with cardinality s0 = |A|. In this
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paper, assuming p → ∞ as n → ∞, we focus on simultaneous statistical inferences on a
subset of β∗ when p� n.

Arguably, in the setting of p � n, a simultaneous inference for the entire set of p pa-
rameters, i.e. β∗, is generally not tractable due to the issue of model identification. A
key assumption widely adopted in the current literature to facilitate statistical inference is
the sparsity of β∗, namely s0 � n, in addition to some regularity conditions on the design
matrix; see for example Meinshausen (2015); van de Geer et al. (2014); Zhang and Zhang
(2014), among others. The sparsity assumption of the true signals necessitates variable
selection, which has been extensively studied in the past two decades or so. Being one
of the most celebrated variable selection methods, Least Absolute Shrinkage and Selection
Operator (LASSO) (Tibshirani, 1996) has gained great popularity in both theory and appli-
cations. Specifically, a LASSO estimator is obtained by minimizing the following penalized
objective function:

β̂λ = arg min
β∈Rp

( 1

2n
‖y −Xβ‖22 + λ‖β‖1

)
, (1.2)

where ‖ · ‖r is the `r-norm of a vector, r = 1, 2, and λ > 0 is the tuning parameter.
Based on LASSO estimator, β̂λ, given in (1.2), statistical inferences for parameters in β∗

in the aspects of hypothesis test and confidence region construction have recently received
considerable attention in the literature because statistical inference has been always playing
a central role in the statistical theory and providing one of the most effective ways for the
transition from data to knowledge.

Some progresses in post-model selection inferences have been reported in the literature.
The method LASSO+mLS proposed in Liu and Yu (2013) first performs LASSO model
selection and then draws statistical inferences based on the selected model. This approach
requires model selection consistency and some incoherence conditions on the design matrix
(Zhao and Yu, 2006; Meinshausen and Yu, 2009; Bühlmann and van de Geer, 2011). Infer-
ence procedures built upon those strong conditions have been noted as being impractical
and exhibited poor performances due to the lack of uniform validity of inferential proce-
dures over sequences of models; see for example, Leeb and Pötscher (2008); Chernozhukov
et al. (2015).

To overcome the reliance on the oracle asymptotic distribution in inference, many solu-
tions have been proposed in recent years. Among those, three methods are so far known for
a valid post-model selection inference. (i) The first kind is sample splitting method (Wasser-
man and Roeder, 2009; Meinshausen et al., 2009; Meinshausen and Bühlmann, 2010) and
resampling method (Minnier et al., 2011). A key drawback of the sample splitting method
is its requirement of a random split of the data and the results may be sensitive to the
sample splitting, while the resampling approach entails a strong restrictive exchangeabil-
ity condition on the design matrix. (ii) The second kind is group inference proposed in
Meinshausen (2015). Unfortunately, this approach fails to show desirable power to detect
individual signals, and thus it is not useful in practical studies. (iii) The third kind is low-
dimensional projection (LDP) (Zhang and Zhang, 2014; van de Geer et al., 2014; Javanmard
and Montanari, 2014). Such an inferential method is rooted in a seminal idea of debias-
ing, resulting from the use of penalized objective function that causes estimation shrinkage.
This method will be adopted in this paper for a new paradigm of post-model selection
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inference. Following the debiasing approach proposed by Zhang and Zhang (2014), Cai
and Guo (2017) investigates both adaptivity and minimax rate of the debiased estimation,
which provides useful insights on the rate of model contraction and expansion considered
in this paper. Specifically, an LDP estimator, b̂, takes a debiasing step under an operation
of this form: b̂ = β̂λ + 1

nΘ̂XT (y −Xβ̂λ), where Θ̂ is a sparse estimate of precision matrix

Σ−1. When the matrix Θ̂ is properly constructed, the bias term, ∆ =
√
n(Θ̂S−Ip)(β̂−β∗),

would become asymptotically negligible. In this case, statistical inference can be conducted
using the above debiased estimator b̂. It is known that obtaining a desirable Θ̂ is not a
trivial task due to the singularity of sample covariance S. For examples, van de Geer et al.
(2014) proposes to use node-wise LASSO to get Θ̂, while Javanmard and Montanari (2014)
adopts a convex optimization algorithm to obtain Θ̂. It is worth noting that the number
of parameters estimated in Θ̂ using the approaches proposed by van de Geer et al. (2014)
and Javanmard and Montanari (2014) is p2, which can be computationally expensive. In a
setting similar to that of the LDP estimator, Zhang and Cheng (2017) proposes a bootstrap-
based simultaneous inference for a group, say G, of parameters in β∗ via the distribution
of quantity maxj∈G

√
n|b̂j − β∗j |, where the bootstrap resampling, unfortunately, demands

much more computational power than a regular LDP estimator based on the node-wise
LASSO estimate Θ̂.

Overcoming the excessive computational cost on acquiring Θ̂ motivates us to consider a
ridge type of approximation to the precision matrix Σ−1, in a similar spirit to the approach
proposed by Ledoit and Wolf (2004) for the estimation of a high-dimensional covariance
matrix. Note that the LASSO estimator β̂λ satisfies the following Karush-Kuhn-Tucker
(KKT) condition:

− 1

n
XT ε+ S(β̂λ − β∗) + λκ = 0, (1.3)

where κ = (κ1, · · · , κp)T is the subdifferential of ‖β̂λ‖1 whose jth component is κj = 1 if

β̂λ,j > 0, κj = −1 if β̂λ,j < 0, and κj ∈ [−1, 1] if β̂λ,j = 0. Let τ be a p× p diagonal matrix
diag(τ1, · · · , τp) with all positive element τj > 0, j = 1, · · · , p. We propose to add a term

τ (β̂λ − β∗), and then multiply Σ̂−1τ on the both sides of (1.3), leading to an equivalent
expression of (1.3),

− 1

n
Σ̂−1τ XT ε+

{
(β̂λ + λΣ̂−1τ κ)− β∗

}
− Σ̂−1τ τ (β̂λ − β∗) = 0, (1.4)

where β̂λ+λΣ̂−1τ κ defines a debiased estimator, with Σ̂τ = S+τ being a ridge-type sample
covariance matrix. It is easy to see that on the basis of (1.4), establishing a valid inference on
β∗ becomes straightforward if (i) Σ̂τ is nonsingular and (ii) the bias term Σ̂−1τ τ (β̂λ − β∗)
is asymptotically negligible under a properly tuned matrix τ . The associated technical
treatments are of theoretical interest but methodologically challenging. To address such
challenges, we propose a new approach, with some mild regularity conditions, termed as
Method of Contraction and Expansion (MOCE).

MOCE offers a practically feasible way to perform a valid simultaneous post-model
selection inference under suitable conditions, in which the ridge type matrix τ is properly
tuned to establish desirable theoretical guarantees. As seen later in the paper, the ridge
matrix τ plays a key role in determining the length of confidence intervals, which can
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vary according to signal strengths as desired. We provide checkable conditions for the
magnitude of τ in MOCE to efface the estimation bias asymptotically so to obtain the valid
large-sample theory for post-model selection inferences. Following a suggestion given by
one of the reviewers, we implement a cross-validation procedure to select τ , which appears
to work well in our numerical studies. When τ is properly determined, to achieve proper
coverage, MOCE is able to provide a wider confidence interval for a signal parameter, while
a narrower one for a null signal parameter. This is because a null signal is known with
zero coefficient (i.e., no need for estimation once being identified), whereas a signal is only
known with non-zero coefficient, whose parameter value needs to be further estimated in
order to construct its confidence interval. Thus, the latter estimation step incurs extra
variability in inference, resulting naturally in a wider confidence interval. MOCE takes on
an expanded model, denoted by Ã, that is enlarged from an initial model selected by the
LASSO estimator, denoted by Â, so that Â ⊆ Ã surely. Implementing the idea of model
expansion is practically feasible. In this paper, we adopt an intelligent model expansion
procedure along the line of the forward screening method proposed by Wang (2009) to
construct an expanded model. With such an expanded model, we rewrite the original KKT
condition, where the precision matrix Σ−1 is estimated accordingly. Under the sparsity
assumption s0 = o(n/ log p) and some additional regularity conditions, the bias term in
(1.4) vanishes asymptotically, and consequently the confidence region for a set of regression
parameters is readily constructed in the paradigm of MOCE.

This paper makes new contributions to the following five domains. (i) MOCE is estab-
lished under different sparsity conditions required for valid simultaneous inference in com-
parison to those given in the current literature. That is, MOCE assumes the sparsity con-
dition s0 = o(n/ log p), instead of the popular sup-sparsity assumption, s0 = o(

√
n/ log p);

also, MOCE does not demand additional sparsity assumptions required by the node-wise
LASSO to obtain sparse estimate of the precision matrix. (ii) MOCE is shown to achieve
a smaller error bound in terms of mean squared error (MSE) in comparison to the semi-
nal LDP debiasing method. In effect, MOCE estimator has the MSE rate ‖β̂τ − β∗‖2 =
Op(

√
s̃ log(s̃)/n) with s̃ being the size of the expanded model, lower than Op(

√
p/n), the

rate of the LDP estimator. (iii) MOCE enjoys both reproducibility and numerical stability
in inferences because the model expansion leaves little ambiguity for post-selection inference
as opposed to many existing methods based on a selected model that may vary substantially
due to different tuning procedures (Berk et al., 2013). (iv) MOCE is advantageous for its
fast computation, because of the use of the ridge-type matrix inverse, which is known to
be conceptually simple and computationally efficient. It is shown that the computational
complexity of MOCE is of order O(n(p − s̃)2), in comparison to the order O(2np2) of the
LDP method. (v) MOCE enables us to construct a new simultaneous test similar to the
classical Wald test for a set of parameters based on its asymptotic normal distribution. The
proposed hypothesis test method is computationally superior to the bootstrap-based test
(Zhang and Cheng, 2017) based on the sup-norms of individual estimation errors. All these
improvements above make MOCE ready to be applied in real-world applications.

The rest of the paper is organized as follows. Section 2 introduces notation and Section
3 provides preliminary results that are used in the proposed method. In Section 4 we in-
troduce MOCE and discuss its general theoretical properties. Section 5 introduces specific
algorithms for model expansion along the line of the forward screening, as well as some
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discussion of computational complexity. Through simulation experiments, Section 6 illus-
trates performances of MOCE, with comparison to existing methods. Section 7 contains
some concluding remarks. Some lengthy technical proofs are included in the Appendix.

