
Journal of Machine Learning Research 22 (2021) 1-67 Submitted 9/20; Revised 8/21; Published 11/21

Adversarial Monte Carlo Meta-Learning of Optimal
Prediction Procedures

Alex Luedtke aluedtke@uw.edu
Incheoul Chung ic247@uw.edu
Department of Statistics
University of Washington
Seattle, WA 98195-4322, USA

Oleg Sofrygin oleg.sofrygin@kp.org

Division of Research

Kaiser Permanente Northern California

Oakland, CA 94612-2304, USA

Editor: Philipp Hennig

Abstract

We frame the meta-learning of prediction procedures as a search for an optimal strategy in
a two-player game. In this game, Nature selects a prior over distributions that generate
labeled data consisting of features and an associated outcome, and the Predictor observes
data sampled from a distribution drawn from this prior. The Predictor’s objective is to
learn a function that maps from a new feature to an estimate of the associated outcome.
We establish that, under reasonable conditions, the Predictor has an optimal strategy that
is equivariant to shifts and rescalings of the outcome and is invariant to permutations of
the observations and to shifts, rescalings, and permutations of the features. We introduce a
neural network architecture that satisfies these properties. The proposed strategy performs
favorably compared to standard practice in both parametric and nonparametric experiments.

1. Introduction

1.1 Problem Formulation

Consider a dataset consisting of n ≥ 2 observations (X1, Y1), . . . , (Xn, Yn) drawn inde-
pendently from a distribution P belonging to some known model P, where each Xi is a
continuously distributed feature with support contained in X := Rp and each Yi is an
outcome with support contained in Y := R. This dataset can be written as D := (X,Y ),
where X is the n × p matrix for which row i contains Xi and Y is the n-dimensional
vector for which entry i contains Yi. The support of D is contained in D := X n × Yn.
The objective is to develop an estimator of the regression function µP that maps from
x0 to EP [Y |X = x0]. An estimator T belongs to the collection T of operators that take

The authors thank Devin Didericksen for help in the early stages of this project. Generous support was
provided by Amazon through an AWS Machine Learning Research Award and the NIH under award number
DP2-LM013340. The content is solely the responsibility of the authors and does not necessarily represent the
official views of Amazon or the NIH.

c©2021 Alex Luedtke, Incheoul Chung, and Oleg Sofrygin.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-1065.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-1065.html


Luedtke, Chung, and Sofrygin

as input a dataset d := (x,y) and output a prediction function T (d) : X → R, where
here and throughout we use d = (x,y) to denote a possible realization of the random
variable D = (X,Y ). Examples of estimators include the generalized linear models (Nelder
and Wedderburn, 1972), random forests (Breiman, 2001), and gradient boosting machines
(Friedman, 2001). We will also refer to estimators as prediction procedures. We focus on the
case that the performance of an estimator is quantified via the standardized mean-squared
error (MSE), namely

R(T, P ) := EP

[∫
[T (D)(x0)−µP (x0)]2

σ2
P

dPX(x0)

]
, (1)

where the expectation above is over the draw of D under sampling from P , PX denotes
the marginal distribution of X implied by P , and σ2

P denotes the variance of the error
εP := Y − µP (X) when (X,Y ) ∼ P . Note that εP may be heteroscedastic. Throughout we
assume that, for all P ∈ P , EP [Y 2] <∞ and εP is a continuous random variable. Note that
the continuity of εP implies that Y is continuous and that σ2

P > 0.
In practice, the distribution P is not known, and therefore the risk R(T, P ) of a given

estimator T is also not known. We now describe three existing criteria for judging the
performance of T that do not rely on knowledge of P . The first criterion is the maximal risk
supP∈P R(T, P ). If T minimizes the maximal risk over T , then T is referred to as a minimax
estimator (Wald, 1945). Minimax estimators optimize for the worst-case scenario wherein
the distribution P is chosen adversarially in such a way that the selected estimator performs
as poorly as possible. The second criterion is Bayesian in nature, namely the average
of the risk R(T, P ) over draws of P from a given prior Π on P. Specifically, this Bayes
risk is defined as r(T,Π) := EΠ[R(T, P )] (Robert, 2007). A Π-Bayes estimator optimally
incorporates the prior beliefs encoded in Π with respect to the Bayes risk r(·,Π) — more
concretely, an estimator T is referred to as a Π-Bayes estimator if it minimizes the Bayes
risk over T . Though the optimality property of Bayes estimators is useful in settings where
Π only encodes substantive prior knowledge, its utility is less clear otherwise. Indeed, as
the function r(·,Π) generally depends on the choice of Π, it is possible that a Π-Bayes
estimator T is meaningfully suboptimal with respect to some other prior Π′, that is, that
r(T,Π)� infT ′ r(T

′,Π′). This phenomenon can be especially common when the sample size
is small or the model is nonparametric. In fact, in the latter case, Bayes estimators against
particular priors Π can easily be inconsistent even though consistent frequentist estimators
are available (Ghosal and Van der Vaart, 2017) — for such priors, Bayes estimators perform
poorly even when the sample size is large. Therefore, in settings where there is no substantive
reason to favor a particular choice of Π, it is sensible to seek another approach for judging
the performance of T . A natural criterion is the worst-case Bayes risk of T over some
user-specified collection Γ of priors, namely supΠ∈Γ r(T,Π). This criterion is referred to as
the Γ-maximal Bayes risk of T . The collection Γ may be restricted to contain all priors that
are compatible with available prior information, such as knowledge about the smoothness of
a regression function, while being left large enough to acknowledge that prior knowledge may
be too vague to encode within a single prior distribution (see Section 3.6 of Robert, 2007,
for more possible forms of vague prior information). If T is a minimizer of the Γ-maximal
Bayes risk, then T is referred to as a Γ-minimax estimator (Berger, 1985). Such estimators
can be viewed as the optimal strategy in a sequential two-player game between a Predictor

2



AMC Meta-Learning of Optimal Prediction Procedures

and Nature, where the Predictor selects an estimator and Nature then selects a prior in Γ at
which the Predictor’s chosen estimator performs as poorly as possible in terms of Bayes risk.
Notably, in settings where Γ contains all distributions with support in P, the Γ-maximal
Bayes risk is equivalent to the maximal risk. Consequently, in this special case, an estimator
is Γ-minimax if and only if it is minimax. In settings where Γ = {Π}, an estimator is
Γ-minimax if and only if it is Π-Bayes. Therefore, by allowing for a choice of Γ as large as
the unrestricted set of all possible distributions or as small as a singleton set, Γ-minimaxity
provides a means of interpolating between the minimax and Bayesian criteria.

Though Γ-minimax estimators represent an appealing compromise between the Bayesian
and minimax paradigms, they have seen limited use in practice because they are rarely
available in closed form. In this work, we aim to overcome this challenge in the context of
prediction by providing an iterative strategy for learning Γ-minimax prediction procedures.
Due to the potentially high computational cost of this iterative scheme, a key focus of our
work involves identifying conditions under which we can identify a small subclass of T that
still contains a Γ-minimax estimator. This then makes it possible to optimize over this
subclass, which we show in our experiments can dramatically improve the performance of
our iterative scheme given a fixed computational budget.

Hereafter we refer to Γ-minimax estimators as ‘optimal’, where it is to be understood
that this notion of optimality relies on the choice of Γ.

1.2 Overview of Our Strategy and Our Contributions

Our strategy builds on two key results, each of which will be established later in this work.
First, under conditions on T and Γ, there exists a Γ-minimax estimator in the subclass
Te ⊂ T of estimators that are equivariant to shifts and rescalings of the outcome and are
invariant to permutations of the observations and to shifts, rescalings, and permutations of
the features. Second, under further conditions, there is an equilibrium point (T ?,Π?) ∈ Te×Γ
such that

sup
Π∈Γ

r(T ?,Π) = r(T ?,Π?) = inf
T∈Te

r(T,Π?). (2)

Upper bounding the right-hand side by supΠ∈Γ infT∈Te r(T,Π) and applying the max-min
inequality shows that T ? is Γ-minimax. To find an equilibrium numerically, we propose
to use adversarial Monte Carlo meta-learning (AMC) (Luedtke et al., 2020) to iteratively
update an estimator in Te and a prior in Γ. AMC is a form of stochastic gradient descent
ascent (e.g., Lin et al., 2019) that can be used to learn optimal statistical procedures in
general decision problems.

We make the following contributions:

• In Section 2, we characterize several equivariance properties of optimal estimators for a
wide range of (T ,Γ).

• In Section 3, we present a general framework for adversarially learning optimal prediction
procedures.

• In Section 4, we present a novel neural network architecture for parameterizing estimators
that satisfy the equivariance properties established in Section 2.

3



Luedtke, Chung, and Sofrygin

• In Section 5, we apply our algorithm in two settings and learn estimators that outper-
form standard approaches in numerical experiments. In Section 6, we also evaluate the
performance of these learned estimators in data experiments.

All proofs for the results in the above sections can be found in Section 7. Section 8 describes
possible extensions and provides concluding remarks.

To maximize the accessibility of our main theoretical results, we do not use group
theoretic notation when presenting them in Sections 2 through 4. However, when proving
these results, we will heavily rely on tools from group theory; consequently, we adopt this
notation in Section 7.

1.3 Related Works

The approach proposed in this work is a form of meta-learning (Schmidhuber, 1987; Thrun
and Pratt, 1998; Vilalta and Drissi, 2002), where here each task is a regression problem. Most
existing works in this area pursue a task-distribution strategy to meta-learning (Hospedales
et al., 2020), where the objective is to minimize the average loss (risk) across draws of tasks
from some specified distribution. As we will now show, the objective function employed in
such strategies in fact corresponds to a Bayes risk. In regression problems, each task is a
tuple containing a dataset d and a task-dependent loss L : D×T → R. For a given prior Π,
a draw from the task distribution can be obtained by first sampling P ∼ Π, next sampling
a dataset D of independent observations from P , drawing an evaluation point X0 ∼ PX ,
and finally defining the loss by L(d, T ) = [T (d)(X0)− µP (X0)]2/σ2

P or some related loss,
such as a squared error loss that does not standardize by σ2

P . The objective function is then
equal to T 7→ E[L(D, T )], where the expectation is over the draw of (D,L) from the task
distribution. This objective function is exactly equal to the Bayes risk function T 7→ r(T,Π).
Hence, existing meta-learning approaches for regression problems whose objective functions
take this form can be viewed as optimizing a Bayes risk.

We now review existing meta-learning strategies, starting with those that parameterize
T as a neural network class. Hochreiter et al. (2001) advocated parameterizing T as a
collection of long short-term (LSTM) networks (Hochreiter and Schmidhuber, 1997). More
recent works have advocated using memory-augmented neural networks (Santoro et al.,
2016) or conditional neural processes (CNPs) (Garnelo et al., 2018) rather than LSTMs in
meta-learning tasks. There have also been other works on the meta-learning of supervised
learning procedures that are parameterized as neural networks (Bosc, 2016; Vinyals et al.,
2016; Ravi and Larochelle, 2017). Compared to these works, we adversarially learn a prior
Π from a collection Γ of priors, and we also formally characterize equivariance properties
that will be satisfied by any optimal prediction procedure in a wide variety of problems.
This characterization leads us to develop a neural network architecture designed for the
prediction settings that we consider.

Model-agnostic meta-learning (MAML) is another popular meta-learning approach (Finn
et al., 2017). In our setting, MAML aims to initialize the weights of a regression function
estimate (parameterized as a neural network, for example) in such a way that, on any
new task, only a limited number of gradient updates are needed. More recent approaches
leverage the fact that, in certain settings, the initial estimate can instead be updated using
a convex optimization algorithm (Bertinetto et al., 2018; Lee et al., 2019). To run any of

4



AMC Meta-Learning of Optimal Prediction Procedures

these approaches, a prespecified prior over tasks is required. In our setting, these tasks take
the form of data-generating distributions P . In contrast to MAML and related approaches,
our proposal adversarially selects a prior from Γ.

Two recent works (Yin et al., 2018; Goldblum et al., 2019) developed meta-learning
procedures that are trained under a different adversarial regime than that studied in the
current work, namely under adversarial manipulation of one or both of the dataset d and
evaluation point x0 (Dalvi et al., 2004). This adversarial framework appears to be most
useful when there truly is a malicious agent that aims to contaminate the data, which is
not the case that we consider. In contrast, in our setting, the adversarial nature of our
framework allows us to ensure that our procedure will perform well regardless of the true
value of P , while also taking into account prior knowledge that we may have.