2. Notation

For a vector ν = (ν1, · · · , νp)T ∈ Rp, the `0-norm is ‖ν‖0 =
∑p

j= 1{|νj | > 0}; the ∞-

norm is ‖ν‖∞ = max
1≤j≤p

|νj |; and the `2-norm is ‖ν‖22 =
∑p

j=1 ν
2
j . For a p × p matrix

W = (wij)1≤i≤j≤p ∈ Rp×p, the ∞-norm is |W |∞ = max
1≤j,j′≤p

|wjj′ | and the Frobenius norm

is ‖W‖2F = tr(W TW ) where tr(W ) is the trace of matrix W . Let ρ+min(W ) and ρ+max(W )
denote the smallest and largest nonzero singular values of a positive semi-definite matrix
W (Horn and Johnson, 2012), respectively.

With a given index subset B ⊆ {1, . . . , p}, vector ν ∈ Rp and matrix W ∈ Rp×p can be

partitioned as ν = (νTB , ν
T
Bc)

T and W =
(
WBB WBBc
WBcB WBcBc

)
. For two positive definite matrices

W1 and W2, their Löewner order W1 �W2 indicates that W1 −W2 is positive definite. For
two sequences of real numbers {un} and {vn}, the expression un � vn means that there
exist positive constants c and C such that c ≤ lim infn(un/vn) ≤ lim supn(un/vn) ≤ C.

For the self-containedness, we introduce the compatibility condition and sparse eigen-
value condition that are widely adopted in the literature; refer to Bickel et al. (2009) and
Bühlmann and van de Geer (2011) for more details. For a given subset J ⊆ {1, · · · , p} and a
constant k ≥ 1, define the following subspace R(J , k) in Rp: R(J , k) = {ν ∈ Rp : ‖νJ c‖1 ≤
k‖νJ ‖1}. A sample covariance matrix S = 1

nX
TX is said to satisfy the compatibility

condition if for 1 ≤ s ≤ p and k > 0 there exists a constant φ0 > 0 such that

min
J⊂{1,...,p}
|J |≤s

min
ν∈R(J ,k)

‖Xν‖22s
n‖ν‖21

≥ φ0. (2.1)

A sample covariance matrix S is said to satisfy the sparse eigenvalue SE(s) condition if for
any ν ∈ Rp with 1 ≤ ‖ν‖0 ≤ s, it holds that

0 < λmin(s) ≤ λmax(s) <∞ (2.2)

where

λmin(s) = min
1≤‖ν‖0≤s

‖Xν‖22
n‖ν‖22

, λmax(s) = max
1≤‖ν‖0≤s

‖Xν‖22
n‖ν‖22

.

3. Preliminary Results

As discussed above, when the bias term Σ̂−1τ τ (β̂λ−β∗) in (1.4) is asymptotically negligible,
the modified KKT (1.4) enables us to establish an asymptotic distribution for the proposed
debiased estimator of the form:

β̃τ = β̂λ + λΣ̂−1τ κ. (3.1)

This section presents some finite-sample bounds for the estimation bias when the ridge-type
covariance matrix is invoked for the matrix inversion. We begin with the first regularity
condition on the design matrix X given as follows.
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Assumption 1 The design matrix X in the linear model (1.1) satisfies the compatibility
condition in (2.1) for k = 3 and s = s0, where s0 is the number of true signals.

Assumption 1 is routinely assumed for the design matrix X in a high-dimensional linear
model; see for example, Bickel et al. (2009); Zhang and Zhang (2014), among others. It is
primarily used to ensure the `1-norm convergence for the LASSO estimator β̂λ (Bühlmann

and van de Geer, 2011); that is, ‖β̂λ − β∗‖1 = Op

(
s0

√
log p
n

)
.

Lemma 3.1 below assesses both the Frobenius norm and ∞-norm of the factor Σ̂−1τ τ , a
key term in the estimation bias Σ̂−1τ τ (β̂λ − β∗).

Lemma 3.1 Consider the sample covariance S = 1
nX

TX. Let the ridge matrix τ =
diag(τ1, · · · , τp) with τj > 0 for j = 1, · · · , p, τmin = min1≤j≤p τj and τmax = max1≤j≤p τj.
Let Σ̂τ = S + τ . Then, the Frobenius norm and ∞-norm of Σ̂−1τ τ are given as follows,
respectively:

max(p− n, 0) +
min(n, p)

{ρ+max(τ−1/2Sτ−1/2) + 1}2 ≤ ‖Σ̂
−1
τ τ‖2F

≤ max(p− n, 0) +
min(n, p)

{ρ+min(τ−1/2Sτ−1/2) + 1}2 ;

τmin

ρ+max(S) + τmax
≤ |Σ̂−1τ τ |∞ ≤

{
τmax
τmin

, if p > n;
τmax

ρ+min(S)+τmin
, if p ≤ n.

The proof of Lemma 3.1 is given in Appendix A.1. According to Lemma 3.1, when p ≤ n,
it is interesting to note that the ∞-norm |Σ̂−1τ τ |∞ is bounded above by τmax

ρ+min(S)+τmin
. This

upper bound may converge to 0 if τmax = o(1) and ρ+min(S) = O(1). On the other hand,
when p > n, its upper bound is τmax/τmin, which is always greater than or equal to 1.
Hence, when p < n the bias term Σ̂−1τ τ (β̂λ − β∗) can be controlled by an appropriately
small τ , leading to a simultaneous inference on β by the means of debiasing. In contrast,
the case “p > n” presents the difficulty of bias reduction for Σ̂−1τ τ . Such insight motivates
us to seek for an alternative solution in the framework of post-model selection inference,
resulting in our proposed MOCE.

The proposed MOCE mimics the well-known physical phenomenon of thermal contrac-
tion and expansion for materials with the tuning parameter λ being an analog to tempera-
ture. Specifically, MOCE reduces LASSO estimation bias in two steps as shown in Figure
1. In the step of contraction, LASSO selects a model Â, represented by the small circle in
Figure 1, which may possibly miss some true signals contained in the set A. In the step of
expansion, MOCE enlarges Â to form an expanded model Ã, indicated by the large circle
in Figure 1. As a result, we have surely Â ⊆ Ã, and hope that under some mild conditions,
with probability approaching to 1, the set of true signals A is completely contained by the
expanded model Ã. In other words, MOCE begins with an initial model Â through the
LASSO regularization which contains most of true signals, and then expands Â into a bigger
model Ã that with probability approaching to 1, embraces all true signals in A. Refer to
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A

{1, . . . , p}

A

{1, . . . , p}

A

{1, . . . , p}

Ã

Â
Contraction Expansion

Â

Figure 1: A schematic diagram for MOCE. The inner and outer rectangles respectively
represent the true model A and the full model with all p predictors {1, . . . , p}.
The small and large circles denote the LASSO selected model Â and the expanded
model Ã, respectively.

Section 5 where specific conditions and schemes are discussed to carry out the model ex-
pansion. The key advantage of the model expansion step is to greatly mitigate the influence
of subjective decision on variable selection in post-model selection inference. In effect, it
is very hard, if it is not possible, to quantify this type of uncertainty incurred by human
actions, which in addition to the sampling uncertainty, is needed for a valid post-model
selection inference.

We now introduce notations necessary for a further discussion on the model expansion.
Let Â = {j : |β̂λ,j | > 0, j = 1, · · · , p} be a LASSO selected model, whose cardinality is

denoted by ŝ = |Â|. Here, both Â and ŝ are dependent on the tuning parameter λ, which
is suppressed in the rest of this paper for the sake of simplicity, unless necessary. Similarly,
let Ã be an expanded model from Â with cardinality denoted by s̃ = |Ã|. In this paper, our
model expansion scheme ensures Â ⊆ Ã surely. Given A and Ã, a model expansion leads
to four disjoint subsets of predictors, A ∩ Ã, A ∩ Ãc, Ac ∩ Ã and Ac ∩ Ãc. Among these
subsets, two are of primary interest, namely, set Bfn of false negatives and set Btn of true
negatives. They are defined by, respectively,

Bfn = A ∩ Ãc, Btn = Ac ∩ Ãc. (3.2)

Let their cardinalities be bfn = |Bfn| and btn = |Btn|, respectively. Bfn collects signals
missed by the expanded model Ã (i.e., false negatives), while Btn collects all null signals
that the expanded model Ã does not contain (i.e., true negatives).

For the expanded model Ã, we introduce Assumption 2, which is the regularity condition
for the expanded model.

Assumption 2 Let A and Ã be the set of true signals and the set of variables selected in
the model expansion, respectively. The expanded model Ã satisfies the following regularity
conditions:

(a) P (A ⊂ Ã)→ 1 as n→∞;

(b) Matrix X in model (1.1) satisfies the sparse eigenvalue SE(s̃) condition in (2.2) where
s̃ = |Ã|.
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Assumption 2.(a) is a condition of expansion consistency, which may hold if the expanded
model Ã is constructed by some well-behaved variable screening methods that are of screen-
ing consistency, such as the forward screening method by Wang (2009). Thus, this is a mild
condition, which is partially controlled by the choice of a certain model expansion strat-
egy. Assumption 2.(b) requires that any s̃ × s̃ main diagonal sub-matrices of the sample
covariance matrix S = XTX/n has finite positive minimum and maximum singular values,
so that the selected expanded model has a well-defined Hessian matrix. This condition is
similar to that given by Zhang and Zhang (2014) in that the sparse eigenvalue condition is
assumed for the initial LASSO model Â for their LDP inference. This condition is natural
in MOCE because we use a larger model for inference. We will revisit Assumption 2 in
Section 5.1 when a specific model expansion scheme is considered, where we show that this
regularity condition holds under some checkable and interpretable conditions.

4. Method of Contraction and Expansion (MOCE)

In this section we first present the definition of MOCE estimator, and then establish several
key large-sample properties for the proposed MOCE estimator under an expanded model Ã
that satisfies Assumptions 1-2. Specific algorithms for the model expansion will be discussed
later in Section 5.

4.1 MOCE

An expanded model Ã is said to be viable if it satisfies Assumptions 1-2. For a viable

expanded model Ã, we partition a LASSO estimator β̂λ given in (1.2) as β̂λ = (β̂
T

Ã, β̂
T

Ãc)
T .

Rewrite the KKT condition (1.3) according to this partition, respectively, for Ã and Ãc:

− 1

n
XT
Ã(y −XÃβ̂Ã −XBfnβ̂Bfn −XBtnβ̂Btn) + λκÃ = 0, (4.1)

− 1

n
XT
Ãc(y −XÃβ̂Ã −XÃcβ̂Ãc) + λκÃc = 0. (4.2)

It follows from (4.1) that

SÃBfn(β̂Bfn − β
∗
Bfn) + SÃBtnβ̂Btn −

1

n
XT
Ãε+ SÃÃ(β̂Ã − β∗Ã) + λκÃ = 0. (4.3)

In regard to the expanded model Ã, the corresponding τ -matrix is an s̃× s̃ positive diagonal
matrix, denoted by τ a, and the corresponding ridge sample covariance submatrix is denoted
by Σ̂ÃÃ = SÃÃ + τ a. Adding τ a(β̂Ã − β∗Ã) and multiplying τ a on both sides of equation
(4.3), we have

β̂Ãτa − β
∗
Ã =

1

n
Σ̂−1ÃÃX

T
Ãε+ ra, (4.4)

where the debiased estimator β̂Ãτa of β∗Ã takes the form:

β̂Ãτa = β̂Ã + λΣ̂−1ÃÃκÃ, (4.5)

and the remainder ra is given by

ra = Σ̂−1ÃÃτ a(β̂Ã − β
∗
Ã) + Σ̂−1ÃÃSÃBtnβ̂Btn + Σ̂−1ÃÃSÃBfn(β̂Bfn − β

∗
Bfn)

def
= I11 + I12 + I13.

(4.6)

8



Method of Contraction-Expansion

If ρ+max(τ a) = o(
√

log p/n) holds, Lemma 4.1 below shows that ‖ra‖2 = op(1/
√
n), which is a

higher order term than the parametric rate of convergence with respective to the sampling
uncertainty. Thus, as stated in Theorem 4.1, equation (4.4) implies that the debiased
estimator β̂Ãτa of the parameters within the expanded model Ã is consistent and follows
asymptotically a normal distribution.

Now, consider the complementary model Ãc. Following similar steps of deriving equation
(4.4), we rewrite (4.2) as follows:

SÃcÃ(β̂Ã − β∗Ã) + Σ̂ÃcÃc(β̂Ãc − β∗Ãc) + λκÃc =
1

n
XT
Ãcε+ τ c(β̂Ãc − β∗Ãc),

where the corresponding ridge sample covariance submatrix is Σ̂ÃcÃc = SÃcÃc + τ c and τ c
is a (p− s̃)× (p− s̃) matrix of positive diagonals. Plugging (4.4) and (4.5) into the above
equation, we obtain

β̂Ãcτ c − β
∗
Ãc =

1

n
Σ̂−1ÃcÃc(X

T
Ãc − SÃcÃΣ̂−1ÃÃX

T
Ã)ε+ rc, (4.7)

where β̂Ãcτ c is the debiased estimator of β∗Ãc , which takes the following form:

β̂Ãcτ c = β̂Ãc + λΣ̂−1ÃcÃcκÃc − λΣ̂−1ÃcÃcSÃcÃΣ̂−1ÃÃκÃ. (4.8)

Moreover, the associated remainder term rc is

rc = Σ̂−1ÃcÃcτ c(β̂Ãc − β
∗
Ãc)− Σ̂−1ÃcÃcSÃcÃra

def
= I21 + I22ra. (4.9)

If ρ+min(τ c) = O
(√

λmax(p− s̃)
)

holds, we can show ‖rc‖2 = op(1/
√
n) in Lemma 4.1.

Once again, this reminder rc is asymptotically ignorable in comparison to the parametric
convergence rate with respect to the sampling uncertainty.

Now, combining the two debiased estimators (4.5) and (4.8), namely, β̂τ = (β̂
T

Ãτa , β̂
T

Ãcτ c)
T ,

we express the proposed MOCE estimator for β∗ as follows,

β̂τ = β̂λ + λL−1τ κ, (4.10)

where matrix L−1τ is a 2× 2 lower-triangular block matrix given by

L−1τ =

(
Σ̂−1ÃÃ 0

−Σ̂−1ÃcÃcSÃcÃΣ̂−1ÃÃ Σ̂−1ÃcÃc

)
.

In comparison to the original naive debiased estimator in equation (3.1), the proposed new
debiased estimator in (4.10) (i.e. the MOCE estimator) presents a different bias correction
term, λL−1τ κ. Consequently, the inverse matrix of L−1τ , Lτ , takes the form of

Lτ =

(
Σ̂ÃÃ 0

SÃcÃ Σ̂ÃcÃc

)
,

which is different from the simple ridge covariance matrix Σ̂τ = S + τ in (3.1). The fact
of L−1τ being a lower triangular matrix implies that the MOCE estimator β̂Ãcτ c of the

parameters outside the expanded model Ãc in (4.8) has no impact on the MOCE estimator
β̂Ãτa of the parameters inside the expanded model Ã in (4.5). This is a consequence of the
proposed sequential operation of contraction and expansion.

9
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Lemma 4.1 Consider a viable expanded model that satisfies Assumptions 1-2. Assume
s0 = o(n/ log p), λ �

√
log p/n and

ρ+max(τ a) = o(
√

log p/n), ρ+min(τ c) = O(
√
λmax(p− s̃)). (4.11)

Then, the reminders in (4.4) and (4.7) ‖ra‖2 = op(1/
√
n) and ‖rc‖2 = op(1/

√
n).

The proof of Lemma 4.1 is given in Appendix A.2. The lemma establishes respective
`2-norm bounds for the error terms ra and rc under positive diagonal matrices τ a and τ c.
Because of the condition (4.11), it suffices to implement MOCE with τ a = τaI and τ c = τcI,
where τa and τc are two scalars. Thus, in the remaining sections, we only consider these
special forms of τ a and τ c.

4.2 ASN under Gaussian Errors

Assumption 3 Error terms in model (1.1), ε1, . . . , εn, are independent and identically
distributed Gaussian random variables with mean zero and variance σ2, 0 < σ2 <∞.

We are interested in simultaneous inference for a parameter vector that contains at most
m parameters, where m is a fixed constant smaller than n. To set up the framework, we
consider a p-dimensional vector d = (d1, . . . , dp)

T in a parameter space Mm defined as
follows:

Mm =
{
d ∈ Rp : ‖d‖2 = 1, ‖d‖0 ≤ m

}
. (4.12)

Theorem 4.1 Consider a viable expanded model that satisfies Assumptions 1-2 and 3.
Suppose s0 = o(n/ log p), τa = o(

√
log p/n), τc = O(

√
λmax(p− s̃)), and λ �

√
log p/n.

Then, for any d ∈ Mm such that v2 = σ2dTL−1τ S(L−1τ )Td > 0, the MOCE estimator β̂τ

in (4.10) satisfies

√
nv−1dT (β̂τ − β∗) =

1√
n
v−1dTL−1τ XT ε+ op(1),

where 1√
n
v−1dTL−1τ XT ε follows N(0, 1) distribution.

Proof Combining (4.4) and (4.7) with partition d = (dTÃ,d
T
Ãc)

T gives

√
ndT (β̂τ − β∗) =

1√
n
dTL−1τ XT ε+

√
ndTÃra +

√
ndTÃcrc.

Assumptions 1, 2 and Lemma 4.1 imply that ‖√ndTÃra‖2 = op(1) and ‖√ndTÃcrc‖2 = op(1).

Then, Theorem 4.1 follows immediately from Assumption 3 that 1√
n
v−1dTL−1τ XT ε follows

N(0, 1) distribution.

Theorem 4.1 suggests that MOCE has the following useful properties: (i) MOCE can
perform a joint inference for a set of transformed parameters specified by the space Mm

based on a relaxed sparsity assumption s0 = o(n/ log p), in comparison to the existing case

10
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of s0 = o(
√
n/ log p); and (ii) MOCE avoids the “ambiguity” issue of post-selection inference

(Berk et al., 2013) caused by the instability of selected models. Besides these properties,
in the following sections we further show that MOCE has a smaller mean squared error
(MSE) bound than that of the LDP method. In addition, we propose a new test for a set
of parameters, which is different from the bootstrap test given by Zhang and Cheng (2017).

4.3 Length of Confidence Interval

Hypothetically, if we fitted data with the oracle model, the smallest variance among the
least squares estimators of nonzero parameters would be bounded below by σ2ρ+min(S−1AA),
while the estimators of zero parameters would be degenerated as being zero with zero
variance. Thus, in this oracle model case the gap between the variances of respective
estimators for zero and nonzero parameters would be at least σ2ρ+min(S−1AA). This is a
benchmark property for the variances of estimators, which should be accommodated in a
valid inference. In fact, existing approaches for post-model selection inference, including
Zhang and Zhang (2014); van de Geer et al. (2014); Zhang and Cheng (2017), have not
accounted for heterogeneous magnitudes in the variances of their proposed estimators. As
shown in their simulation studies, variances of nonzero parameter estimators and variances
of zero parameter estimators appear to have the same order because only a single tuning
process is used in the determination of tuning parameters. This explains why the LDP
method is more likely to reach the 95% coverage for zero parameters than for nonzero
parameters in the reported simulation studies.

The proposed MOCE estimation helps alleviate the above dilemma; we show that the
ridge tuning matrix with different τ a and τ c parameters leads to different lengths of con-
fidence intervals for parameters inside and outside of a viable expanded model Ã. Nu-
merically, in Section 6 we demonstrate that variances between the MOCE estimators with
respect to Ã and Ãc appear different in their magnitudes due to the use of the two tuning
processes with the ridge matrices. When τ c is large enough, Corollary 4.1 shows that β̂Ãτa
has a larger variance than that of β̂Ãcτ c . The lower bound of var(β̂Ãτa) is at the order

O(1/ρ+min(SÃÃ)), while the upper bound of var(β̂Ãcτ c) is at the order O(1/ρ+max(SÃÃ)).

Consequently, the resulting length of confidence interval differs between parameters in Ã
and Ãc.

To present Corollary 4.1, let e1, . . . , es̃ ∈ Rp be the standard basis vectors that span
subspace Rs̃ ⊂ Rp, and similarly let e⊥1 , . . . , e

⊥
p−s̃ ∈ Rp be the standard basis for subspace

Rp−s̃ ⊂ Rp.

Corollary 4.1 Under the same assumptions as those in Theorem 4.1, the minimal variance
of β̂Ãτa is larger than the maximal variance of β̂Ãcτ c,

var(β̂Ãτa) ≥ min
1≤i≤s̃

σ2eTi L
−1
τ SL−1τ ei ≥ c1/ρ+min(SÃÃ)

≥ c2/ρ+max(SÃÃ) ≥ max
1≤i≤p−s̃

σ2(e⊥i )TL−1τ SL−1τ e⊥i ≥ var(β̂Ãcτ c),

where c1 and c2 are two positive constants.