Our approach is also related to existing works in the statistics and econometrics literatures
on the numerical learning of minimax and Γ-minimax statistical decision rules. In finite-
dimensional models, early works showed that it is possible to numerically learn minimax
rules (Nelson, 1966; Kempthorne, 1987) and, in settings where Γ consists of all priors that
satisfy a finite number of generalized moment conditions, Γ-minimax rules (Noubiap and
Seidel, 2001). Other works have studied the Γ-minimax case where Γ consists of priors
that only place mass on a pre-specified finite set of distributions in P, both for general
decision problems (Chamberlain, 2000) and for constructing confidence intervals (Schafer
and Stark, 2009). Defining Γ in this fashion modifies the statistical model P to only consist
of finitely many distributions, which can be restrictive. A recent work introduced a new
approach, termed AMC, for learning minimax procedures for general models P (Luedtke
et al., 2020). In contrast to earlier works, AMC does not require the explicit computation of
a Bayes estimator under any given prior, thereby improving the feasibility of this approach
in moderate-to-high dimensional models. In their experiments, Luedtke et al. (2020) used
neural network classes to define the sets of allowable statistical procedures. Unlike the
current work, none of the aforementioned studies identified or leveraged the equivariance
properties that characterize optimal procedures. As we will see in our experiments, leveraging
these properties can dramatically improve performance.

1.4 Notation

We now introduce the notation and conventions that we use. For a function f : P → P, we
let Π ◦ f−1 denote the pushforward measure that is defined as the distribution of f(P ) when
P ∼ Π. For any dataset d = (x,y) and mapping f with domain D, we let f(x,y) := f(d).
We take all vectors to be column vectors when they are involved in matrix operations.
We write � to mean the entrywise product and a�2 to mean a � a. For an m1 × m2

matrix a, we let ai∗ denote the ith row, a∗j denote the jth column, ā := 1
m1

∑m1
i=1 ai∗, and

s(a)2 := 1
m1

∑m1
i=1(ai∗ − ā)�2. When we standardize a vector a as [a − ā]/s(a), we always

use the convention that 0/0 = 0. We write [a | b] to denote the column concatenation of two
matrices. For an m1 ×m2 ×m3 array a, we let ai∗∗ denote the m2 ×m3 matrix with entry
(j, k) equal to aijk, ai∗k denote the m2-dimensional vector with entry j equal to aijk, etc.
For a ∈ R and b ∈ Rk, we write a+ b to mean a1k + b.

5



Luedtke, Chung, and Sofrygin

2. Characterization of Optimal Procedures

2.1 Optimality of Equivariant Estimators

We start by presenting conditions that we impose on the collection of priors Γ. Let A denote
the collection of all n× n permutation matrices, and let B denote the collection of all p× p
permutation matrices. We suppose that Γ is preserved under the following transformations:

P1. Permutations of features: Π ∈ Γ and B ∈ B implies that Π ◦ f−1
1 ∈ Γ, where f1(P ) is

the distribution of (BX,Y ) when (X,Y ) ∼ P .

P2. Shifts and rescalings of features: Π ∈ Γ, a ∈ Rp, and b ∈ (R+)p implies that Π◦f−1
2 ∈ Γ,

where f2(P ) is the distribution of (a+ b�X,Y ) when (X,Y ) ∼ P .

P3. Shift and rescaling of outcome: Π ∈ Γ and ã ∈ R and b̃ > 0 implies that Π ◦ f−1
3 ∈ Γ,

where f3(P ) is the distribution of (X, ã+ b̃Y ) when (X,Y ) ∼ P .

The above conditions implicitly encode that f1(P ), f2(P ), and f3(P ) all belong to P
whenever P ∈ P. Section 7.1 provides an alternative characterization of P1, P2, and P3 in
terms of the preservation of Γ under a certain group action.

Condition P1 ensures that permuting the features during preprocessing will not impact
the collection of priors considered. This condition is reasonable in settings where there
is only a limited prior understanding of each individual feature under consideration or,
if such information is available, there is little anticipated benefit from including it in the
analysis. Most commonly used supervised machine learning algorithms similarly do not
incorporate specific prior information about individual features, and are instead designed
to work across a variety of settings — this is the case, for example, for commonly used
implementations of random forests, extreme gradient boosting, and penalized linear models
(Pedregosa et al., 2011; Chen and Guestrin, 2016). It is worth noting, however, that P1
still allows information on the features to be incorporated should it be available — for
example, prior beliefs on the multivariate feature distribution, such as the number of modes
that it has, or the regression function, such as its level of sparsity, can be imposed in the
collection Γ of prior distributions. Conditions P2 and P3 are imposed to ensure that the
Γ-maximal risk criterion captures the possibility that the data may be preprocessed via affine
transformations, such as prestandardization or a change of the unit of measure (Fahrenheit
to Celsius, say), before being supplied to the prediction algorithm. By having Γ be large
enough to ensure that P2 and P3 are satisfied, the Γ-minimax risk reflects performance in an
adversarial setting wherein affine transformations are applied to the features and outcome in
such a way as to make the (Bayes) risk as large as possible for a given prediction algorithm.
Because it minimizes this adversarial criterion, a Γ-minimax estimator should be robust to
such adversarial transformations, thereby ensuring satisfactory performance regardless of
the chosen unit of measure or prestandardization scheme.

We also assume that the signal-to-noise ratio (SNR) is finite — this condition is important
in light of the fact that the MSE risk that we consider standardizes by σ2

P .

P4. Finite SNR: supP∈P varP (µP (X))/σ2
P <∞.

6



AMC Meta-Learning of Optimal Prediction Procedures

We now present conditions that we impose on the class of estimators T . In what follows
we let D0 := {(d, x0) ∈ D × X : s(y) 6= 0, s(x) 6= 0p}. For (d, x0) ∈ D0, we let

z(d, x0) :=

(
x− x̄

s(x)
,
y − ȳ

s(y)
,
x0 − x̄

s(x)
,

x̄

s(x)
,

ȳ

s(y)
, log s(x), log s(y)

)
,

where log s(x) is the vector where log is applied entrywise and where we abuse notation and
let x−x̄

s(x) represent the n× p matrix for which row i is equal to [xi − x̄]/s(x), and similarly

for x̄/s(x). We let Z := {z(d, x0) : (d, x0) ∈ D0}. When it will not cause confusion, we will
write z := z(d, x0). Fix T ∈ T . Let ST : Z → R denote the unique function that satisfies

T (d)(x0) = ȳ + s(y)ST (z) for all (d, x0) ∈ D0. (3)

The uniqueness arises because s(y) 6= 0 on D0. Because we have assumed that X and Y are
continuous random variables under sampling from any P ∈ P , it follows that, for all P ∈ P ,
the class S := {ST : T ∈ T } uniquely characterizes the functions in T up to their behavior
on subsets of D × X of P -probability zero. In what follows, we will impose smoothness
constraints on S, which in turn imposes constraints on T . The first three conditions suffice
to show that S is compact in the space C(Z,R) of continuous Z → R functions equipped
with the compact-open topology.

T1. S is pointwise bounded: For all z ∈ Z, supS∈S |S(z)| <∞.

T2. S is locally Hölder: For all compact sets K ⊂ Z, there exists an α ∈ (0, 1) such that

sup
S∈S,z 6=z′∈K

|S(z)− S(z′)|
‖z − z′‖α2

<∞,

where ‖ · ‖2 denotes the Euclidean norm. We take the supremum to be zero if K is a
singleton or is empty.

T3. S is sequentially closed in the topology of compact convergence: If {Sj}∞j=1 is a sequence
in S and Sj → S compactly in the sense that, for all compact K ⊂ Z, supz∈K |Sj(z)−
S(z)| → 0, then S ∈ S.

The following conditions ensure that S is invariant to certain preprocessings of the data, in
the sense that, for any function S ∈ S, the function that first preprocesses the data in an
appropriate fashion and then applies S to this data is itself in S. When formulating these
conditions, we write z(d, x0) to mean an element of Z. Because z is a bijection between
D0 and Z, it is possible to recover (d, x0) from z(d, x0). Below we use this fact to abuse
notation and define functions with domain Z like z(d, x0) 7→ g(d, x0) for functions g with
domain D0, without explicitly introducing notation for the inverse of z.

T4. Permutations: For all S ∈ S, A ∈ A, and B ∈ B, z(d, x0) 7→ S(z((AxB,Ay), B>x0))
is in S.

T5. Shifts and rescalings: For all S ∈ S, a ∈ Rp, b ∈ (R+)p, ã ∈ R, and b̃ > 0, the function
z(d, x0) 7→ S(z((xa,b, ã+ b̃y), a+ b� x0)) is in S, where xa,b is the n× p matrix with
row i equal to a+ b� xi∗.

7



Luedtke, Chung, and Sofrygin

In Appendix B, we provide two examples of classes S that satisfy Conditions T1-T5. One
of these classes is finite-dimensional and the other is infinite-dimensional. The infinite-
dimensional class takes a particularly simple form. In particular, for some c, α > 0 and some
function F : Z → R+ that is invariant to permutations, shifts, and rescalings, we consider
the class S to be the collection of all the collection of all S : Z → R such that |S(z)| ≤ F (z)
and |S(z)− S(z′)| ≤ c‖z − z′‖α2 for all z, z′ ∈ Z.

Let Te ⊆ T denote the class of estimators that are equivariant to shifts and rescalings of
the outcome and are invariant to permutations of the observations and to shifts, rescalings,
and permutations of the features. Specifically, Te consists of functions in T satisfying the
following properties for all pairs (d, x0) of datasets and features in D0, permutation matrices
A ∈ A and B ∈ B, shifts a ∈ Rp and ã ∈ R, and rescalings b ∈ (R+)p and b̃ > 0:

T (AxB,Ay)(B>x0) = T (d)(x0), (4)

T (xa,b, ã+ b̃y)(a+ b� x0) = ã+ b̃T (d)(x0), (5)

The following result shows that the Γ-maximal risk is the same over T and Te ⊆ T .

Theorem 1 Under P1-P4 and T1-T5,

inf
T∈T

sup
Π∈Γ

r(T,Π) = inf
T∈Te

sup
Π∈Γ

r(T,Π).

The above does not rule out the possibility that there exists a non-equivariant Γ-minimax
estimator, that is, a Γ-minimax estimator that belongs to T \Te. Rather, when paired with
additional conditions that ensure that the infimum over Te above is achieved (see Theorem 3),
the above implies that Te contains at least one Γ-minimax estimator.

Theorem 1 is a variant of the Hunt-Stein theorem (Hunt and Stein, 1946). Our proof,
which draws inspiration from Le Cam (2012), consists in showing that our prediction
problem is invariant to the action of an amenable group and subsequently applying Day’s
fixed-point theorem (Day, 1961) to show that, for all T ∈ T , the collection of T ′ for which
supΠ∈Γ r(T

′,Π) ≤ supΠ∈Γ r(T,Π) has nonempty intersection with Te.
This theorem has a natural analogy to the translation equivariance that is enjoyed by

convolutional neural networks in object detection problems, where the goal is to classify and
draw a bounding box around objects in an image (Russakovsky et al., 2015). To simplify the
discussion, here we focus on the special case where there is only one object class of interest
(e.g., humans), so that the goal is simply to draw a bounding box around each object. In
object detection settings, a key insight is that an object’s class does not change even if its
position is shifted. Given this insight, it seems reasonable to expect that any sufficiently
rich collection of candidate detectors will be such that, given any object detector V , the
collection will contain a translation equivariant detector with equal or superior performance
to that of V . For this to be true, certain requirements are also generally needed of the
loss function used to measure performance. In particular, the error accrued by incorrectly
bounding or failing to bound an object should not depend on the position of that object in
the image — this condition is satisfied by many loss functions that are commonly used in
this setting. In our setting, conditions P1-P3, which say that a prior still belongs to Γ even
after certain transformations are applied to the distributions drawn from that prior, are the
analogues of the translation invariance property of an object’s class (“a human remains a

8



AMC Meta-Learning of Optimal Prediction Procedures

human if they are shifted to the left, and the pushforward of a prior in Γ remains in Γ even
if features and outcomes are permuted, shifted, or rescaled”); conditions T4 and T5 are the
analogues of the requirement that the collection of detectors be sufficiently rich; and the
fact that the standardized squared error [T (d)(x0)− µP (x0)]2/σ2

P does not depend on the
particular ordering of the features or the centering or scaling of the features or outcomes is
analogous to the translation invariance of the loss functions used in object detection.

2.2 Focusing Only on Distributions with Standardized Predictors and
Outcome

Theorem 1 suggests restricting attention to estimators in Te when trying to learn a Γ-minimax
estimator. We now show that, once this restriction has been made, it also suffices to restrict
attention to a smaller collection of priors Γ1 when identifying a least favorable prior. In fact,
we show something slightly stronger, namely that the restriction to Γ1 can be made even if
optimal estimators are sought over the richer class T̃e ⊇ Te of estimators that satisfy the
equivariance property (5) but do not necessarily satisfy (4).

We now define Γ1. Let h(P ) denote the distribution of((
Xj − EP [Xj ]

varP (Xj)1/2

)p
j=1

,
Y − EP [Y ]

σP

)

when (X,Y ) ∼ P . Note that here, and here only, we have written Xj to denote the jth

feature rather than the jth observation. Also let Γ1 := {Π ◦ h−1 : Π ∈ Γ}, which is a
collection of priors on P1 := {h(P ) : P ∈ P}.

Theorem 2 If P2 and P3 hold and all T ∈ T satisfy (5), then T ? is Γ-minimax if and only
if it is Γ1-minimax.