Proof of Corollary 4.1 is given in Appendix A.3. Cai and Guo (2017) studied the
problem about constructing an adaptive confidence interval, in which the interval has its

11
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length automatically adjusted to the true sparsity of the unknown regression vector, while
maintaining a pre-specified coverage probability. They showed that it is impossible to
construct a confidence interval for β∗j adaptive to the sparsity s0 with this range of sparsity,√
n/ log p ≤ s0 ≤ n/ log p. Our MOCE provides adaptive confidence intervals depending

on whether variables are contained in the expanded model, but the resulting confidence
interval length may not be optimal, which is worth further exploration.

4.4 ASN under Non-Gaussian Errors

When the errors εi’s do not follow a Gaussian distribution, Theorem 4.2 shows that β̂τ still
converges to a Gaussian distribution when Assumption 3 is replaced by Assumption 4.

Assumption 4 Let wi = 1√
n
dTL−1τ xi, d ∈ Mm, with xi being the ith column of matrix

XT = (x1, · · · ,xn). For some r > 2,

sup
1≤i≤n

E|εi|r <∞ and lim
n→∞

max
1≤i≤n

w2
i∑n

i=1w
2
i

= 0.

Theorem 4.2 Consider a viable expanded model that satisfies Assumptions 1-2 and 4.
Suppose s0 = o(n/ log p), τa = o(

√
log p/n), τc = O(

√
λmax(p− s̃)), and λ �

√
log p/n.

Then, for any d ∈ Mm such that v2 = σ2dTL−1τ S(L−1τ )Td > 0, the MOCE estimator β̂τ

in (4.10) satisfies

√
nv−1dT (β̂τ − β∗) =

1√
n
v−1dTL−1τ XT ε+ op(1),

where 1√
n
v−1dTL−1τ XT ε follows asymptotically N(0, 1) distribution.

The proof of Theorem 4.2 is given in Appendix A.5.

4.5 `2-norm Error Bounds

For the popular LDP method (Zhang and Zhang, 2014), it has been shown that the debiased
estimator β̂LDP satisfies

‖β̂LDP − β∗‖2 = Op(
√
p/n), (4.13)

which is higher than Op(
√
s0 log p/n), the order that LASSO achieves. Refer to Section 3.3

in Zhang and Zhang (2014). Below Corollary 4.2 shows that the MOCE’s `2-norm error
bound is of order Op(

√
s̃ log s̃/n), which is lower than the LDP’s order Op(

√
p/n). This

improved error bound is largely resulted from the fact that MOCE produces lower variances
for null signals than for signals, as stated in Corollary 4.1. Assumption 5 is required to
establish such improvement in the `2-norm error bound analytically. Let ε = (ε1, . . . , εn)T .

Assumption 5 The error ε satisfies

‖ 1

n
XT
Ãε‖∞ = Op(

√
log s̃/n), ‖ 1

n
XT
Ãcε‖∞ = Op(

√
log(p− s̃)/n).
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Assumption 5 is widely used in the literature of high-dimensional models; see for examples
Bickel et al. (2009); Negahban et al. (2012). It is easy to verify that it holds in the case of
sub-Gaussian random errors.

Corollary 4.2 Consider a viable expanded model that satisfies Assumptions 1-2 and 5
where the ridge matrices are τ a = τaI and τ c = τcI. Assume s0 = o(n/ log p), τa =
o(
√

log p/n), and τc = O(
√
λmax(p− s̃)). Then the `2-norm error bounds of the MOCE

estimator β̂τ = (β̂
T

Ãτa , β̂
T

Ãcτ c)
T in (4.10) are given by, respectively,

‖β̂Ãτa − β
∗
Ã‖2 = Op(

√
s̃ log s̃/n), and

‖β̂Ãcτ c − β
∗
Ãc‖2 = op

(
max{1/√n,

√
(p− s̃) log(p− s̃)/n/τc}

)
.

The proof of Corollary 4.2 is given in Appendix A.4. Note that when τc is chosen to be
large enough, the `2-norm error bound of the MOCE estimator β̂Ãcτ c will be dominated by

that of ‖β̂Ãτa − β
∗
Ã‖2 on the expanded model Ã, which is order Op(

√
s̃ log s̃/n).

4.6 Simultaneous Test

In this section, we consider a simultaneous test for a set of parameters G ⊂ {1, . . . , p},
whose cardinality |G| = g satisfying g/n→ γ ∈ (0, 1). With respect to G, β∗ and β̂τ can be

partitioned accordingly as (β∗G
T ,β∗Gc

T )T and (β̂
T

τG , β̂
T

τGc)
T . We want to test the following

hypothesis:

H0 : β∗j = 0 for all j ∈ G vs Ha : β∗j 6= 0 for at least one j ∈ G.

The MOCE’s asymptotic covariance matrix Σ̂LSL = L−1τ S(L−1τ )T relies on two ridge
parameters τ a and τ c, and is constructed according to a partition induced by the expanded
model. To reduce the impact from noisy elements in Σ̂LSL, we use Bai and Saranadasa
(1996)’s test without involving the inverse of Σ̂GG = {Σ̂LSL}GG . Our proposed test statistic
Wbs takes the follows form:

Wbs =
nβ̂

T

τGβ̂τG − σ2tr(Σ∗GG)

σ2
{

2tr((Σ∗GG)2)
}1/2

. (4.14)

As stated in Theorem 4.3 below, provided two extra assumptions, the test statistic
Wbs converges in distribution to the standard normal distribution N(0, 1) under the null
hypothesis. Thus, the null hypothesis is rejected if Wbs is greater than 100(1− α)% upper
standard normal percentile. As stated in Srivastava (2007), we calculate (4.14) by replacing

tr(Σ∗GG) by tr(Σ̂GG) and tr((Σ∗GG)2) by n2

(n+2)(n−1)
[
tr(Σ̂2

GG)− 1
ntr(Σ̂GG)2

]
.

Theorem 4.3 Under the null hypothesis, suppose the same conditions in Theorem 4.1

hold. If Σ̂GG converges to Σ∗GG in probability and g
n → γ ∈ (0, 1), then we have Wbs

d→
N(0, 1) as p→∞ and n→∞.
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The proof of Theorem 4.3 is given in Appendix A.6. Note that Wbs demonstrates a way for
the simultaneous test in the high dimensional setting. However, it is not the most powerful
test. It deserves a further exploration for how to construct a more powerful test based on
the MOCE estimator. Bootstrap-based tests may be a promising way in this scenario to
further reduce a test’s sensitivity on τ a, τ c and Ã.

5. Model Expansion

To demonstrate the feasibility of the proposed MOCE framework for post-model selection
inference, in this section we introduce a model expansion strategy based on the forward
screening method proposed by Wang (2009). This chosen model expansion scheme may
not be optimal but it suffices to show that the proposed MOCE framework is not void. A
primary purpose of model expansion is to mitigate the uncertainty of model selection to a
level lower than the sampling uncertainty. To do so, we present Algorithm 1 and Algorithm
2 to carry out model expansion, starting with the LASSO selected model Â. It follows that
Â ⊆ Ã surely. Under some regularity conditions, we guarantee that the resulting expanded
model Ã satisfies Assumption 2.

Intuitively, when an expanded model Ã is too small, it is likely to miss some true signal
parameters; on the other hand, when an expanded model Ã is too large, it would include
many null parameters. The perfect case would be Ã = A. The size of Ã pertains to a
trade-off between the uncertainty of model selection and efficiency of statistical inference.
Thus, we present some results related to the size of the resulting Ã by the model expansion
algorithms.

5.1 Algorithm for Model Expansion

We invoke the method of forward screening proposed by Wang (2009) to develop our model
expansion algorithm. Once again, we stress that this is just one model expansion strategy,
and there may exist better ones in the derivation of an expanded model. We will show in
Proposition 5.1 below that this algorithm, termed as Algorithm 1, enables us to obtain a
viable expanded model that satisfies Assumption 2. This means that we can find at least
one legitimate implementation to fulfill the proposed strategy of contraction and expansion.

The theoretical justification of the forward screening requires Assumption 6 originally
introduced by Wang (2009) with Gaussian random variables. In this paper we relax the
normality condition to that X is marginally sub-Gaussian (Kuchibhotla and Chakrabortty,
2020), so that Algorithm 1 is also applied to bounded and categorical random variables,
which are pervasive in applications. A random vector Z = (Z1, . . . , Zp)

T ∈ Rp is said to be

marginally sub-Gaussian if ‖Z‖M,ψ
def
= sup1≤i≤p ‖Zi‖ψ <∞, where ‖ · ‖ψ is the Orlicz norm

with ψ(x) = exp(x2) − 1 (Kuchibhotla and Chakrabortty, 2020). According to Theorem
4.2 in Kuchibhotla and Chakrabortty (2020), when p satisfies log p = o(n(log n)−2), with
probability at least 1− 6e−t for t > 0, the ∞-norm of S − Σ satisfies

‖S − Σ‖∞ ≤ O
(√

t+ 2 log p

n

)
, (5.1)

which is the convergence rate achieved by a Gaussian random vector Z.
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Algorithm 1: Algorithm for model expansion via the method of forward screening

1 The size of an initial expanded model Ã0 is set at s̃0 = s0 + ηp, where s0 = |A| may

be estimated by ŝ = |Â| and η ∈ [0, 1) is a certain prior proportion to fix the
upper limit of the model size.

2 Select the first 2ŝ variables into Ã0 by the froward screening approach and the
other ηp− ŝ variables are randomly sampled from the rest of p− 2ŝ variables.
This step intentionally injects additional noise variables into the expanded model
to help reduce the sensitivity of the expanded model from the variable selection
relative to the sampling variability.

3 The final expanded model Ã is created by merging the initial expanded model Ã0

with the set of LASSO selected variables, that is Ã = Ã0 ∪ Â. This step ensures
that Â ⊆ Ã surely.

Assumption 6 Let X1, . . . , Xn be independent and identical random vectors in Rp with
EXi = 0 and cov(Xi) = Σ = (σij)ij.

(a) max1≤i≤n ‖Xi‖M,ψ ≤ Kn,p <∞;

(b) 0 < 2ηmin ≤ ρ+min(Σ) ≤ ρ+max(Σ) < ηmax/2;

(c) ‖β∗‖2 ≤ Cβ, and minj∈A |β∗j | ≥ νn−ξb and ν > 0;

(d) there exist ξ > 0 and ξ0 > 0 such that log p = νnξ = o(n(log n)−2), s0 = νnξ0 and
ξ + 6ξ0 + 12ξb < 1.

Using similar arguments given in Wang (2009), we can establish Proposition 5.1.

Proposition 5.1 Under Assumption 6, the expanded model Ã obtained from Algorithm 1
satisfies Assumption 2:

P (A ⊆ Ã)→ 1, as n→∞; (5.2)

ηmin < ρ+min(SÃÃ) ≤ ρ+max(SÃÃ) < ηmax. (5.3)

Moreover, the size of the expanded model and the size of the LASSO selected model are
given by, respectively,

s̃ = |Ã| = O(n2ξ0+4ξb); (5.4)

ŝ = |Â| = o(n2ξ0+4ξb). (5.5)

The proof of Proposition 5.1 is given in Appendix A.7.

It is worth noting that the size of the expanded model Ã is O(n2ξ0+4ξb) with ξ0 ∈ (0, 1/6)
and ξb ∈ (0, 1/12), which is bounded from above by O(n2/3). This implies that the size of Ã
cannot reach the sample size n. Thus, this forward screening algorithm for model expansion
avoids undesirable scenarios in which a very large expanded model is produced to cover the
true model. Also, part (d) of this assumption implies that s0 = o( n

log p), which is needed by

15



Wang, Zhou, Tang and Song

MOCE; moreover, with no surprise, we see ŝ = o(s̃). This indicates s̃ is much larger than ŝ,
as desired. Part (c) of Assumption 6 is in fact a sufficient condition pertinent to the utility
of Wang (2009)’s forward screening method for model expansion. As shown in Appendix B,
when some of signal strengths are arbitrarily close to zero, the proposed MOCE method still
provide valid coverage probabilities for both signal parameters and non-signal parameters.

According to Proposition 5.1 we know that s0 satisfies s0 = o(n1/6) under the forward
screening method for model expansion. This order of the true model size may be relaxed
when certain conditions on the design matrix X are assumed. In particular, we present two

sets of conditions below, both of which can relax the order to be s0 = o
(

( n
log p)1/3β

8/3
min

)
,

and s̃ = O(s20β
4
min), where βmin = minj∈A |β∗j |.

The first set of conditions considered by Yaskov (2016) and Chafäı and Tikhomirov
(2017) are given as follows. Let X1, . . . , Xn be independent and identical random vectors
in Rp with EXi = 0 and cov(Xi) = Σ. Denote l = O(s20β

4
min).

(i) for i = 1, . . . , n, any l-dimensional subvector of Xi, Xi(l), and any l × l orthogonal
projection matrices Π, {‖ΠXi(l)‖22 − rank(Π)}/l→ 0 in probability as l→∞;
(ii) there exists a positive constant c such that E(x4ij) ≤ c <∞ for i = 1, · · · , n, j = 1, . . . , p;

(iii) 0 < 2ηmin ≤ ρ+min(Σ) ≤ ρ+max(Σ) < ηmax/2.
According to Yaskov (2016), condition (i) above characterizes a restriction on the correlation
among columns of matrix X, while according to Chafäı and Tikhomirov (2017), condition
(ii) above ensures the existence of an upper bound for the largest eigenvalue of the empirical
matrix. It follows that under the above three conditions, (5.3) holds. Moreover, by similar

arguments to those given in Wang (2009), we can show that s0 = o
(

( n
log p)1/3β

8/3
min

)
and

s̃ = O(s20β
4
min). Refer to several examples satisfying conditions (i) and (ii) in Yaskov (2016).

The second set of conditions considered by Cai et al. (2010) assumes that any l × l
submatrix Σl×l = (σij) of Σ belongs to the following parameter space:

Fα =

{
Σl×l : max

j

∑
i

{|σij | : |i− j| > k} ≤Mk−α for all k

}
.

This restricts the elements σij of the population covariance matrix Σ by a certain decay
pattern. Under this condition, a tapering type of estimation may be obtained for the
sample covariance matrix in an expanded model, which also gives rise to the same order

s0 = o
(

( n
log p)1/3β

8/3
min

)
.

5.2 Algorithm for Ridge Parameter Tuning

Once the expanded model Ã is chosen, we determine the ridge parameters τ a and τ c to con-
trol the bias reminder terms ra and rc, respectively defined in (4.6) and (4.9). We propose
Algorithm 2 based on the means of cross-validation to determine τa in τ a = τaI and τc in
τ c = τcI around their asymptotic orders given in Lemma 4.1. They are, τa = ca(

√
log p/n)−1

and τc = cc

√
ρ+max(SÃÃ)ρ+max(SÃcÃc), respectively. From the proof of Lemma 4.1, we fur-

ther know with probability approaching to 1 that ‖ra‖2 is bounded by an increasing function
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of τa, while ‖rc‖2 is bounded by a decreasing function of τc if ‖ra‖2 is fixed, given as follows:

‖ra‖2 ≤
τa

τa + λmax(s̃)
‖β̂Ã − β∗Ã‖2, ‖rc‖2 ≤

√
λmax(s̃)λmax(p− s̃)

τc
‖ra‖2.

Figure 2 show these relationships between the bias reminder terms and the ridge param-
eters in the setting of p = 400, n = 300, and α = 0.7, a case considered in the simulation
study in Section 6. Apparently there are no unique values of ca and cc to control the re-
minder error terms. The curvature of the two functions in Figure 2 enables us to choose
some reasonably small ca and relatively large cc. We should not choose a very small ca
and/or a very large cc to avoid unreliable performance of the MOCE. For example, a very
large cc often leads to the superefficiency for the parameters in Ãc.

Algorithm 2: Algorithm for ridge parameter selection

1 Partition the data into k folds for k-fold cross validation
2 Value ca is determined by the last point before the curve rises up rapidly:

ĉa = max
ca

{
ca > 0 :

∆ log(
∑k

j=1 ‖ra(ca, β̂−j)‖2)
∆ log(ca)

≤ 10−4
}
, (5.6)

where ∆ denotes the differencing operator so the ratio gives a numerical
derivative; ra(ca, β̂−j) denotes ra evaluated on the jth fold of data at ca and β̂−j ,
which is the LASSO estimate obtained on all data except the jth fold.

3 Value cc is determined as the last position before the curve falls sharply:

ĉc = min
cc

{
cc > 0 :

∆ log(
∑k

j=1 ‖rc(ĉa, cc, β̂−j)‖2)
∆ log(cc)

≤ −10−5
}
, (5.7)

where rc(ĉa, cc, β̂−j) denotes rc evaluated on the jth fold of data at ĉa given in

(5.6), cc and the LASSO estimate β̂−j on all data except the fold j.

5.3 Computational Complexity

The dominant computational cost in MOCE is at calculating the inverse of Σ̂ÃcÃc with the
computational complexity being of order O(n(p− s̃)2) under the operation of the Sherman-
Morrison formula. In the case where LASSO uses the popular coordinate descent algorithm,
the associated computational complexity is of order O(2np) (Friedman et al., 2010), per-
taining to iterations of all p variables under a fixed tuning parameter. Debiasing methods
(van de Geer et al., 2014; Zhang and Zhang, 2014) ought to run p LASSO regressions for the
node-wise LASSO in order to obtain a sparse estimate of the precision matrix. Therefore,
with fixed p tuning parameters, the computational complexity of the existing methods is of
order O(2np2). This comparison suggests that MOCE has significantly lower computational
burden than the existing node-wise LASSO.
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Figure 2: Plots of ‖ra‖2 versus log(τa) (left) and ‖rc‖2 versus log(τc) (right) in a simulation
setting with p = 400, n = 300, α = 0.7, where the red dots are two chosen values.

6. Simulation Studies

In this section, we use simulation experiments to evaluate the performance of MOCE. In
particular, we compare MOCE with the popular LDP method proposed by Zhang and
Zhang (2014) for their performances on inference.

6.1 Setup

We simulate 500 data according to the following linear model:

y = Xβ∗ + ε, ε = (εi, . . . , εn)T , εi
i.i.d.∼ N(0, σ2), i = 1, . . . , n,

where σ = 0.5, and the s0 signal parameters in set A are generated from the uniform
distribution U(0.1, 0.5), and the rest of p − s0 parameters in Ac are all set at 0. Each
row of the design matrix X is simulated by a p-variate normal distribution N(0, σ2R(α)),
where R(α) is a first-order autoregressive (i.e. AR-1) correlation matrix with correlation
parameter α ∈ {0.5, 0.7}. Each of the p columns in X is normalized to satisfy `2-norm 1.

We run 500 rounds of simulations to draw summary statistics in the evaluation. Three
summary metrics are used to evaluate inferential performance on individual parameters
from the signal set A and the null signal set Ac, separately. They include bias (Bias),
coverage probability (CP), and asymptotic standard error (ASE):

BiasA =
1

s0

∑
j∈A

(Eβ̂j − β∗j ), BiasAc =
1

p− s0
∑
j∈Ac

(Eβ̂j − β∗j ),

ASEA =
1

s0

∑
j∈A

√
Var(β̂j), ASEAc =

1

p− s0
∑
j∈Ac

√
Var(β̂j),

CPA(η) =
1

s0

∑
j∈A

1{β∗j ∈ CIj(η)}, CPAc(η) =
1

p− s0
∑
j∈Ac

1{0 ∈ CIj(η)},
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where Eβ̂j is the empirical expectation of β̂j , Var(β̂j) is the averaged asymptotic variance

of β̂j , and CIj(η) denotes the confidence interval for β∗j derived from Var(β̂j) under the
confidence level 1 − η, where η ∈ (0, 1), over 500 replicates. Average lengths of confidence
intervals are also reported.

To apply MOCE, we begin with the LASSO estimate β̂λ that is calculated by the R
package glmnet with the tuning parameter λ selected by a 10-fold cross validation, where
the variance parameter σ2 is estimated by σ̂2 = 1

n−ŝ‖y −Xβ̂λ‖22, where ŝ is the number

of nonzero entries in the LASSO estimate β̂λ. It is shown in Reid et al. (2016) that this
estimator σ̂2 is robust against changes in signal sparsity and strength. Starting with the
LASSO selected model Â, we construct the expanded model Ã via Algorithm 1 with the
target size s̃ = ŝ + 0.05p. The two ridge parameters τa in τ a = τaI and τc in τ c = τcI
are chosen with the utility of Algorithm 2. Here we set η = 0.05 to allow 5% of LASSO
estimated null parameters enter the expanded model. To calculate the competing LDP
estimator proposed by Zhang and Zhang (2014), denoted by β̂LDP , we use the existing R
package hdi with the initial estimate obtained from the scaled LASSO.