We conclude by noting that, under P2 and P3, P1 consists precisely of those P ∈ P that
satisfy:

EP [X] = 0p, EP [X�2] = 1p, EP [Y ] = 0, σ2
P = 1. (6)

2.3 Existence of an Equilibrium Point

We also make the following additional assumption on S.

T6. S is convex: S1, S2 ∈ S and δ ∈ (0, 1) implies that z 7→ δS1(z) + (1− δ)S2(z) is in S.

The two examples in Appendix B also satisfy T6.

We also impose the following condition on the size of the collection of distributions P1

and the collection of priors Γ1, which in turn imposes restrictions on P and Γ.

P5. There exists a metric ρ on P1 such that (i) (P1, ρ) is a complete separable metric
space, (ii) Γ1 is tight in the sense that, for all ε > 0, there exists a compact set K in
(P1, ρ) such that Π(K) ≥ 1− ε for all Π ∈ Γ1, and (iii) for all T ∈ Te, P 7→ R(T, P ) is
upper semi-continuous and bounded from above on (P1, ρ).

9



Luedtke, Chung, and Sofrygin

In Appendix C, we give examples of parametric and nonparametric settings where P5 is
applicable.

So far, the only conditions that we have required on the σ-algebra A of P are that h
and R(T, ·), T ∈ T , are measurable. In this subsection, and in this subsection only, we add
the assumptions that P5 holds and that A is such that {A ∩P1 : A ∈ A } equals B1, where
B1 is the collection of Borel sets on (P1, ρ).

We will also assume the following two conditions on Γ1.

P6. Γ1 is closed in the topology of weak convergence: if {Πj}∞j=1 is a sequence in Γ1 that
converges weakly to Π, then Π ∈ Γ1.

P7. Γ1 is convex: for all Π1,Π2 ∈ Γ and α ∈ (0, 1), the mixture distribution αΠ1+(1−α)Π2

is in Γ.

Under Conditions P5 and P6, Prokhorov’s theorem (Billingsley, 1999) can be used to
establish that Γ1 is compact in the topology of weak convergence. This compactness will be
useful for proving the following result, which shows that there is an equilibrium point under
our conditions.

Theorem 3 If T1-T3, T6, and P2-P7 hold, then there exists T ? ∈ Te and Π? ∈ Γ1 such
that, for all T ∈ Te and Π ∈ Γ1, it is true that r(T ?,Π) ≤ r(T ?,Π?) ≤ r(T,Π?).

Combining the above with Lemma 14 in Section 7.2.3 establishes (2), that is, that the
conclusion of Theorem 3 remains valid if Π varies over Γ rather than over Γ1.

3. AMC Meta-Learning Algorithm

We now present an AMC meta-learning strategy for obtaining a Γ-minimax estimator within
some class T . Here we suppose that T = {Tt : t ∈ τ}, where each Tt is an estimator
indexed by a finite-dimensional parameter t that belongs to some set τ . We note that
this framework encapsulates: model-based approaches (e.g., Hochreiter et al., 2001), where
Tt can be evaluated by a single pass of (d, x0) through a neural network with weights t;
optimization-based approaches, where t are the initial weights of some estimate that are
subsequently optimized based on d (e.g., Finn et al., 2017); and metric-based approaches,
where t indexes a measure of similarity αt that is used to obtain an estimate of the form∑n

i=1 αt(xi, x0)yi (e.g., Vinyals et al., 2016).

We suppose that all estimators in T satisfy the equivariance property (5), which can be
arranged by prestandardizing the outcome and features and then poststandardizing the final
prediction — see Algorithm 2 for an example. Since all T ∈ T satisfy (5), Theorem 2 shows
that it suffices to consider a collection Γ1 of priors with support on P1, that is, so that, for all
Π ∈ Γ1, P ∼ Π satisfies (6) almost surely. To ensure that the priors are easy to sample from,
we parameterize them via generator functions Gg (Goodfellow et al., 2014) that are indexed
by a finite-dimensional g that belongs to some set γ. Each Gg takes as input a source of
noise U drawn from a user-specified distribution νu and outputs the parameters indexing a
distribution in P (Luedtke et al., 2020). Though this form of sampling limits to parametric
families P, the number of parameters indexing this family may be much larger than the
sample size n, which can, for all practical purposes, lead to a nonparametric estimation

10



AMC Meta-Learning of Optimal Prediction Procedures

problem. For each g, we let Πg denote the distribution of Gg(U) when U ∼ νu. We then
let Γ1 = {Πg : g ∈ γ}. It is worth noting that classes Γ1 that are defined in this way will
not generally satisfy the conditions P5-P7 used in Theorem 3. To iteratively improve the
performance of the prior, we require the ability to differentiate realized datasets through
the parameters indexing the prior. To do this, we assume that, for each P ∈ P, the user
has access to a generator function HP : V → R such that HP (V ) has the same distribution
as (X,Y ) ∼ P when noise V is drawn from a user-specified distribution νv. We suppose
that, for all realizations of the noise u in the support of νu and v in the support of νv, the
function g 7→ HGg(u)(v) is differentiable at each parameter value g indexing the prior.

Algorithm 1 Adversarially learn an estimator.

1: Initialize estimator Tt, generator Gg, step sizes η1, η2.
2: for K iterations do
3: for j = 1, 2 do

4: Independently draw U ∼ νu and V0, . . . , Vp
iid∼ νv.

5: Let P = Gg(U).
6: Let (Xi, Yi) = HP (Vi), i = 0, 1, . . . , n.
7: Let D be the dataset containing (Xi, Yi)

n
i=1.

8: Let Loss = [Tt(D)(X0)− µP (X0)]2

9: if j=1 then
10: Update estimator: t = t− η1∇tLoss.
11: . Loss depends on t through Tt.
12: else
13: Update prior: g = g + η2∇gLoss.
14: . Loss depends on g through the definitions of P , (Xi, Yi), and D.
15: end if
16: end for
17: end for

The AMC learning strategy is presented in Algorithm 1. The algorithm takes stochastic
gradient steps on the parameters indexing an estimator and prior generator to iteratively
reduce and increase the Bayes risk, respectively. All gradients in the algorithm can be
computed via backpropagation using standard software — in our experiments, we used
Pytorch for this purpose (Paszke et al., 2019). When computing ∇gLoss, the dependence of
Loss on g is tracked through the dependence of P on g on line 5, the dependence of X0 and
D = (Xi, Yi)

n
i=1 on P on lines 6 and 7, and the dependence of Loss on P , X0, and D on

line 8. We caution that, when the outcome or some of the features are discrete, ∇gLoss will
not generally represent an unbiased estimate of the gradient of g 7→ r(Tt,Πg), which can
cause Algorithm 1 to perform poorly. To handle these cases, the algorithm can be modified
to instead obtain an unbiased gradient estimate using the likelihood ratio method (Glynn,
1987).

Though studying the convergence properties of the minimax optimization in Algorithm 1
is not the main focus of this work, we now provide an overview of how results from Lin
et al. (2019) can be used to provide some guarantees for this algorithm. When doing so, we
focus on the special case where there exists some ` <∞ such that, for all g, t 7→ r(Tt, Gg) is

11



Luedtke, Chung, and Sofrygin

differentiable with `-Lipschitz gradient and, for some finite (but potentially large) collection
PD := {P1, . . . , PD} ⊂ P, Γ is the collection of all mixtures of distributions in PD. We
also suppose that the parameter g indexing the generator Gg takes values on the D − 1
simplex and that this generator is parameterized in such a way that νu ◦G−1

g has the same
distribution as the mixture of distributions in PD that places mass gj on distribution Pj ,
j = 1, . . . , D. In this case, provided the learning rates η1 and η2 are chosen appropriately,
Theorem 4.5 in Lin et al. (2019) gives guarantees on the number of iterations required
to return an ε-stationary point TtK (idem, Definition 3.7) within a specified number of
iterations — this stationary point is such that there exists a t′ near tK at which the function
t 7→ supΠ∈Γ r(Tt,Π) has at least one small subgradient (idem, Lemma 3.8, for details). If,
also, t 7→ Tt(d) is convex for all d, then this also implies that TtK is nearly Γ-minimax.
If, alternatively, the prior update step in Algorithm 1 (line 13) is replaced by an oracle
optimizer such that, at each iteration, g is defined as a true maximizer of the Bayes risk
g 7→ r(T,Πg), then Theorem E.4 of Lin et al. (2019) similarly guarantees that an ε-stationary
point will be reached within a specified number of iterations.

Alternatives to Algorithm 1 are possible. As one example, the stochastic gradient descent
ascent optimization scheme could be replaced by an extragadient method (Korpelevich,
1976), which has been shown to perform well in generative adversarial network settings
(Gidel et al., 2018). As another example, the prior distribution could, in principle, be
specified via its density rather than as the pushforward distribution νu ◦ G−1

g defined by
the generator. While this density-based parameterization may make it easier to relate the
specified priors to commonly used probability distributions, it may also lead to challenges
since sampling from a distribution specified by its density is generally a hard problem that
necessitates the use of numerical approaches such as Markov chain Monte Carlo methods
(Hastings, 1970; Geman and Geman, 1984). Because the prior is updated at each of the K
iterations, it seems that many instances of these numerical sampling schemes would need to
be run before the termination of the AMC algorithm. Identifying a means to expedite the
convergence of this density-based approach is an interesting area for future work.

4. Proposed Class of Estimators

4.1 Equivariant Estimator Architecture

Algorithm 2 presents our proposed estimator architecture, which relies on four modules.
Each module k can be represented as a function mk belonging to a collectionMk of functions
mapping from Rak to Rbk , where the values of ak and bk can be deduced from Algorithm 2.
For given data d, a prediction at a feature x0 can be obtained by sequentially calling the
modules and, between calls, either mean pooling across one of the dimensions of the output
or concatenating the evaluation point as a new column in the output matrix.

We let TM represent the collection of all prediction procedures described by Algorithm 2,
where here (mk)4

k=1 varies over
∏4
k=1Mk. We now give conditions under which the proposed

architecture yields an equivariant estimator.

M1) m1(AvB)∗∗` = A[m1(v)∗∗`]B for all m1 ∈ M1, A ∈ A, B ∈ B, v ∈ Rn×p×2, and
` ∈ {1, . . . , o1}.

M2) m2(Bv) = Bm2(v) for all m2 ∈M2, B ∈ B, and v ∈ Rp×o1 .

12



AMC Meta-Learning of Optimal Prediction Procedures

Algorithm 2 Use data d to obtain prediction at x0.

1: Preprocess: Let x0
0 := x0−x̄

s(x) and define d0 ∈ Rn×p×2 so that d0
i∗1 = xi−x̄

s(x) for all

i = 1, . . . , n and d0
∗j2 = y−ȳ

s(y) for all j = 1, . . . , p.

2: Module 1: d1 := m1(d0). d1 ∈ Rn×p×o1
3: Mean Pool: d̄1 := n−1

∑n
i=1 d

1
i∗∗. d̄1 ∈ Rp×o1

4: Module 2: d2 := m2(d̄1). d2 ∈ Rp×o2
5: Augment: d̃2 := [d2 | x0

0]. d̃2 ∈ Rp×(o2+1)

6: Module 3: d3 := m3(d̃2). d3 ∈ Rp×o3
7: Mean Pool: d̄3 := p−1

∑p
j=1 d

3
j∗. d̄3 ∈ Ro3

8: Module 4: d4 := m4(d̄3). d4 ∈ R
9: return ȳ + s(y)d4.

M3) m3(Bv) = Bm3(v) for all m3 ∈M3, B ∈ B, and v ∈ Rp×o2 .

Theorem 4 If M1-M3, then all T ∈ TM satisfy (4) and (5).

4.2 Neural Network Parameterization

In our experiments, we choose the four module classes Mk, k = 1, 2, 3, 4, indexing our
estimator architecture to be collections of neural networks. For each k, we let Mk contain
the neural networks consisting of hk hidden layers of widths w1

k, w
2
k, . . . , w

hk
k , where the types

of layers used depends on the module k. When k = 1, multi-input-output channel equivariant
layers as defined in Hartford et al. (2018) are used. In particular, for j = 1, . . . , h1 + 1, we

let Lj1 denote the collection of all such layers that map from Rn×p×w
j−1
1 to Rn×p×w

j
1 , where

we let w0
1 = 2 and wh1+1

1 = o1. For each j, each member Lj1 of Lj1 is equivariant in the

sense that, for all A ∈ A, B ∈ B, and v ∈ Rn×p×w
j−1
1 , Lj1(AvB)∗∗` = ALj1(v)∗∗`B for all

` = 1, . . . , o1. When k = 2, 3, multi-input-output channel equivariant layers as described in
Eq. 22 of Zaheer et al. (2017) are used, except that we replace the sum-pool term in that
equation with a mean-pool term (see the next subsection for the rationale). In particular, for
j = 1, . . . , hk + 1, we let Ljk denote the collection of all such equivariant layers that map from

Rp×w
j−1
k to Rp×w

j
k . For each j, each member Ljk of Ljk is equivariant in the sense that, for all

B ∈ B and v ∈ Rp×w
j−1
k , Ljk(Bv) = BLjk(v). When k = 4, standard linear layers mapping

from Rw
j−1
4 to Rw

j
4 are used for each j = 1, . . . , h4 + 1, where w0

4 = o3 and wh4+1
4 = 1. For

each j, we let Lj4 denote the collection of all such layers. For a user-specified activation
function q, we then define the module classes as follows for k = 1, 2, 3, 4:

Mk := {v 7→ q ◦ Lhk+1
k ◦ q ◦ Lhkk ◦ . . . ◦ q ◦ L

1
k(v) : Ljk ∈ L

j
k, j = 1, 2, . . . , hk + 1}.

Notably, M1 satisfies M1 (Ravanbakhsh et al., 2017; Hartford et al., 2018), and M2 and
M3 satisfy M2 and M3, respectively (Ravanbakhsh et al., 2016; Zaheer et al., 2017). Each
element of M4 is a multilayer perceptron.

13



Luedtke, Chung, and Sofrygin

The proposed architecture bears some resemblance to CNPs (Garnelo et al., 2018).
Like our proposed architecture, CNPs are invariant to permutations of the observations.
Nevertheless, CNPs fail to satisfy the other properties imposed on Te, namely invariance to
shifts, rescalings, and permutations of the features and equivariance to shifts and rescalings
of the outcome. Moreover, a decision-theoretic rationale for making CNPs invariant to
permutations of the observations has not yet been provided in the literature, for example,
via a Hunt-Stein-type theorem.

4.3 Pros and Cons of Proposed Architecture

A benefit of using the proposed architecture in Algorithm 2 is that Modules 1 and 2 can be
evaluated without knowing the feature x0 at which a prediction is desired. As a consequence,
these modules can be precomputed before making predictions at new feature values, which
can lead to substantial computational savings when the number of values at which predictions
will be made is large. Another advantage of the proposed architecture is that it can be
evaluated on a dataset that has a different sample size n than did the datasets used during
meta-training. In the notation of Eq. 4 from Hartford et al., this corresponds to noting that
the weights from an RN×M×k → RN×M×o multi-input-output channel layer can be used

to define an RN ′×M×k → RN ′×M×o layer for which the output Y
〈o〉
n,m is given by the same

symbolic expression as that displayed in Eq. 4 from that work, but now with n ranging
over 1, . . . , N ′. We will show in our upcoming experiments that procedures trained using
500 observations can perform well even when evaluated on datasets containing only 100
observations. It is similarly possible to evaluate the proposed architecture on datasets
containing a different number of features than did the datasets used during meta-training
— again see Eq. 4 in Hartford et al. (2018), and also see Eq. 22 in Zaheer et al. (2017),
but with the sum-pool term replaced by a mean-pool term. The rationale for replacing the
sum-pool term by a mean-pool term is that this will ensure that the scale of the hidden
layers will remain fairly stable when the number of testing features differs somewhat from
the number of training features.

A disadvantage of the proposed architecture is that it currently has no established
universality guarantees. Such guarantees have been long available for standard multilayer
perceptrons (e.g., Cybenko, 1989; Hornik, 1991), and have recently also become available for
certain invariant architectures (Maron et al., 2019). In future work, it would be interesting
to see if the arguments in Maron et al. (2019) can be modified to provide universality
guarantees for our architecture. Establishing such results may also help us to overcome a
second disadvantage of our architecture, namely that the resulting neural network classes
will not generally satisfy the convexity condition T6 used in Theorem 3. If a network class
TM that we have proposed can be shown to satisfy a universality result for some appropriate
convex class Tc, and if TM is itself a subset of Tc, then perhaps it will be possible to invoke
Theorem 3 to establish an equilibrium result over the class of estimators Tc, and then to
use this result to establish an (approximate) equilibrium result for TM. To ensure that
conditions T1-T3 are satisfied, such an argument will likely require that the weights of the
networks in TM be restricted to belong to some compact set.

14



AMC Meta-Learning of Optimal Prediction Procedures

5. Numerical Experiments

5.1 Overview

In this section, we present the results from two sets of numerical experiments, with the first
corresponding to benchmarks from the meta-learning literature and the second consisting of
settings designed to evaluate the performance of our method relative to that of analytically-
derived estimators that are commonly used in practice for which theoretical performance
guarantees are available. In each example, the collection of estimators T is parameterized as
the network architecture introduced in Section 4.2 with o1 = o2 = 50, o3 = 10, h1 = h3 = 10,
h2 = h4 = 3, and, for k = 1, 2, 3, 4, wk = 100. For each module, we use the leaky ReLU
activation q(z) := max{z, 0} + 0.01 min{z, 0}. At the end of this section, we report the
results of an ablation study that evaluates the extent to which imposing invariance to
permutations of the observations and features improves performance.

All experiments were run in Pytorch 1.0.1 on Tesla V100 GPUs using Amazon Web
Services. The code used to conduct the experiments can be found at https://github.com/
alexluedtke12/amc-meta-learning-of-optimal-prediction-procedures. Further ex-
perimental details can be found in Appendix D.

5.2 Meta-Learning Benchmarks

5.2.1 Preliminaries

We now evaluate the performance of AMC on widely used meta-learning benchmarks. As
described in the Introduction, existing meta-learning algorithms tend to be Bayesian in
nature, where the goal during meta-training is to learn an estimator with small Bayes risk
under a specified prior Π. Consequently, when adjudicating performance in this study, we
will primarily focus on the evaluation of each learned estimator T in terms of its Bayes MSE
against this fixed prior Π, defined as

∫
EP [

∫
{T (D)(x0)− µP (x0)}2 dPX(x0)]dΠ(P ).

Because our method is designed to learn adversarially over a collection of priors Γ that
satisfies the invariance properties P1, P2, and P3, we define the collection Γ used when
training our method as the smallest collection of priors that satisfies these three properties
and contains Π. It can be verified that Γ1 is a singleton in this case, so that the generator is a
constant function and is never updated in these benchmark settings. Though this simplified
meta-training may make it appear that AMC will not be robust to an adversarial choice of
prior, it is worth noting that the learned estimator in fact is robust to such a choice in the
sense that the Bayes risk of the learned estimator will be invariant under permutations of
the features and also under shifts and rescalings of the outcomes and features. The main
motivation for using a small Γ when comparing to these benchmarks is that doing so will
help inform on the performance of the estimator architecture that we proposed in Section 4
in Bayesian settings for which existing meta-learning approaches are tailor-made.

We compare the performance of AMC to that of two popular meta-learning methods for
which code is readily available: MAML (Finn et al., 2017) and CNPs (Garnelo et al., 2018).
Because these algorithms do not prestandardize the features and outcomes, they may have
large standardized Bayes MSEs (the Bayes risk derived from Eq. 1) if these quantities are
simply shifted or rescaled. To ensure that possible discrepancies in performance between
AMC and MAML or CNPs are not solely due to prestandardization, we also compare our

15

https://github.com/alexluedtke12/amc-meta-learning-of-optimal-prediction-procedures
https://github.com/alexluedtke12/amc-meta-learning-of-optimal-prediction-procedures


Luedtke, Chung, and Sofrygin

(a) Sinusoid

n=5 10 20

MAML∗ 0.22 0.10 0.03
CNP∗ 0.05 0.02 0.01
MAML-Eq 2.06 0.47 0.07
CNP-Eq 1.13 0.13 0.04
AMC (ours) 0.89 0.09 0.03

(b) Gaussian process

1d feature 5d feature
n=5 50 5 50

MAML∗ 0.85 0.13 1.00 1.00
CNP∗ 0.47 0.04 0.95 0.73
MAML-Eq 0.93 0.13 1.22 1.02
CNP-Eq 0.56 0.04 1.12 0.73
AMC (ours) 0.56 0.03 1.11 0.66

Table 1: Bayes MSEs of meta-learning approaches in the meta-learning benchmark experi-
ments, where the Bayes MSE is defined as the squared difference between the predictions and
true underlying regression function, averaged across draws of the data-generating distribution
from the prior and the feature from the feature distribution. Standard errors all < 0.005 in
the sinusoid experiment and < 0.001 in the Gaussian process experiments.
∗ As these two algorithms do not prestandardize the features or outcomes, their standardized
MSEs can be made large by simply shifting or rescaling the features and outcomes. See
Figure S5 for more information.

method to natural variants of MAML and CNPs that, like AMC, are robust to such shifts
and rescalings. For each method, these variants prestandardize the features and outcomes,
and then, in an analogous fashion to line 9 of Algorithm 2, scale the final output by the
sample standard deviation of the original training outcomes and shift by their sample mean.
These algorithms, which we refer to as MAML-Eq and CNP-Eq, are invariant to shifts and
rescalings of the features and equivariant to shifts and rescalings of the outcomes. Details
on the MAML and CNP implementations used can be found in Appendix D.1.

5.2.2 Sinusoidal Regression

We start with a benchmark few-shot regression setting from that is commonly used in the
meta-learning literature. The prior Π is defined as follows. The feature is 1-dimensional and
is Unif(−5, 5) distributed, and the regression function µP takes the form x 7→ a sin(x− b),
where the parameters a and b are drawn independently from a Unif(0.1, 5.0) and Unif(0, π)
distribution, respectively (Finn et al., 2017). Following related meta-learning benchmarks
(Finn et al., 2018; Vuorio et al., 2018), the error εP added to the signal µP (X) is distributed
as N(0, 0.32). We use the same sample sizes as were used in Finn et al. (2017), namely
n = 5, 10, and 20.

We now report on the performance of the various meta-learning approaches in this setting.
In Table 1a, we can see that MAML and CNPs consistently outperform their equivariant
counterparts, namely MAML-Eq and CNP-Eq, in this setting. Nevertheless, as we noted
earlier, MAML and CNPs are non-robust in that their standardized MSE can be made large
by simply shifting or rescaling the outcomes or features. In Figure S5 in the appendix we
provide evidence that this is indeed the case. As a particularly striking example, when n = 5,
scaling the feature down by a factor of 5 leads to 24-fold and 149-fold increases in the MSEs
of MAML and CNPs, respectively. The degradation of performance worsens with sample

16



AMC Meta-Learning of Optimal Prediction Procedures

size. Indeed, when n = 20, the same rescaling leads to 144-fold and 487-fold increases in the
MSEs of these two methods. Consequently, even seemingly innocuous preprocessings of the
data, such as applying an affine transformation to change the unit of measurement, can have
a dramatic impact on the performance of MAML and CNPs. In contrast, the standardized
MSE performance of MAML-Eq and CNP-Eq is invariant to such preprocessings of the data.

Table 1a also displays results for AMC. AMC consistently outperforms the robust
versions of existing algorithms, namely MAML-Eq and CNP-Eq. When compared with the
non-robust variants, AMC is outperformed by MAML when n = 5, outperforms MAML
when n = 10, and has about the same performance as MAML when n = 20. CNPs perform
better than MAML and AMC, though this difference begins to diminish as the sample size
increases.

5.2.3 Gaussian Process Regression

We next consider a benchmark Gaussian process regression setting. We consider two cases for
the prior. The first is the same as that considered in Garnelo et al. (2018), except that they
considered the noise-free case where εP = 0 almost surely, whereas we consider the noisy case
where the errors εP are homoscedastic and distributed as N(0, 0.32). Considering a noisy
case where εP is non-degenerate is necessary for the standardized MSE that we consider
to be well-defined, and also better reflects real-world regression scenarios where observed
outcomes are rarely, if ever, deterministic functions of the features considered. Following
Garnelo et al. (2018), the feature is 1-dimensional and follows a Unif(−2, 2) distribution,
and the regression function µP is drawn from a mean-zero Gaussian process with a squared
exponential kernel with lengthscale 0.4 and variance 1. We also use the same sample sizes
as were used in that work, namely n = 5 and 50. The second case that we consider is the
same as the first except that the feature X is 5-dimensional, where the entries of X are
independent Unif(−2, 2) random variables, and the lengthscale is taken to be equal to 1.2.

Table 1b displays the performance of the various methods in this setting. Adversarial
Monte Carlo noticeably outperforms MAML and MAML-Eq across all settings except the
5-dimensional, n = 5 case, where MAML performs slightly better than does AMC. The
ordering between AMC and the CNP-based methods varies by sample size. At the smaller
sample size considered (n = 5), AMC outperforms the robust CNP-based method, namely
CNP-Eq, but is outperformed by the non-robust method, namely CNP. In the larger sample
size considered (n = 50), AMC outperforms both CNP and CNP-Eq. The fact that AMC
outperforms CNP in this setting is notable given that CNPs are designed to mimic the
desirable properties of Gaussian process regression procedures (Garnelo et al., 2018).