6.2 Inference on Individual Parameters

We compare MOCE and LDP for their performances on inference for 1-dimensional pa-
rameters in the following scenarios of combinations: n ∈ {300, 500}, p ∈ {400, 600, 1000},
s0 ∈ {5, 15} and α ∈ {0.5, 0.7}. Tables 1, 2, 3 and 4 report Bias, ASE, coverage probability
(CP) at significance level 0.01 (CP99) and 0.05 (CP95), and length of confidence interval
(LEN) over 500 rounds of simulations, each table for one of the four combinations of s0 and
α.

The four tables clearly show that MOCE outperforms LDP as MOCE’s estimation biases
are much smaller and coverage probabilities are much closer to the nominal levels regardless
of correlation parameter α. Also, the coverage probabilities get closer to the nominal levels
when the sample size n increases. Such a performance improvement by MOCE is due to
the fact that MOCE uses different lengths of confidence intervals to cover nonzero and zero
parameters. It is noted that when p is much larger than n MOCE has larger variances for
signal parameters inA than those for null signal parameters inAc, confirming the theoretical
result stated in Corollary 4.1. On the contrary, in the LDP method the estimated variances
for both signal and null signal parameters are very similar. According to van de Geer
et al. (2014), LDP tends to optimize the global coverage of all parameters with the aim
of achieving the overall shortest confidence intervals for all parameters, where differences
between signals and null signals are not recognized and accounted for in the inference.
Reflecting to this strategy of optimality, the LDP method typically produces standard
errors for all parameters in the same order of magnitude, and consequently the resulting
standard errors for signal parameters are often underestimated, leading to an undercoverage
for signal parameters. This phenomenon is also reported in Zhang and Cheng (2017). In
regard to length of confidence interval, with no surprise, 99% confidence interval is longer
than 95% confidence interval under either MOCE or LDP, and when sample size n increases,
both 95% and 99% confidence intervals become shorter. On the other hand, when sample
size n is fixed but the number of parameters p increases, there seems no clear patterns due
possibly to the fact that the size of expanded model varies under different tuning schemes.
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These simulation results show that our MOCE may occasionally have unsatisfactory
performances. In general, we observe that in the cases of p > 2n, such as the case of
n = 300 and p = 1000, our MOCE for zero parameters tends to have overcoverage and thus
likely to be superefficient. Superefficiency for null signals is not necessarily detrimental;
in the oracle case, the coverage of null signals would be 100%. However, in the Neyman-
Pearson school of inference, overcoverage is regarded as being problematic. It is interesting
to note that in these cases, our MOCE still works well for inference on nonzero parameters.
If inference for null signals is the primary interest of data analyses (which is rather unlikely
in practice), as a rule of thumb we recommend first reducing the model size from p to 2n or
smaller by a certain screening procedure before applying MOCE for inference. Statistical
inference for null signals deserves some serious philosophical debates for the suitability of
Neyman-Pearson’s statistical inference paradigm.

MOCE LDP

n p Set CP95(LEN) CP99(LEN) Bias ASE CP95(LEN) CP99(LEN) Bias ASE

300

400 A 0.944(0.153) 0.993(0.201) 0.0000 0.039 0.893(0.136) 0.966(0.179) 0.0193 0.034

400 Ac 0.951(0.248) 0.988(0.327) 0.0001 0.063 0.951(0.138) 0.990(0.181) -0.0006 0.035

600 A 0.944(0.154) 0.988(0.203) 0.0004 0.039 0.872(0.135) 0.958(0.178) 0.0234 0.034

600 Ac 0.957(0.103) 0.990(0.136) 0.0000 0.026 0.953(0.138) 0.991(0.181) 0.0002 0.035

1000 A 0.935(0.164) 0.985(0.215) 0.0002 0.041 0.883(0.138) 0.968(0.182) 0.0173 0.035

1000 Ac 0.965(0.050) 0.993(0.065) 0.0000 0.012 0.953(0.138) 0.991(0.181) -0.0001 0.035

500

400 A 0.948(0.114) 0.986(0.149) -0.0004 0.029 0.909(0.105) 0.978(0.139) 0.0119 0.027

400 Ac 0.946(0.219) 0.985(0.288) 0.0000 0.055 0.952(0.107) 0.990(0.141) -0.0001 0.027

600 A 0.948(0.114) 0.989(0.149) -0.0001 0.029 0.910(0.104) 0.978(0.137) 0.0133 0.026

600 Ac 0.949(0.282) 0.986(0.370) -0.0001 0.072 0.951(0.107) 0.990(0.141) 0.0002 0.027

1000 A 0.950(0.119) 0.990(0.156) 0.0003 0.030 0.909(0.106) 0.970(0.140) 0.0114 0.027

1000 Ac 0.956(0.078) 0.989(0.102) 0.0000 0.019 0.951(0.107) 0.990(0.141) 0.0000 0.027

Table 1: In the scenario of s0 = 5 and α = 0.5, summary statistics of Bias, ASE, coverage
probability (CP95 and CP99) and length of the confidence interval (LEN) for
inference in individual parameters based on MOCE and LDP over 500 rounds of
simulations.

Another advantage of MOCE in comparison to LDP concerns computational efficiency.
Table 5 reports the average computation time. It is evident that MOCE is significantly
faster than LDP in all six scenarios considered in the simulation experiments. This nu-
merical evidence confirms the theoretical computational complexity discussed in Section
5.3. In practice, the node-wise LASSO spends extra computational costs for calculating
solution paths with a large number of varying tuning parameters which, with no doubt, will
dramatically increase LDP’s computation time.

6.3 Simultaneous Test for a Group of Parameters

The second simulation study illustrates the performance of Bai and Saranadasa (1996)’s
test Wbs defined in (4.14) for a group of parameters. In this study, s0 = 5, n = 300,
α ∈ {0.5, 0.7} and p ∈ {200, 400, 600}. Other settings are the same as ones used in the first
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MOCE LDP

n p Set CP95(LEN) CP99(LEN) Bias ASE CP95(LEN) CP99(LEN) Bias ASE

300

400 A 0.942(0.170) 0.986(0.223) 0.0004 0.043 0.901(0.140) 0.971(0.184) 0.0136 0.035

400 Ac 0.952(0.281) 0.989(0.369) 0.0001 0.071 0.957(0.141) 0.992(0.186) 0.0001 0.036

600 A 0.946(0.174) 0.987(0.229) -0.0000 0.044 0.894(0.141) 0.967(0.186) 0.0159 0.036

600 Ac 0.966(0.112) 0.992(0.147) 0.0001 0.028 0.957(0.141) 0.992(0.186) 0.0001 0.036

1000 A 0.946(0.184) 0.988(0.242) 0.0000 0.047 0.900(0.139) 0.969(0.183) 0.0174 0.035

1000 Ac 0.979(0.054) 0.995(0.071) -0.0000 0.013 0.957(0.141) 0.992(0.186) 0.0000 0.036

500

400 A 0.948(0.122) 0.987(0.161) -0.0000 0.031 0.910(0.108) 0.976(0.142) 0.0111 0.027

400 Ac 0.938(0.216) 0.985(0.284) 0.0001 0.055 0.952(0.108) 0.991(0.142) 0.0004 0.027

600 A 0.946(0.125) 0.992(0.164) -0.0002 0.031 0.906(0.108) 0.973(0.142) 0.0131 0.027

600 Ac 0.948(0.315) 0.987(0.414) 0.0000 0.080 0.955(0.109) 0.991(0.143) 0.0004 0.027

1000 A 0.947(0.127) 0.988(0.167) 0.0002 0.032 0.903(0.107) 0.967(0.141) 0.0116 0.027

1000 Ac 0.961(0.082) 0.990(0.108) -0.0000 0.021 0.955(0.109) 0.991(0.143) 0.0000 0.027

Table 2: In the scenario of s0 = 15 and α = 0.5, summary statistics of Bias, ASE, coverage
probability (CP95 and CP99) and length of the confidence interval (LEN) for
inference in individual parameters based on MOCE and LDP over 500 rounds of
simulations.

MOCE LDP

n p Set CP95(LEN) CP99(LEN) Bias ASE CP95(LEN) CP99(LEN) Bias ASE

300

400 A 0.939(0.198) 0.985(0.260) -0.0004 0.050 0.886(0.167) 0.964(0.220) 0.0225 0.042

400 Ac 0.947(0.323) 0.987(0.425) 0.0000 0.082 0.951(0.170) 0.990(0.224) 0.0005 0.043

600 A 0.926(0.208) 0.981(0.274) 0.0001 0.053 0.882(0.164) 0.959(0.215) 0.0237 0.041

600 Ac 0.955(0.128) 0.989(0.169) -0.0000 0.032 0.953(0.168) 0.991(0.222) 0.0003 0.043

1000 A 0.944(0.202) 0.988(0.265) -0.0005 0.051 0.875(0.161) 0.953(0.211) 0.0238 0.041

1000 Ac 0.962(0.058) 0.992(0.076) -0.0000 0.014 0.952(0.167) 0.991(0.220) -0.0003 0.042

500

400 A 0.944(0.149) 0.989(0.195) 0.0001 0.038 0.899(0.131) 0.972(0.172) 0.0129 0.033

400 Ac 0.946(0.288) 0.986(0.379) 0.0001 0.073 0.951(0.135) 0.990(0.177) 0.0003 0.034

600 A 0.948(0.155) 0.986(0.204) -0.0002 0.039 0.897(0.131) 0.970(0.172) 0.0157 0.033

600 Ac 0.947(0.367) 0.986(0.483) -0.0001 0.093 0.951(0.134) 0.990(0.176) 0.0002 0.034

1000 A 0.946(0.144) 0.990(0.190) 0.0001 0.036 0.898(0.130) 0.960(0.171) 0.0147 0.033

1000 Ac 0.953(0.096) 0.989(0.127) 0.0000 0.024 0.951(0.133) 0.990(0.175) -0.0000 0.034

Table 3: In the scenario of s0 = 5 and α = 0.7, summary statistics of Bias, ASE, coverage
probability (CP95 and CP99) and length of the confidence interval (LEN) for
inference in individual parameters based on MOCE and LDP over 500 rounds of
simulations.
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MOCE LDP