5.3 Comparing to (Regularized) Empirical Risk Minimizers

5.3.1 Preliminaries

We now compare the performance of our approach to that of existing estimators that are
commonly used in practice for which theoretical performance guarantees are available. The
examples differ in the definitions of the model P and the collection Γ of priors on P. In
each case, Γ satisfies the invariance properties P1, P2, and P3. By the equivariance of the
estimators in T , Theorem 2 shows that it suffices to consider a collection of priors Γ1 with
support on P1. Hence, it suffices to define the collection P1 ⊂ P of distributions P satisfying

17



Luedtke, Chung, and Sofrygin

(6). By P2 and P3, we see that P = ∪P∈P1P(P ), where P(P ) consists of the distributions
of (a+ b�X, ã+ b̃Y ) when (X,Y ) ∼ P ; here, a, b, ã, and b̃ vary over Rp, (R+)p, R, and
R+, respectively. In each setting, the submodel P1 takes the form

P1 :=
{
P : µP ∈ R, PX ∈ PX , εP |X

P∼ N(0, 1)
}

and the p = 10 dimensional feature X is known to be drawn from a distribution in the
set PX of N(0p,Σ) distributions, where Σ varies over all positive-definite p× p covariance
matrices with diagonal equal to 1p. The collections R of regression functions differ in the
examples and are detailed in the coming subsections. These collections are indexed by
a sparsity parameter s that specifies the number of features that may contribute to the
regression function µP . In each setting, we considered all four combinations of s ∈ {1, 5}
and n ∈ {100, 500}, where n denotes the number of observations in the datasets d used
to evaluate the performance of the final learned estimators. For each n, we evaluated the
performance of AMC meta-trained with datasets of size nmt = 100 observations (AMC100)
and nmt = 500 observations (AMC500).

5.3.2 Sparse Linear Regression

We first considered the setting where µP belongs to a sparse linear model and the feature is
p = 10 dimensional. In this setting,

R := {x 7→ β>x : ‖β‖0 ≤ s, ‖β‖1 ≤ 5}, (7)

where ‖a‖0 := #{j : aj 6= 0} and ‖a‖1 :=
∑p

j=1 |aj |. The collection Γ is described in
Appendix D.

For each sparsity level s ∈ {1, 5}, we evaluated the performance of the prediction
procedure trained at sparsity level s using two priors. Both priors sample the covariance
matrix of the feature distribution PX from the Wishart prior ΠX described in Appendix D.2.1
and let β = (α, 0) for a random α satisfying ‖α‖1 ≤ 5. They differ in how α is drawn. Both
make use of a uniform draw Z from `1 ball {a ∈ Rs : ‖a‖1 = 5}. The first sets α = Z,
whereas the second sets α = UZ for U ∼ Unif(0, 1) drawn independently of Z. We will
refer to the two settings as ‘boundary’ and ‘interior’, respectively. We refer to the s = 1 and
s = 5 cases as the ‘sparse’ and ‘dense’ settings, respectively. Further details can be found in
Appendix D.2.2.

In this example, AMC leverages knowledge of the underlying sparse linear regression
model by generating synthetic training data from distributions P for which EP [Y |X = · ]
belongs to the class R defined in Eq. 7 (see line 5 of Algorithm 1). Therefore, we aimed to
compare AMC’s performance to that of estimators that also take advantage of this linearity.
Ideally, we would compare AMC’s performance to that of the true Γ-minimax estimator.
Unfortunately, as is the case in most problems, the form of this estimator is not known in
this sparse linear regression setting. Therefore, we instead compared AMC’s performance to
ordinary least squares (OLS) and lasso (Tibshirani, 1996) with tuning parameter selected
by 10-fold cross-validation, as implemented in scikit-learn (Pedregosa et al., 2011).

Table 2a displays performance for the sparse setting. We see that AMC outperformed OLS
and lasso for the boundary priors, and was outperformed for the interior priors. Surprisingly,
AMC500 outperformed AMC100 for the interior prior when n = 100 observations were used

18



AMC Meta-Learning of Optimal Prediction Procedures

(a) Sparse signal

Boundary Interior
n=100 500 100 500

OLS 0.12 0.02 0.12 0.02
Lasso 0.06 0.01 0.06 0.01
AMC100 (ours) 0.02 <0.01 0.11 0.09
AMC500 (ours) 0.02 <0.01 0.07 0.04

(b) Dense signal

Boundary Interior
n=100 500 100 500

OLS 0.13 0.02 0.13 0.02
Lasso 0.11 0.02 0.09 0.02
AMC100 (ours) 0.10 0.04 0.08 0.02
AMC500 (ours) 0.09 0.02 0.09 0.02

Table 2: MSEs based on datasets of size n in the linear regression settings. Standard errors
all < 0.001.

to evaluate performance. The fact that AMC100 was trained specifically for the n = 100
case suggests that a suboptimal equilibrium may have been reached in this setting. Table 2b
displays performance for the dense setting. Here AMC always performed at least as well as
OLS and lasso when nmt = n, and performed comparably even when nmt 6= n.

5.3.3 Fused Lasso Additive Model

We next considered the setting where P belongs to a variant of the fused lasso additive
model (FLAM) (Petersen et al., 2016) and the feature is p = 10 dimensional. This model
enforces that µP belong to a generalized additive model, that only a certain number of the
components can be different from the zero function, and that the sum of the total variations
of the remaining components is not too large. We recall that the total variation V (f) of
f : R → R is equal to the supremum of

∑k
`=1 |f(a`+1) − f(a`)| over all (a`)

k+1
`=1 such that

k ∈ N and a1 < a2 < . . . < ak+1 (Cohn, 2013). Let v(µ) := (V (µj))
p
j=1. Writing xj to

denote feature j, the model we considered imposes that µP falls in

R :=

x 7→
p∑
j=1

µj(xj) : ‖v(µ)‖1 ≤M, ‖v(µ)‖0 ≤ s

 .

We take M = 10 in the experiments in this section. The collection Γ is described in
Appendix D.

In this example, we preprocessed the features before supplying them to the estimator. In
particular, we replaced each entry with its rank statistic among the n observations so that,
for each i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, we replaced xij by

∑n
k=1 I{xij ≥ xkj} and x0j

by
∑n

k=1 I{x0j ≥ xkj}. This preprocessing step is natural given that the FLAM estimator
(Petersen et al., 2016) also only depends on the features through their ranks. An advantage

19



Luedtke, Chung, and Sofrygin

4

0

4

Re
gr

es
sio

n 
Fu

nc
tio

n

2 1 0 1 2

4

0

4

2 1 0 1 2
Signal Feature

Figure 1: Examples of AMC500 fits (thin blue lines) based on n = 500 observations drawn
from distributions at sparsity level s = 1 with four possible signal components (thick black
lines). Predictions obtained at different signal feature values with all 9 other features set to
zero.

of making this restriction is that, by the homoscedasticity of the errors and the invariance
of the rank statistics and total variation to strictly increasing transformations, the learned
estimators should perform well even if the feature distributions do not belong to a Gaussian
model, but instead belong to a much richer Gaussian copula model.

We evaluated the performance of the learned estimators using variants of simulation
scenarios 1-4 from Petersen et al. (2016). The level of smoothness varies across the settings
(see Fig. 2 in that work). In the variants we considered, the true regression function either
contains s0 = 1 (‘sparse’) or s0 = 4 (‘dense’) nonzero components. In the sparse setting,
we evaluated the performance of the estimators that were meta-trained at sparsity level
s = 1, and, in the dense setting, we evaluated the performance of the estimators that were
meta-trained at s = 5. Further details can be found in Appendix D.2.3.

Similarly to as in the previous example, AMC leverages knowledge of the possible forms
of the regression function that is imposed by R — in this case, the model for the regression
function is nonparametric but does impose that this function belongs to a particular sparse
generalized additive model. Though there does not exist a competing estimator that is
designed to optimize over R, the FLAM estimator (Petersen et al., 2016) optimizes over the
somewhat larger, non-sparse model where s = p. We, therefore, compared the performance
of AMC to this estimator as a benchmark, with the understanding that AMC is slightly
advantaged in that it has knowledge of the underlying sparsity pattern. Nevertheless, we
view this experiment as an important proof-of-concept, as it is the first, to our knowledge,
to evaluate whether it is feasible to adversarially meta-learn a prediction procedure within a
nonparametric regression model.

To illustrate the kinds of functions that AMC can approximate, Fig. 1 displays examples of
AMC500 fits from scenario 3 when (n, s) = (500, 1). Table 3 provides a more comprehensive

20



AMC Meta-Learning of Optimal Prediction Procedures

(a) Sparse signal

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n=100 500 100 500 100 500 100 500

FLAM 0.44 0.12 0.47 0.17 0.38 0.11 0.51 0.19
AMC100 (ours) 0.34 0.20 0.18 0.08 0.27 0.14 0.17 0.08
AMC500 (ours) 0.48 0.12 0.19 0.06 0.35 0.10 0.23 0.08

(b) Dense signal

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n=100 500 100 500 100 500 100 500

FLAM 0.59 0.17 0.65 0.24 0.53 0.16 0.76 0.36
AMC100 (ours) 1.20 0.91 0.47 0.39 0.87 0.57 0.30 0.30
AMC500 (ours) 0.58 0.15 0.37 0.08 0.46 0.12 0.36 0.09

Table 3: MSEs based on datasets of size n in the FLAM settings. Standard errors for FLAM
all < 0.04 and for AMC all < 0.01.

view of the performance of AMC and compares it to that of FLAM. Table 3a displays
performance for the sparse setting. The AMC procedures meta-trained with nmt = n
observations outperformed FLAM for all of these settings. Interestingly, AMC procedures
meta-trained with nmt 6= n also outperformed FLAM in a majority of these settings,
suggesting that learned procedures can perform well even at different sample sizes from those
at which they were meta-trained. In the dense setting (Table 3b), AMC500 outperformed
both AMC100 and FLAM in all but one setting (scenario 4, n = 100), and in this setting
both AMC100 and AMC500 dramatically outperformed FLAM. The fact that AMC500 also
sometimes outperformed AMC100 when n = 100 in the linear regression setting suggests
that there may be some benefit to training a procedure at a larger sample size than that at
which it will be evaluated. We leave an investigation of the generality of this phenomenon
to future work.

5.4 Ablation Study to Evaluate the Performance of Permutation Invariance

We numerically evaluated the utility of imposing invariance in the architecture in Algorithm 2.
To do this, we repeated the n = nmt = 100 and n = nmt = 500 FLAM settings, separately
modifying the architecture to remove invariance to permutations of the observations and
the features. In the case where the architecture was not invariant to permutations of
the observations, we weakened M1 to the condition that m1(vB)∗∗` = [m1(v)∗∗`]B for all
m1 ∈ M1, B ∈ B, v ∈ Rn×p×2, and ` = 1, . . . , o1. We used the same architecture as
was used in our earlier experiment, except that each layer in Module 1 was replaced by a
multi-input-output channel layer that is equivariant to permutations of the p features (Zaheer
et al., 2017), and the output of the final layer was of dimension Rp×o1 so that the subsequent
mean pooling layer could be removed. In the case where the architecture was not invariant
to permutations of the features, we removed conditions M2 and M3 and also weakened
M1 to the condition that m1(Av)∗∗` = A[m1(v)∗∗`] for all m1 ∈ M1, A ∈ A, v ∈ Rn×p×2,
and ` = 1, . . . , o1. We used the same architecture as in our earlier experiment except that

21



Luedtke, Chung, and Sofrygin

(a) Sparse signal

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n=100 500 100 500 100 500 100 500

Not invariant to
permutations of:

observations 6.98 38.29 5.82 29.93 5.03 27.58 4.29 13.08
features 1.01 0.95 1.16 1.09 1.02 0.98 1.01 0.99

(b) Dense signal

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n=100 500 100 500 100 500 100 500

Not invariant to
permutations of:

observations 1.86 14.68 1.69 8.60 1.97 14.20 1.51 4.70
features 1.05 2.55 0.99 1.98 1.09 3.02 1.04 1.67

Table 4: Fold-change in MSEs for modifications of AMC in the FLAM settings with n = 100,
as compared to the performances of FLAM listed in Table 3. Standard errors all ≤ 0.03
times the fold-change in the MSE.

Modules 2 and 3 were replaced by multilayer perceptrons and each layer in Module 1 was
replaced by a multi-input-output channel layer that is equivariant to permutations of the n
observations.

Table 4 displays the results. In every setting considered, removing invariance to per-
mutations of the observations led to a marked increase in the MSE of the estimator, with
the degradation of performance tending to be worse at the larger sample size. In the most
extreme scenario, the MSE of the non-invariant estimator was 38 times higher than that of
the invariant estimator. Removing invariance to permutations of the features also tended to
worsen performance, sometimes by a factor of 2 or 3, though there were a few settings where
performance improved slightly (no more than 5%). Taken together, these results suggest
that a priori enforcing that the estimator is invariant to permutations of the features and
observations can dramatically improve performance.

6. Data Experiments

We also used real datasets to evaluate the performance of AMC100 estimators meta-trained
in sparse linear regression settings (Section 5.3.2) or fused lasso additive model settings
(Section 5.3.3). We compared the performance of our estimators to the estimators from our
numerical experiments, namely, the OLS, lasso, and FLAM estimators. These estimators
are natural comparators because they assume the same or similar models as do our AMC
estimators; consequently, comparing to these estimators allows us to focus our discussion on
differences in the performance of existing estimation strategies as compared to that of new
meta-learned strategies, rather than on differences in underlying assumptions that could
potentially be resolved by training a new AMC estimator under a different model.

Because the implementations of lasso and FLAM that we compared to both use 10-fold
cross-validation to select tuning parameters, we also used 10-fold cross-validation to select
tuning parameters for the AMC100 estimators. The first of these estimators, which we refer
to as “AMC Linear”, selects a tuning parameter s ∈ {1, 2, . . . , 10} by finding the value of
s for which the cross-validated MSE of an AMC100 estimator trained in the sparse linear

22



AMC Meta-Learning of Optimal Prediction Procedures

regression setting with sparsity level s is minimal. The final prediction then corresponds
to that returned by the AMC100 estimator trained in the model with this selected value
of s. The second, which we refer to as “AMC FLAM”, selects two tuning parameters, one
of which reflects the sparsity level s of the problem and the other of which corresponds to
the bound M on the sum of the variation norms of the µj components in the fused lasso
additive model. In particular, the tuning parameters (s,M) ∈ {1, 2, . . . , 10} × {5, 10, 20}
are chosen to be those that minimize the cross-validated MSE of an AMC100 estimator
trained in the fused lasso additive model with parameters (s,M). Notably, each candidate
estimator considered by AMC Linear and AMC FLAM only has access to 90, rather than
100, observations when selecting tuning parameter values using 10-fold cross-validation on a
dataset of size n = 100. This does not pose a problem because, as was noted in Section 4.3,
the trained estimators can be evaluated at different sample sizes than those at which they
were trained.

In settings where both AMC-trained estimators and other estimators are available, it is
natural to wonder whether there is a way to capitalize on the availability of both types of
methods. Ensemble algorithms provide a natural means to do this, with stacked ensembles
representing an especially appealing option given theoretical guarantees that adding base
learners will not typically degrade performance (Van der Vaart et al., 2006; Van der Laan
et al., 2007) and existing experiments showing that they often outperform all included base
learners (e.g., Polley and Van der Laan, 2010). We, therefore, evaluate the performance of
three stacked ensembles in these experiments. The first includes only the AMC Linear and
AMC FLAM estimators as base learners. The second only includes the OLS, lasso, and
FLAM estimators. The third includes all five of these estimators. Predictions of the base
learners were combined using 10-fold cross-validation. Following the recommendation of
Breiman (1996), we employed a non-negative least squares estimator for this combination
step.

Our experiments make use of ten datasets. Six of these datasets are available through the
University of California, Irvine (UCI) Machine Learning Repository (Dua and Graff, 2017),
three were used to illustrate supervised learning machines in popular statistical learning
textbooks (Friedman et al., 2001; James et al., 2013), and one was used as an illustrative
example in the paper that introduced FLAM (Petersen et al., 2016). All of these datasets
contain more than 100 observations. Five of them have at least 10 features and the others
have fewer (5, 6, 6, 7, and 9). All outcomes are standardized to have empirical variance
1 so that, for each dataset, the cross-validated MSE performance of a sample mean for
predicting the outcome is approximately 1. Further details on these datasets can be found
in Appendix E.1.

We evaluated our learned estimators in three settings. First, we considered the case
where the number of features in the datasets matched the number that they saw during
training, namely 10. In particular, we evaluated the performance of AMC Linear and AMC
FLAM in the 5 datasets that have 10 or more features by randomly selecting 100 observations
and 10 features from each dataset and evaluating MSE on the held out observations. This
and all other Monte Carlo evaluations of MSE described in what follows were repeated 200
times and averaged across the replications. Second, we evaluated the robustness of our
learned estimators to a key assumption used during training. In particular, we evaluated
the performance of our estimators on the 5 datasets that have fewer features than the 10

23



Luedtke, Chung, and Sofrygin

●
●●

●

●

−0.05

0.00

0.05

−0.05 0.00 0.05

Improvement Over Lasso

Im
pr

ov
em

en
t O

ve
r 

F
LA

M

(a) Datasets with same number of features as
used during meta-training

●

●

●

●

●

−0.05

0.00

0.05

−0.05 0.00 0.05

Improvement Over Lasso

Im
pr

ov
em

en
t O

ve
r 

F
LA

M
(b) Datasets with fewer features than used dur-
ing meta-training

Figure 2: Improvement of AMC estimators over existing estimators, in terms of differences
of cross-validated MSEs of FLAM and AMC FLAM (x-axis) and Lasso and AMC Linear
(y-axis). Positive values indicate that AMC outperformed the comparator. AMC performed
similarly to or better than existing estimators in settings where the number of features in
the dataset was the same as were used in meta-training. As expected, the performance was
somewhat worse for datasets that had fewer features than were used during meta-training,
though, surprisingly, it was still sometimes better than that of existing methods.

used during meta-training, again sampling 100 observations and evaluating MSE on the held
out observations. Third, we evaluated the relative performance of our estimators at varying
levels of signal sparsity for each of the ten datasets. In particular, for each training-test split
of the data, we selected s total features from the dataset, removed the remaining features,
and then included (10− s) Gaussian noise features so that the dimension of the feature was
always p = 10.

We first discuss performance on datasets with the same number of features as were used
during meta-training. Complete numerical results for estimator performance can be found
in Table S5 in Appendix E.2. Here, we focus on graphical summaries of performance to
communicate the key trends that we saw. Figure 2a shows that AMC FLAM performed
similarly to or better than FLAM across all settings, and AMC Linear performed similarly to
lasso across all settings. We have compared AMC Linear to lasso as a baseline in this figure
because lasso performed similarly to or better than OLS across all settings. Figure 3a shows
that stacking all available base learners consistently yielded better performance than did
only stacking only the existing estimators or the AMC estimators. This stacked ensemble
also outperformed all base learners considered. These results suggest that incorporating
AMC estimators into regression pipelines can reliably lead to improved predictions even in
settings where performant learners are already available.

24



AMC Meta-Learning of Optimal Prediction Procedures

● ●

●

●

●

−0.02

0.00

0.02

−0.02 0.00 0.02

Improvement Over Stacked Existing

Im
pr

ov
em

en
t O

ve
r 

S
ta

ck
ed

 A
M

C

(a) Datasets with same number of features as
used during meta-training

●
●

●
●

●

−0.02

0.00

0.02

−0.02 0.00 0.02

Improvement Over Stacked Existing

Im
pr

ov
em

en
t O

ve
r 

S
ta

ck
ed

 A
M

C
(b) Datasets with fewer features than used dur-
ing meta-training

Figure 3: Improvement of the stacked ensemble algorithm that includes all base learners over
those which only include a subset (existing learners or AMC learners), in terms of differences
of cross-validated MSEs. Including both AMC and existing estimators as base learners
always outperformed only including a subset when the dataset contained the same number
of features as were used during training. Adding AMC base learners did not tend to improve
performance when the dataset had fewer features than were used during meta-training,
though any degradation in performance was minimal.

We now discuss performance on datasets with fewer features than were used during
meta-training. Figure 2b displays performance on datasets that have fewer features than
were used during meta-training. Unsurprisingly, performance was somewhat less desirable
than it was for datasets with the same number of features as were used during meta-training.
AMC FLAM tended to be somewhat outperformed by FLAM, though did outperform FLAM
in one setting. AMC Linear continued to perform similarly to lasso across all settings.
Figure 3 shows that stacking all available base learners outperformed stacking only AMC
estimators, and performed similarly to stacking existing estimators.

We conclude by discussing the performance of the estimators when we induce varying
levels of signal sparsity. Figure 4 shows that AMC FLAM outperformed FLAM for the vast
majority of datasets and sparsity patterns. The only exception to this trend occurred for the
yacht dataset and the LAozone dataset for denser signals (7, 8, or 9 signal features), where
AMC FLAM was slightly outperformed by FLAM. Figure S6 in the appendix shows that
AMC Linear consistently outperformed OLS and performed comparably to or slightly better
than lasso in most settings. Figure S7 shows that there was not a major difference between
the cross-validated MSE of the three stacking algorithms. Nevertheless, it is worth noting
that stacking all available base learners did outperform the other two stacking schemes
in 53% of the 83 dataset-sparsity settings considered, with the stacking scheme that only

25



Luedtke, Chung, and Sofrygin

● ●
● ●

● ● ●

●

●

●

●
● ● ● ● ● ●

●
●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
●

●
● ●

●

●

●

● ●
●

● ● ● ● ●

●

●

●

●

●
●

●

●

● ● ● ● ● ● ● ●

●

●

●

●
● ●

● ● ● ●

●

●

●

●

●

●

hitters LAozone wine−red wine−white yacht

abalone airfoil college fish happiness

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6

1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Signal Sparsity

C
ro

ss
−

V
al

id
at

ed
 M

ea
n−

S
qu

ar
ed

 E
rr

or

● FLAM AMC FLAM (ours)

Figure 4: Performance of FLAM and AMC FLAM at different sparsity levels. For each
training-validation split of the data, between 1 and q features are selected at random from
the original dataset (x-axis), where q is the minimum of 10 and the total number of features
in the dataset, and Gaussian noise features are then added so that there are 10 total features.
Therefore, the signal is expected to become denser and stronger as the x-axis value increases.
AMC FLAM outperforms FLAM in most settings.

included AMC algorithms performing best in 39% of the settings and the scheme that only
included existing algorithms performing best in only 8% of these settings. Thus, we again see
evidence that including AMC base learners in a stacked ensemble can improve performance,
even when other learners are already available.

7. Proofs

7.1 A Study of Group Actions that are Useful for Our Setting

To prove Theorem 1, it will be convenient to use tools from group theory to describe and
study the behavior of our estimation problem under the shifts, rescalings, and permutations
that we consider. For k ∈ N, let Sym(k) be the symmetric group on k symbols. Let RoR+

be the semidirect product of the real numbers with the positive real numbers with the group
multiplication

(a1, b1)(a2, b2) = (a1 + b1a2, b1b2).

Define G0 := (RoR+)×[(RoR+)poSym(p)]×Sym(n). LetOn := {a ∈ Rn : ā = 0, s(a) = 1}.
Throughout we equip G0 with the product topology.

26



AMC Meta-Learning of Optimal Prediction Procedures

We note that the quantity Z defined in Section 2.1 writes as

Z = Opn ×On × Rp × Rp × R× Rp × R. (8)

Denote the generic group element g = ((gj+, gj×)pj=0, τg, ηg) where (gj+, gj×) ∈ R o R+,
τg ∈ Sym(p), and ηg ∈ Sym(n). Denote the generic element z ∈ Z by

z = ((zx,1,j , · · · , zx,n,j)pj=1, (z
y,1, · · · , zy,n), (zx,0,j)pj=1, (z

x̄,j)pj=1, z
ȳ, (zs(x),j)pj=1, z

s(y)).

For g1 = ((gj+1 , gj×1 )pj=0, τ1, η1), g2 = ((gj+2 , gj×2 )pj=0, τ2, η2), two arbitrary elements in G0,
define the group multiplication as

g1g2 =

(
g0+

1 g0×
2 + g0×

1 g0+
2 , g0×

1 g0×
2 ,
(
gj+1 g

τ−1
1 (j)×

2 + gj×1 g
τ−1
1 (j)+

2 , gj×1 g
τ−1
1 (j)×

2

)p
j=1

, τ1τ2, η1η2

)
.

Define the group action G0 ×Z → Z by

(g · z)x,i,j = zx,η
−1
g (i),τ−1

g (j)

(g · z)y,i = zy,η
−1
g (i)

(g · z)x,0,j = zx,0,τ
−1
g (j)

(g · z)x̄,j =
gj+

gj×
+ zx̄,τ

−1
g (j)

(g · z)ȳ =
g0+

g0× + zȳ

(g · z)s(x),j = log gj× + zs(x),τ−1
g (j)

(g · z)s(y) = log g0× + zs(y),

where i ∈ {1, 2, · · · , n} and j ∈ {1, 2, · · · , p}.
We make use of the below result without statement in the remainder of this section.

Lemma 5 The map defined above is a left group action.

Proof The identity axiom, namely that e · z = z when e is the identity element of G0, is
straightforward to verify and so we omit the arguments. Fix g1, g2 ∈ G0 and z ∈ Z. We
establish compatibility by showing that g1g2 · z = g1 · (g2 · z). To see that this is indeed the
case, note that, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}:

(g1g2 · z)y,i = zy,(η1η2)−1(i) = zy,η
−1
2 η−1

1 (i) = (g2 · z)y,η
−1
1 (i) = (g1 · (g2 · z))y,i

(g1g2 · z)x,i,j = zx,η
−1
2 η−1

1 (i),τ−1
2 τ−1

1 (j) = (g2 · z)x,η
−1
1 (i),τ−1

1 (j) = (g1 · (g2 · z))x,i,j

(g1g2 · z)x,0,j = zx,0,τ
−1
2 τ−1

1 (j) = (g2 · z)x,0,τ
−1
1 (j) = (g1 · (g2 · z))x,0,j

(g1g2 · z)x̄,j =
gj+1 g

τ−1
1 (j)×

2 + gj×1 g
τ−1
1 (j)+

2

gj×1 g
τ−1
1 (j)×

2

+ zx̄,τ
−1
2 τ−1

1 (j) =
gj+1

gj×1
+ (g2 · z)x̄,τ

−1
1 (j) = (g1 · (g2 · z))x̄,j

(g1g2 · z)ȳ =
g0+

1 g0×
2 + g0×

1 g0+
2

g0×
1 g0×

2

+ zȳ =
g0+

1

g0×
1

+ (g2 · z)ȳ = (g1 · (g2 · z))ȳ

27



Luedtke, Chung, and Sofrygin

(g1g2 · z)s(x),j = log(gj×1 gj×2 ) + zs(x),τ−1
2 τ−1

1 (j) = log gj×1 + (g2 · z)s(x),τ−1
1 (j) = (g1 · (g2 · z))s(x),j

(g1g2 · z)s(y) = log(g0×
1 g0×

2 ) + z(s(y) = log g0×
1 + (g2 · z)s(y) = (g1 · (g2 · z))s(y).