n p Set CP95(LEN) CP99(LEN) Bias ASE CP95(LEN) CP99(LEN) Bias ASE

300

400 A 0.932(0.226) 0.982(0.297) 0.0002 0.057 0.888(0.167) 0.966(0.220) 0.0173 0.042

400 Ac 0.947(0.368) 0.985(0.483) 0.0001 0.093 0.956(0.171) 0.992(0.225) -0.0002 0.043

600 A 0.911(0.222) 0.972(0.292) 0.0002 0.056 0.874(0.168) 0.954(0.222) 0.0188 0.043

600 Ac 0.958(0.135) 0.989(0.178) -0.0000 0.034 0.957(0.172) 0.992(0.227) -0.0001 0.044

1000 A 0.907(0.237) 0.953(0.312) -0.0006 0.060 0.861(0.168) 0.947(0.221) 0.0249 0.042

1000 Ac 0.978(0.064) 0.995(0.085) 0.0000 0.016 0.956(0.169) 0.992(0.223) -0.0002 0.043

500

400 A 0.944(0.161) 0.986(0.212) 0.0003 0.041 0.904(0.132) 0.972(0.174) 0.0102 0.033

400 Ac 0.936(0.282) 0.982(0.371) -0.0000 0.072 0.954(0.136) 0.991(0.178) -0.0003 0.034

600 A 0.937(0.158) 0.986(0.208) 0.0001 0.040 0.888(0.131) 0.962(0.172) 0.0117 0.033

600 Ac 0.941(0.408) 0.984(0.536) 0.0000 0.104 0.953(0.135) 0.991(0.178) 0.0000 0.034

1000 A 0.940(0.160) 0.987(0.211) 0.0001 0.041 0.883(0.133) 0.958(0.175) 0.0157 0.034

1000 Ac 0.955(0.100) 0.989(0.131) -0.0000 0.025 0.954(0.134) 0.991(0.176) -0.0002 0.034

Table 4: In the scenario of s0 = 15 and α = 0.7, summary statistics of Bias, ASE, coverage
probability (CP95 and CP99) and length of the confidence interval (LEN) for
inference in individual parameters based on MOCE and LDP over 500 rounds of
simulations.

Computation Time (seconds)

α p MOCE LDP

0.5
400 15.35 38.60

600 24.94 63.78

0.7
400 14.48 32.08

600 24.17 54.12

Table 5: Average computation time in one simulated data set with sample size n = 300 for
MOCE and LDP.
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simulation study. We consider a hypothesis H0 : β0,G = 0 vs Ha : β0,G 6= 0, where the size
of G is set at 5, 50 and 100. We also consider varying different size of intersection G ∩ A.
When |G ∩ A| = 0, the null hypothesis H0 is true, otherwise the alternative hypothesis Ha

is the case.
Empirical type I error rates and power are computed under the significance level 0.05

over 500 replications. We observe from Table 6 that in all the cases, the test can properly
control type I error, although it appears a little conservative when p is relatively small,
which may consequently affect the power. According to this table, the key message learned
from this simulation study is that the test Wbs performs well for cases of large p, with
satisfactory type I error control and desirable power to detect any violation of the null
hypothesis. Noting that MOCE increases the size of expanded model along with an increase
in p, we learn from a different perspective the effectiveness of the proposed the ridge-type
debiasing method in high-dimensional linear models.

α = 0.5 α = 0.7

|G| |G ∩ A| p = 200 p = 400 p = 600 p = 200 p = 400 p = 600

5

0 0.0300 0.0300 0.0400 0.0350 0.0600 0.0450

2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50

0 0.0250 0.0250 0.0500 0.0100 0.0250 0.0300

2 0.6350 0.4650 1.0000 0.2050 0.1750 1.0000

3 0.8850 0.7500 1.0000 0.3850 0.2750 1.0000

100

0 0.0150 0.0350 0.0550 0.0100 0.0200 0.0250

2 0.2350 0.1500 1.0000 0.0450 0.0550 1.0000

3 0.3650 0.2550 1.0000 0.0900 0.0900 1.0000

Table 6: Empirical type I error and power of Wbs over 200 replications under AR-1 corre-
lated predictors with correlation α = 0.5 and α = 0.7.

7. Discussion

We have developed a new method of contraction and expansion (MOCE) for simultaneous
inference in high-dimensional linear models. The key technical challenge in the paradigm
of post-model selection inferences is to quantify the model selection uncertainty in a reg-
ularized estimation procedure, which is however notoriously difficulty. The proposed step
of model expansion overcomes this difficulty. Different from the existing low dimensional
projection (LDP) method, MOCE takes a step of model expansion to reduce the model
selection uncertainty due to the LASSO regularization so that the selection uncertainty is
asymptotically ignorable in comparison to the sampling uncertainty. The model expansion
is carried out by the means of the forward screening approach (Wang, 2009), and under
certain regularity conditions, the resulting expanded model has been shown to be viable and
of expansion consistency. Thus, MOCE provides a realistic solution to valid simultaneous
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post-model selection inferences. We have thoroughly discussed the issue of determining the
size of expanded model and established as a series of theorems to guarantee the validity of
MOCE. We showed both analytically and numerically that MOCE gives better control of
type I error and higher power as well as faster computation than the existing LDP method.

Ridge-type shrinkage is adopted by MOCE in qualification of debiasing terms, which not
only enjoys computational speed but also produces different lengths of confidence intervals
for signal and null signal parameters. It is worth noting that MOCE attempts to provide an
adaptive construction of confidence interval with respect to signal strength, instead of signal
sparsity as proposed by Cai and Guo (2017). The optimality studied in Cai and Guo (2017)
might offer an opportunity to develop a more efficient procedure for the selection of ridge
τ -matrices, which is certainly an interesting future research direction. Alternative to the
forward screening method for model expansion, as suggested by one of the reviewers, other
methods, such as the sure screening (Fan and Lv, 2008) and a direct use of the magnitude
of κ in the KKT condition, may be used to construct a viable expanded model.

It is certainly of great interest in the future work to relax the condition of minimal
signal strength required in Assumption 6. With the utility of the forward screening proce-
dure to establish a viable expanded model, Assumption 6 is a sufficient condition for the
proposed MOCE method. In Appendix B we use a simulation study to show numerically
that the assumption is not a necessary condition, as MOCE can still yield proper coverage
probabilities when some of signal strengths are close to zero. A better strategy than the
forward screening method, such as ABESS algorithm by Zhu et al. (2020), is worth further
exploration to improve the performance of model expansion for MOCE. In addition, our
extensive numerical experience has suggested that post-model selection inference based on
large-sample asymptotic distributions is challenged by the fact that weak signals may fall
in or fall out of a selected model in a certain random fashion. Although our model expan-
sion strategy can greatly alleviate such a swinging behavior, it remains a technical issue in
finite-sample situations. This swinging phenomenon essentially leads to a two-mode mix-
ture distribution in a finite-sample situation, instead of a unimodal asymptotic distribution.
It is worth studying the means of double bootstrap suggested by Efron (2014) to establish
an inference procedure for weak signals, in which the resulting inference may depart from
the reliance on asymptotic distributions.

Furthermore, one future research direction is to understand MOCE’s potential connec-
tion to elastic-net (Zou and Hastie, 2005). Because both MOCE and elastic-net perform a
combined regularization via `1-norm and `2-norm, there might exist a certain connection
between the two approaches; unveiling such relationship may point to a new direction of
future research. Another topic is related to Bootstrap tests based on MOCE estimator to
reduce a test’s sensitivity on the ridge tuning parameters and the expanded model. Fun-
damentally, it is of great interest to reexamine the Neyman-Pearson school of statistical
inference in connection to the superefficiency of null parameters when such parameters are
identified in the model selection analysis.

In summary, the new contributions of our MOCE useful in real-world applications in-
clude (i) MOCE allows to construct confidence interval with different lengths in light of
signal and null-signal parameters, leading to satisfactorily control type I error and im-
proved power; and (ii) MOCE enjoys fast computation and scalability under less stringent
regularity conditions.
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Appendix A. Technical Details

A.1 Proof of Lemma 3.1

Proof Let S = UDUT be the singular value decomposition of S, whose singular values
are arranged in D = diag{ρ(1), . . . , ρ(m), 0, . . . , 0} with ρ(1) ≥ · · · ≥ ρ(m) > 0 = ρ(m+1) =

· · · = ρ(p). Let τ−1/2Sτ−1/2 = U1DU
T
1 be the singular value decomposition of τ−1/2Sτ−1/2.

Denote U = τ 1/2U1. Then we have τ = UUT and S = UDUT . By some simple calculations
we obtain

‖Σ̂−1τ τ‖2F =tr
{

(D + I)−1(UTU)−1(D + I)−1UTU
}

=

p∑
j=1

1

(ρ(j) + 1)2
≤ max(p− n, 0) +

min(n, p)

(ρ(m) + 1)2
,

where the second equality holds due to the equation [(UTU)−1(D + I)−1UTU ]jj = 1
ρ(j)+1 .

Here [A]jj denotes the jth diagonal element of matrix A. Likewise,

‖Σ̂−1τ τ‖2F ≥ max(p− n, 0) +
min(n, p)

(ρ(1) + 1)2
.

By combining the above two inequalities, the first inequality with the Frobenius norm of
part (ii) follows. Now we turn to the proof of the second inequality. By Theorem 4.3.1 in
Horn and Johnson (2012), we know

ξ + ρ+min(τ ) ≤ ρ+min(Σ̂τ ) ≤ ρ+max(Σ̂τ ) ≤ ρ+max(S) + ρ+max(τ ),

where ξ = 0 if p > n and ξ = ρ+min(S) if p ≤ n. It follows immediately that

1

ρ+max(S) + ρ+max(τ )
≤ ρ+min(Σ̂−1τ ) ≤ ρ+max(Σ̂−1τ ) ≤ 1

ξ + ρ+min(τ )
.

Since Σ̂−1τ is positive definite, the largest element of Σ̂−1τ always occurs on its main diagonal,
equal to |Σ̂−1τ |∞ = max

1≤i≤p
eTi Σ̂−1τ ei, which satisfies

1

ρ+max(S) + ρ+max(τ )
≤ max

1≤j≤p
eTj Σ̂−1τ ej ≤

1

ξ + ρ+min(τ )
,
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where e1, . . . , ep are the standard basis of Euclidean Rp space. Because diagonal matrix
τ � 0 (positive-definite),

|Σ̂−1τ τ |∞ ≤ |Σ̂−1τ |∞|τ |∞ ≤
ρ+max(τ )

ξ + ρ+min(τ )
=


ρ+max(τ )

ρ+min(τ )
, if p > n;

ρ+max(τ )

ρ+min(S)+ρ
+
min(τ )

, if p ≤ n,

and

|Σ̂−1τ τ |∞ ≥
ρ+min(τ )

ρ+max(S) + ρ+max(τ )
.

Then the inequality in part (ii) for the ∞-norm follows.