We now introduce several group actions that we will make heavy use of in our proof of
Theorem 1 and in the lemmas that precede it. We first define G0 × S → S. For S ∈ S
and g ∈ G0, define g · S to be (g · S)(z) = S(g · z). Conditions T4 and T5 can be restated
as g · S ∈ S for all g ∈ G0 and S ∈ S. It can then readily be shown that, under these
conditions, the defined map is a left group action. For T ∈ T , we will write g · T to denote
the D → (X → R) operator defined so that

(g · T )(d) : x0 7→

{
ȳ + s(y)(g · ST )(z(d, x0)), if (d, x0) ∈ D0,

0, otherwise.

It is possible that g · T does not belong to T due to its behavior when (d, x0) 6∈ D0,
and therefore that the defined map is not a group action. Nonetheless, because D0 has
P -probability one for any P ∈ P, this fact will not pose any difficulties in our arguments.

We now define the group action G0 × (Y × X )→ (Y × X ). For (y, x) ∈ R× Rp, define
g · (y, x) as

g · (y, x) = (g0+ + g0×y, (gi+ + gi×xτ
−1
g (i))pi=1).

Similar arguments to those used to prove Lemma 5 show that the map defined above is a
left group action. We now define the group action G0 × P → P. For P ∈ P, g ∈ G0, define
g · P = P ◦ g−1 by (g · P )(U) = P (g−1(U)), where

g−1(U) = {(y, x) ∈ Rp+1 : g · (y, x) ∈ U}.

Under P1, P2, and P3, which, as noted in the Section 2.1, implicitly encode that P ◦g−1 ∈ P ,
it can readily be shown that the defined map is a left group action. Finally, we define the
group action G0×Γ→ Γ. For Π ∈ Γ, g ∈ G0, define g ·Π = Π◦g−1 by (g ·Π)(U) = Π(g−1(U))
where

g−1(U) = {P ∈ P : g · P ∈ U}.

We can restate P1, P2, and P3 as Π ◦ g−1 ∈ Γ for all Π ∈ Γ, g ∈ G0. Under these conditions,
it can be shown that the defined map is a left group action.

We now show that G0 is amenable — see Appendix A for a review of this concept.
Establishing this fact will allow us to apply Day’s fixed point theorem (Theorem S3 in
Appendix A) in the upcoming proof of Theorem 1.

Lemma 6 G0 is amenable.

Proof Because Sym(p) and Sym(n) are finite groups, they are compact, and therefore
amenable. Because R and R+ are Abelian, they are also amenable. By Theorem S6, group
extensions of amenable groups are amenable.

28



AMC Meta-Learning of Optimal Prediction Procedures

7.2 Proofs of Theorems 1 through 4

This section is organized as follows. Section 7.2.1 introduces three general lemmas that will be
useful in proving the results from the main text. Section 7.2.2 proves several lemmas, proves
the variant of the Hunt-Stein theorem from the main text (Theorem 1), and concludes with
a discussion of the relation of this result to those in Le Cam (2012). Section 7.2.3 establishes
a preliminary lemma and then proves that, when the class of estimators is equivariant, it
suffices to restrict attention to priors in Γ1 when aiming to learn a Γ-minimax estimator
(Theorem 2). Section 7.2.4 establishes several lemmas, including a minimax theorem for
our setting, before proving the existence of an equilibrium point (Theorem 3). Section 7.2.5
establishes the equivariance of our proposed neural network architecture (Theorem 4).

In this section, we always equip C(Z,R) with the topology of compact convergence and,
whenever T2 holds so that S ⊂ C(Z,R), we equip S with the subspace topology. For a fixed
compact K ⊂ Z and a function h ∈ C(Z,R), we also let ‖h‖∞,K := supz∈K |h(z)|.

7.2.1 Preliminary lemmas

We now prove three lemmas that will be used in our proofs of Theorems 1 and 3.

Lemma 7 C(Z,R) with the compact-open topology is metrizable.

Proof See Example IV.2.2 in Conway (2010).

As a consequence of the above, we can show that a subset of C(Z,R) is closed by showing
that it is sequentially closed, and we can show that a subset of C(Z,R) is continuous by
showing that it is sequentially continuous.

Lemma 8 If T1, T2, and T3 hold, then S is a compact subset of C(Z,R).

Proof By T1, S is pointwise bounded. Moreover, the local Hölder condition T2 implies
that S is equicontinuous, in the sense that, for every ε > 0 and every z ∈ Z there exists
an open neighborhood U ⊂ Z of z such that, for all S ∈ S and all z′ ∈ U , it holds that
|S(z) − S(z′)| < ε. Hence, by the Arzelà-Ascoli theorem (see Theorem 47.1 in Munkres,
2000 for a convenient version), S is a relatively compact subset of C(Z,R). By T3, S is
closed, and therefore S is compact.

We now show that the group action G0 × S → S is continuous under conditions that
we assume in Theorem 1. Establishing this continuity condition is necessary for our use of
Day’s fixed point theorem in the upcoming proof of that result.

Lemma 9 If T2, T4, and T5 hold, then the group action G0 × S → S is continuous.

Proof By T4 and T5, G0 × S → S is indeed a group action. Also, by T2 and Lemma 7, S
is metrizable. Recall the expression for Z given in (8) and that

G0 := (Ro R+)× [(Ro R+)p o Sym(p)]× Sym(n).

The product topology is compatible with semidirect products, and so the fact that each
multiplicand is a metric space implies that G0 is a metric space. Hence, it suffices to show

29



Luedtke, Chung, and Sofrygin

sequential continuity. Let {(gk, Sk)}∞k=1 be a sequence in G0 ×S such that (gk, Sk)→ (g, S),
where (g, S) ∈ G0 × S. By the definition of the product metric, gk → g and Sk → S. Let
K1 ⊆ Opn, K2 ⊆ On, K3 ⊂ Rp, K4 ⊂ Rp, K5 ⊂ R, K6 ⊂ Rp, and K7 ⊂ R be compact spaces.
Since each compact space K ⊂ Z is contained in such a

∏7
i=1Ki, it suffices to show that

sup
z∈

∏7
i=1Ki

|(gk · Sk)(z)− (g · S)(z)| = ‖gk · Sk − g · S‖∞,∏7
i=1Ki

→ 0

for arbitrary compact sets K1, · · · ,K7. To show this, we will use the decomposition gk =
(gk,1, gk,2, gk,3, gk,4), where gk,1 ∈ R o R+, gk,2 ∈ (R o R+)p, gk,3 ∈ Sym(p), and gk,4 ∈
Sym(n). We similarly use the decomposition g = (g1, g2, g3, g4). For all N large enough, all
of the statements are true for all k > N : gk,3 = g3, gk,4 = g4, gk,1 is contained in a compact
neighbourhood C1 of g1, and gk,2 is contained in a compact neighbourhood C2 of g2.

Since permutations are continuous, g4K1g3 := {g4wg3 : w ∈ K1}, g4K2 := {g4w :
w ∈ K2}, and Kjg3 := {wg3 : w ∈ Kj}, j = 3, 4, 6, are compact. In the following
we use the decomposition g′ := (g′1, g

′
2, g
′
3, g
′
4) for an arbitrary element g′ ∈ G. Since

addition and multiplication are continuous, C2 � (K3g3) := {g′2 · w : g′2 ∈ C2, w ∈ K3g3},
C2 � (K4g3) := {g′2 · w : g′2 ∈ C2, w ∈ K4g3}, C1 � K5 := {g′1 · w : g′1 ∈ C1, w ∈ K5},
C2 � (K6g3) := {g′2 · w : g′2 ∈ C2, w ∈ K6g3}, and C1 �K7 := {g′1 · w : g′1 ∈ C1, w ∈ K7} are
compact. Define K◦ to be the compact set

K◦ = g4K1g3 × g4K2 × C2 � (K3g3)× C2 � (K4g3)× C1 �K5 × C2 � (K6g3)× C1 �K7

Then,
‖gk · Sk − g · S‖∞,∏7

i=1Ki
≤ ‖Sk − S‖∞,K◦ → 0.

7.2.2 Proof of Theorem 1

We begin this subsection with four lemmas and then we prove Theorem 1. Following this
proof, we briefly describe how the argument relates to that given in Le Cam (2012). In
the proof of Theorem 1, we will use notation that we established about the group G0 in
Section 7.1. We refer the reader to that section for details.

Lemma 10 For any g ∈ G0, T ∈ T , and P ∈ P, R(g · T, P ) = R(T, g · P )

Proof Fix T ∈ T and P ∈ P, and let S := ST , where ST is defined in (3). By the
change-of-variables formula,

R(g · T, P ) = EP

[∫
σ−2
P

{
Ȳ + s(Y )S(g ·Z)− µP (x0)

}2
dPX(x0)

]
= EP◦g−1

[∫
σ−2
P

{
g−1 · Ȳ + s(g−1 · Y )S(Z)− µP (g−1 · x0)

}2
d(PX ◦ g−1)(x0)

]
.

Plugging the fact that g−1 · y = (y − g0+)/g0× and that

µP (g−1 · x0) = EP [Y |X0 = g−1 · x0] = EP [Y |g ·X0 = x0]

30



AMC Meta-Learning of Optimal Prediction Procedures

=
EP [g · Y |g ·X0 = x0]− g0+

g0× =
µP◦g−1(x0)− g0+

g0×

into the right-hand side of the preceding display yields that

R(g · T, P )

= EP◦g−1

∫ σ−2
P

{
Ȳ − g0+

g0× + s

(
Ȳ − g0+

g0×

)
S(Z)−

µP◦g−1(x0)− g0+

g0×

}2

d(PX ◦ g−1)(x0)


= EP◦g−1

[∫
σ−2
P

{
Ȳ

g0× + s

(
Ȳ − g0+

g0×

)
S(Z)−

µP◦g−1(x0)

g0×

}2

d(PX ◦ g−1)(x0)

]
.

By the shift and scale properties of the standard deviation and variance, the above continues
as

= EP◦g−1

∫ σ−2
P

{
Ȳ

g0× +
s
(
Ȳ
)

g0× S(Z)−
µP◦g−1(x0)

g0×

}2

d(PX ◦ g−1)(x0)


= EP◦g−1

[∫
σ−2
P◦g−1

{
Ȳ + s

(
Ȳ
)
S(Z)− µP◦g−1(x0)

}2
d(PX ◦ g−1)(x0)

]
= R(T, g · P ).

Lemma 11 For any g ∈ G0, T ∈ T , and Π ∈ Γ, it holds that r(g · T,Π) = r(T, g ·Π).

Proof This result follows quickly from Lemma 10. Indeed, for any g ∈ G0, T ∈ T , and
Π ∈ Γ,

r(g · T,Π) =

∫
R(g · T, P )dΠ(P ) =

∫
R(T, g · P )dΠ(P )

=

∫
R(T, P )d(Π ◦ g−1)(P ) = r(T, g ·Π).

Let Se := {S ∈ S : g · S = S for all g ∈ G0} consists of the G0-invariant elements of S.
The following fact will be useful when proving Theorem 1, and also when proving results in
the upcoming Section 7.2.3.

Lemma 12 It holds that Se = {ST : T ∈ Te}.

Proof Fix S ∈ Se and g ∈ G0. By the definition of S := {ST : T ∈ T }, there exists a T ∈ T
such that S = ST . For this T , the fact that ST (z) = ST (g · z) implies that

T (g · z) = (g0+ + g0×ȳ) + g0×s(y)ST (g · z) = (g0+ + g0×ȳ) + g0×s(y)ST (z)

31



Luedtke, Chung, and Sofrygin

= g0+ + g0×[ȳ + s(y)ST (z)] = g0+ + g0×T (z).

As g was arbitrary, T ∈ Te. Hence, Se ⊆ {ST : T ∈ Te}.
Now fix T ∈ Te and g ∈ G0. Note that ST (z) = [T (z) − ȳ]/s(y). Using that T ∈ Te

implies that T (g · z) = g0+ + g0×T (z), we see that

ST (g · z) =
T (g · z)− g0+ − g0×ȳ

s(g · y)
=
T (g · z)− g0+ − g0×ȳ

g0×s(y)

=
g0+ + g0×T (z)− g0+ − g0×ȳ

g0×s(y)
=
T (z)− ȳ

s(y)
= ST (z).

As, g was arbitrary, ST ∈ Se, and so Se ⊇ {ST : T ∈ Te}.