A.2 Proof of Lemma 4.1

Proof By the expression of ra in (4.6), it suffices to show that three terms I11, I12 and
I13 are all of order op(1/

√
n). Similarly, by the expression of rc in (4.9), the order of rc is

established if both terms I21 and I22ra are all at the order of op(1/
√
n).

For term I11, it follows from Assumptions 1-2 and (4.11) that

‖I11‖2 ≤ ‖I11‖1 ≤ |Σ̂−1ÃÃτ a|∞‖β̂Ã − β
∗
Ã‖1 ≤ Op

(
ρ+max(τ a)

√
log p

n
s0

)
= op(1/

√
n), (A.1)

where the third inequality holds from Lemma 3.1 with s̃ < n and ρ+min(SÃÃ) being bounded
from below by Assumption 2.

For term I12, because of P ({Â ∪ A} ⊆ Ã) → 1, we know β̂Btn∩Â = 0 with probabil-

ity 1. Thus, from Assumptions 1 and 2 and (4.11), we further know ‖Σ̂−1ÃÃSÃ,Btn∩Â‖2 ≤√
λmax(s̃)λmax(ŝ)

λmin(s̃)+ρ
+
min(τa)

= Op(1), and therefore

‖I12‖2 = ‖Σ̂−1ÃÃSÃ,Btn∩Âβ̂Btn∩Â‖2 ≤ Op(1)‖β̂Btn∩Â‖2 = 0. (A.2)

Similar to the proof of term I12, P ({Â ∪ A} ⊆ Ã) → 1 leads to Bfn = ∅, ‖β∗Bfn‖2 = 0

and ‖β̂Bfn‖2 = 0 with probability 1. Thus, from Assumptions 1 and 2 and (4.11) we obtain

‖Σ̂−1ÃÃSÃBfn‖2 ≤
√
λmax(s̃)λmax(bfn)

λmin(s̃)+ρ
+
min(τa)

= Op(1) and

‖I13‖2 ≤ Op(1)‖β̂Bfn − β
∗
Bfn‖2 = 0. (A.3)

Thus, (A.1), (A.2) and (A.3) lead to ‖ra‖2 = op(1/
√
n).

Now we turn to the term rc. For term I21, it follows from (4.11) and P ({Â∪A} ⊆ Ã)→ 1
that ‖Σ̂−1ÃcÃcτ c‖2 ≤ 1 and ‖β̂Ãc − β∗Ãc‖2 = 0 with probability 1. Thus,

0 ≤ ‖I21‖2 ≤ ‖Σ̂−1ÃcÃcτ c‖2‖β̂Ãc − β
∗
Ãc‖2 ≤ 0. (A.4)
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For term I22ra, under (4.11), ‖ra‖2 = op(1/
√
n) and Assumptions 1 and 2, we obtain

‖Σ̂−1ÃcÃc‖2‖SÃcÃ‖2 ≤
√
λmax(s̃)λmax(p−s̃)

ρ+min(τ c)
= Op(1) and

‖I22ra‖2 ≤ ‖Σ̂−1ÃcÃc‖2‖SÃcÃ‖2‖ra‖2 ≤ Op(1)‖ra‖2 = op(1/
√
n). (A.5)

Therefore, (A.4) and (A.5) complete the proof for order of ‖rc‖2 being op(1/
√
n).

A.3 Proof of Corollary 4.1

Proof Using similar arguments in Lemma 3.1, we know the minimal variance of estimator
β̂Ãτa satisfies

min
1≤i≤s̃

eTi Σ̂−1ÃÃSÃÃΣ̂−1ÃÃei ≥ ρ+min(Σ̂−1ÃÃSÃÃΣ̂−1ÃÃ) ≥ ρ+min(SÃÃ)

(ρ+min(SÃÃ) + τa)2
.

It is easy to verify that

σ2Σ̂−1ÃcÃcSÃcÃcΣ̂
−1
ÃcÃc � σ

2
[
L−1S(L−1)T

]
ÃcÃc .

Consequently, we can prove the result by assessing the diagonal entries of Σ̂−1ÃcÃcSÃcÃcΣ̂
−1
ÃcÃc .

The maximal variance of estimator β̂Ãcτ c is bounded by

max
1≤i≤p−s̃

(e⊥i )T Σ̂−1ÃcÃcSÃcÃcΣ̂
−1
ÃcÃce

⊥
i ≤ ρ+max(Σ̂−1ÃcÃcSÃcÃcΣ̂

−1
ÃcÃc) ≤

ρ+max(SÃcÃc)

τ2c
.

Therefore, assumptions for τa and τc in Theorem 4.1 imply

min
1≤i≤s̃

eTi Σ̂−1ÃÃSÃÃΣ̂−1ÃÃei ≥
c1

ρ+min(SÃÃ)
≥ c2

ρ+max(SÃÃ)
≥

max
1≤i≤p−s̃

(e⊥i )T Σ̂−1ÃcÃcSÃcÃcΣ̂
−1
ÃcÃce

⊥
i ,

where c1 and c2 are two positive constants.

A.4 Proof of Corollary 4.2

Proof Assumptions 2 and 5 and conditions for τa and τc imply that on Ã there exists

‖β̂Ãτa − β
∗
Ã‖2 ≤ ‖Σ̂

−1
ÃÃ‖2

1

n
‖XT
Ãε‖2 + ‖ra‖2

≤ ‖Σ̂−1ÃÃ‖2
√
s̃

1

n
‖XT
Ãε‖∞ + op(1/

√
n)

≤ Op(
√
s̃ log s̃/n)

λmin(s̃) + τa
+ op(1/

√
n) = Op(

√
s̃ log s̃/n).
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Similarly on Ãc, based on the same assumptions, we obtain

‖β̂Ãcτ c − β
∗
Ãc‖2 ≤‖Σ̂

−1
ÃcÃc‖2

1

n
‖XT
Ãcε− SÃcÃΣ̂−1ÃÃX

T
Ãε‖2 + ‖rc‖2

=‖Σ̂−1ÃcÃc‖2
1

n
‖XT
Ãc(In −

1

n
XÃΣ̂−1ÃÃX

T
Ã)ε‖2 + op(1/

√
n)

≤‖Σ̂−1ÃcÃc‖2
λmax(s̃)

λmax(s̃) + τa

√
p− s̃ 1

n
‖XT
Ãcε‖∞ + op(1/

√
n)

≤ 1

τc

λmax(s̃)

λmax(s̃) + τa

√
(p− s̃) log(p− s̃)/n+ op(1/

√
n)

=op(max{1/√n,
√

(p− s̃) log(p− s̃)/n/τc}).

A.5 Proof of Theorem 4.2

Proof Following similar arguments to the proof of Theorem 4.1, we have

√
ndT (β̂τ − β∗) =

1√
n
dTL−1τ XT ε+

√
ndTÃra +

√
ndTÃcrc =

1√
n

n∑
i=1

wiεi + op(1).

From Assumption 4 the Lindeberg’s Condition holds because for any δ > 0, as n→∞,

n∑
i=1

E
{w2

i

v2
ε2i1(

∣∣∣wi
v
εi

∣∣∣ > δ)
}
≤

n∑
i=1

E
( |wi|r
vr
|εi|r

1

δr−2

)
≤ n max

1≤i≤n

( |wi|2∑n
i=1w

2
i σ

2

)r/2max1≤i≤n E|εi|r
δr−2

→ 0.

The Lindeberg Central Limit Theorem implies that 1√
n
v−1dTL−1τ XT ε converges in distri-

bution to N(0, 1).

A.6 Proof of Theorem 4.3

Proof Let Mn = nβ̂
T

τGβ̂τG − σ2tr(Σ̂GG). Theorem 4.1 implies that
√
n(β̂τG − β0,G)

d→
N(0, σ2Σ∗GG), which further indicates EMn → 0 given assumptions in Theorem 4.3. Fur-
thermore, we can verify that var(M2) = 2σ4tr{Σ∗GGΣ∗GG}. Applying the same arguments
given by Bai and Saranadasa (1996), we can show Wbs converges in distribution to N(0, 1)
as n→∞.

A.7 Proof of Proposition 5.1

Proof If suffices to verify that Lemma 1 in Wang (2009) holds under Assumption 6. It
follows from Wang’s Lemma 1 that (5.3) holds. Moreover, both (5.2) and (5.4) are resulted
from applying Theorem 1 in Wang (2009).
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Now we prove Wang’s Lemma 1. According to Theorems 4.1 and 4.2 in Kuchibhotla
and Chakrabortty (2020), under Assumptions (6.a) and (6.d), we know that ‖S − Σ‖∞ =

Op(
√

t+2 log p
n ) if log p = o(n(log n)−2). Thus, the convergence rate of ‖S − Σ‖∞ in the

marginal sub-Gaussian case is of the same order as that of the Gaussian distribution. Then,
Lemma 1 in Wang (2009) can be proved under Assumption 6 by following the same argu-
ments as those given in Wang (2009).

From Assumption (6.d), nξ = o(n(log n)−2) and ξ + 6ξ0 + 12ξb < 1, we know 0 < ξ < 1,

ξ0 ∈ (0, 1/6), ξb ∈ (0, 1/12) and ξ + ξ0 < 1. Thus, νnξ0
n/ log p = ν2nξ0+ξ−1 = o(1). Because

2ξ0 + 4ξb < 2/3 and ŝ = O(s0), it is easy to know n2ξ0+4ξb = o(n) and ŝ = o(n2ξ0+4ξb).
Thus, (5.5) holds.

Appendix B. An Additional Simulation

Similar to the simulation settings given in Section 6.2, here we set p = 400, n = 300, and
α = 0.5. Among s0 signal parameters, s0−sw parameters are simulated from U(0.1, 0.5) (i.e.
strong signals), and the other sw parameters are such small signals simulated from U(0, 0.02)
that may be arbitrarily close to zero. Results from MOCE and LDP are summarized in the
following Table 7. We see that MOCE performs well with the coverage probability close to
the nominal level, while LDP remains contentious for inference on the signal set.

MOCE LDP

Set CP95 CP99 Bias ASE CP95 CP99 Bias ASE

A 0.9472 0.9868 -0.0003 0.0451 0.9044 0.9740 0.0172 0.0347

Ac 0.9457 0.9860 0.0001 0.0626 0.9513 0.9906 -0.0007 0.0351

Table 7: In the setting of s0 = 5, sw = 2 and α = 0.5, summary statistics of Bias, ASE,
coverage probability (CP95 and CP99) and length of the confidence interval (LEN)
for inference in individual parameters based on MOCE and LDP over 500 rounds
of simulations.
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