We define r0 : S × Γ→ [0,∞) as follows:

r0(S,Π) :=

∫
EP

[∫
x0:(D,x0)∈D0

{Ȳ + s(Y )S(z(D, x0))− µP (x0)}2

σ2
P

dPX(x0)

]
dΠ(P ). (9)

Because D0 occurs with P -probability one (for any P ∈ P), it holds that r(T,Π) = r0(ST ,Π)
for any T ∈ T .

Lemma 13 Fix Π ∈ Γ. If T1, T2, and P4 hold, then r0(·,Π) : S → R is lower semicontin-
uous.

Proof Fix Π ∈ Γ. For any compact K ⊂ Z, we define fK : S → R by

fK(S) :=

∫
EP

[∫
XD,K

σ−2
P

[
Ȳ + s(Y )S(Z)− µP (x0)

]2
dPX(x0)

]
dΠ(P ),

where here and throughout in this proof we let Z := z(D, x0) and XD,K := {x0 : (D, x0) ∈
D0, z(D, x0) ∈ K} ⊆ X . Recalling that there exists an increasing sequence of compact
subsets K1 ⊂ K2 ⊂ · · · such that

⋃∞
j=1Kj = Z, we see that supj∈N fKj (·) = r0(·,Π) by the

monotone convergence theorem. Moreover, as suprema of collections of continuous functions
are lower semicontinuous, we see that f is lower semicontinuous if fK is continuous for every
K. In the remainder of this proof, we will show that this is indeed the case.

By Lemma 7, it suffices to show that fK is sequentially continuous. Fix S1, S2 ∈ S. By
Jensen’s inequality,

|fK(S1)− fK(S2)|

=

∣∣∣∣∣
∫

EP

[∫
XD,K

σ−2
P

( [
Ȳ + s(Y )S1(Z)− µP (x0)

]2
−
[
Ȳ + s(Y )S2(Z)− µP (x0)

]2 )
dPX(x0)

]
dΠ(P )

∣∣∣∣∣
≤
∫
σ−2
P EP

[∫
XD,K

∣∣∣ [Ȳ + s(Y )S1(Z)− µP (x0)
]2

32



AMC Meta-Learning of Optimal Prediction Procedures

−
[
Ȳ + s(Y )S2(Z)− µP (x0)

]2 ∣∣∣dPX(x0)

]
dΠ(P ). (10)

In what follows, we will bound the right-hand side above by some finite constant times
‖S1 − S2‖K,∞. We start by noting that, for any (d, x0) ∈ D0 such that z(d, x0) ∈ K,∣∣∣ [ȳ + s(y)S1(z)− µP (x0)]2 − [ȳ + s(y)S2(z)− µP (x0)]2

∣∣∣
=
∣∣∣s(y) [2ȳ + s(y){S1(z) + S2(z)} − 2µP (x0)] [S1(z)− S2(z)]

∣∣∣
≤ ‖S1 − S2‖∞,Ks(y)

∣∣∣2ȳ + s(y){S1(z) + S2(z)} − 2µP (x0)
∣∣∣

≤ ‖S1 − S2‖∞,K
(
s(y)2[‖S1‖K,∞ + ‖S2‖K,∞] + 2s(y)|ȳ − µP (x0)|

)
≤ ‖S1 − S2‖∞,K

(
s(y)2[‖S1‖K,∞ + ‖S2‖K,∞] + 2s(y)|ȳ − EP [Y ]|+ 2s(y)|µP (x0)− EP [Y ]|

)
≤ 2‖S1 − S2‖∞,K

(
C1s(y)2 + s(y)|ȳ − EP [Y ]|+ s(y)|µP (x0)− EP [Y ]|

)
,

where C1 := supS∈S ‖S‖K,∞ is finite by T1 and T2. Integrating both sides shows that

EP

[∫
XD,K

∣∣∣[Ȳ + s(Y )S1(Z)− µP (x0)
]2 − [Ȳ + s(Y )S2(Z)− µP (x0)

]2∣∣∣ dPX(x0)

]

≤ 2‖S1 − S2‖∞,K

(
C1 EP

[∫
XD,K

s(Y )2dPX(x0)

]
+ EP

[∫
XD,K

s(Y )|Ȳ − EP [Y ]|dPX(x0)

]

+ EP

[∫
XD,K

s(Y )|µP (x0)− EP [Y ]|dPX(x0)

])

≤ 2‖S1 − S2‖∞,K

(
C1 EP

[
s(Y )2

]
+ EP

[
s(Y )|Ȳ − EP [Y ]|

]
+ EP

[
s(Y )

∫
|µP (x0)− EP [Y ]|dPX(x0)

])
. (11)

We now bound the three expectations on the right-hand side by finite constants that do not
depend on S1 or S2. All three bounds make use of the bound on the first expectation, namely
EP
[
s(Y )2

]
= n−1

n VarP (Y ) ≤ n−1
n C2σ

2
P , where C2 := supP∈P VarP (Y )/σ2

P . We note that
(P4) can be used to show that C2 <∞. Indeed,

EP [VarP (Y | X)] = EP [VarP (εP | X)] = EP [ε2P ] = σ2
P ,

and so, by the law of total variance and (P4), C2 = 1 + supP∈P VarP (µP (X))/σ2
P <∞. By

Cauchy-Schwarz, the second expectation on the right-hand side of (11) bound as

EP [s(Y )|Y − EP [Y ]|] ≤ EP
[
s(Y )2

]1/2
EP
[
{Y − EP [Y ]}2

]1/2
= EP

[
s(Y )2

]1/2
σP

=

√
n− 1

n

√
C2σ

2
P ,

33



Luedtke, Chung, and Sofrygin

and the third expectation bounds as

EP [s(Y )|µP (x0)− EP [Y ]|] ≤ EP
[
s(Y )2

]1/2
EP

[∫
{µP (x0)− EP [Y ]}2dPX0

]1/2

≤ EP
[
s(Y )2

]1/2
VarP (Y )1/2 ≤

√
n− 1

n

√
C2σPVarP (Y )1/2

≤
√
n− 1

n
C2σ

2
P .

Plugging these bounds into (11), we see that

EP

[∫
XD,K

∣∣∣[Ȳ + s(Y )S1(Z)− µP (x0)
]2 − [Ȳ + s(Y )S2(Z)− µP (x0)

]2∣∣∣ dPX(x0)

]

≤ 2‖S1 − S2‖∞,Kσ2
P

√
n− 1

n
C

1/2
2

(
C1C

1/2
2

√
n− 1

n
+ C

1/2
2 + 1

)
.

Plugging this into (10), we have shown that

|fK(S1)− fK(S2)| ≤ 2‖S1 − S2‖∞,K

√
n− 1

n
C

1/2
2

(
C1C

1/2
2

√
n− 1

n
+ C

1/2
2 + 1

)
.

We now conclude the proof by showing that the above implies that fK is sequentially
continuous at every S ∈ S, and therefore is sequentially continuous on S. Fix S and a
sequence {Sj} such that Sj → S compactly. This implies that ‖Sj − S‖∞,K → 0, and so the
above display implies that fK(Sj)→ fK(S), as desired.

We now prove Theorem 1.
Proof of Theorem 1 Fix T0 ∈ T and let S0 := ST0 ∈ S. Let K be the set of all elements
S ∈ S that satisfy

sup
Π∈Γ

r0(S,Π) ≤ sup
Π∈Γ

r0(S0,Π).

For fixed Π0 ∈ Γ, the set of S ∈ S that satisfy r0(S,Π0) ≤ supΠ∈Γ r0(S0,Π) is closed due to
the lower semicontinuity of the risk function (Lemma 13) and contains S0. The intersection
of such sets is closed and contains S0 so that K is a nonempty closed subset of the compact
Hausdorff set S, implying that K is compact. By the convexity of x 7→

(
x−a
b

)2
, the risk

function S 7→ r0(S,Π) is convex. Hence, K is convex. If S ∈ K, then Lemma 11 shows that,
for any g ∈ G0,

r0(g · S,Π0) = r0(S, g ·Π0) ≤ sup
Π∈Γ

r0(S0,Π).

Thus, g · S ∈ K and G0 ×K → K is an affine group action on a nonempty, convex, compact
subset of a locally compact topological vector space. Combining this with the fact that G0 is
amenable (Lemma 6) shows that we may apply Day’s fixed point theorem (Theorem S3) to
see that there exists an Se ∈ S such that, for all g ∈ G0, g · Se = Se and

sup
Π∈Γ

r0(Se,Π) ≤ sup
Π∈Γ

r0(S0,Π).

34



AMC Meta-Learning of Optimal Prediction Procedures

The conclusion is at hand. By Lemma 12, there exists a Te ∈ Te such that Se = STe .
Furthermore, as noted below (9), r0(STe ,Π) = r(Te,Π) and r0(ST0 ,Π) = r(T0,Π) for all
Π ∈ Γ. Recalling that S0 := ST0 , the above shows that supΠ∈Γ r(Te,Π) ≤ supΠ∈Γ r(T0,Π).
As T0 ∈ T was arbitrary and Te ∈ Te, we have shown that infTe∈Te supΠ∈Γ r(Te,Π) ≤
infT0∈T supΠ∈Γ r(T0,Π).

The proof of Theorem 1 is inspired by that of the Hunt-Stein theorem given in Le Cam
(2012). Establishing this result in our context required making meaningful modifications
to these earlier arguments. Indeed, Le Cam (2012) uses transitions, linear maps between
L-spaces, to characterize the space of decision procedures. This more complicated machinery
makes it possible to broaden the set of procedures under consideration. Indeed, with this
characterization, it is possible to describe decision procedures that cannot even be represented
as randomized decision procedures via a Markov kernel, but instead come about as limits of
such decision procedures. Despite the richness of the space of decision procedures considered,
Le Cam is still able to show that this space is compact by using a coarse topology, namely
the topology of pointwise convergence. Unfortunately, this topology appears to generally
be too coarse for our Bayes risk function r0(·,Π) to be lower semi-continuous, which is a
fact that we used at the beginning of our proof of Theorem 1. Another disadvantage to
this formulation is that it makes it difficult to enforce any natural conditions or structure,
such as continuity, on the set of estimators. It is unclear whether it would be possible
to implement a numerical strategy optimizing over a class of estimators that lacks such
structure. In contrast, we showed that, under appropriate conditions, it is indeed possible
to prove a variant of the Hunt-Stein theorem in our setting even once natural structure is
imposed on the class of estimators. To show the compactness of the space of estimators that
we consider, we applied the Arzelà-Ascoli theorem.

7.2.3 Proof of Theorem 2

We provide one additional lemma before proving Theorem 2. The lemma relates to the class
T̃e of estimators in T that satisfy the equivariance property (5) but do not necessarily satisfy
(4). Note that Te ⊆ T̃e ⊆ T .

Lemma 14 If P2 and P3 hold, then, for all T ∈ T̃e,

r(T,Π) = r(T,Π ◦ h−1) for all Π ∈ Γ,

and so supΠ∈Γ r(T,Π) = supΠ∈Γ1
r(T,Π).

Proof of Lemma 14 Let e be the identity element in Sym(n)× Sym(p). For each P ∈ P ,
define gP ∈ G0 to be

gP :=

−EP [Y ]

σP
,

1

σP
,

(
− EP [Xj ]√

VarP (Xj)

)p
j=1

,

(
1√

VarP (Xj)

)p
j=1

, e

 .

It holds that

R(T,Π ◦ h−1) =

∫
R(T, P )d(Π ◦ h−1)(P )

35



Luedtke, Chung, and Sofrygin

=

∫
R(T, P ◦ g−1

P )dΠ(P ) by the definition of h

=

∫
R(gP · T, P )dΠ(P ) by Lemma 10

=

∫
R(T, P )dΠ(P ) = r(T,Π) since T ∈ T̃e.

We conclude by proving Theorem 2.

Proof of Theorem 2 Under the conditions of the theorem, T̃e = T . Recalling that
Γ1 := {Π ◦ h−1 : Π ∈ Γ}, Lemma 14 yields that, for any T ∈ T , supΠ∈Γ r(T,Π) =
supΠ∈Γ r(T,Π ◦ h−1) = supΠ∈Γ1

r(T,Π). Hence, an estimator T ∈ T is Γ-minimax if and
only if it is Γ1-minimax.

7.2.4 Proof of Theorem 3

In this subsection, we assume (without statement) that all Π ∈ Γ are defined on the
measurable space (P,A ), where A is such that {A ∩ P1 : A ∈ A } equals B1, where B1 is
the collection of Borel sets on the metric space (P1, ρ) described in P5. Under P2 and P3,
which we also assume without statement throughout this subsection, it then follows that
each Π1 ∈ Γ1 is defined on the measurable space (P1,B1), where B1 is the collection of
Borel sets on (P1, ρ). Let Γ0 denote the collection of all distributions on (P1,B1). For each
A ∈ B1, define the ε-enlargement of A by Aε := {P ∈ P1 : ∃P ′ ∈ A such that ρ(P, P ′) < ε}.
Further let ξ denote the Lévy-Prokhorov metric on Γ0, namely

ξ(Π,Π′) := inf
{
ε > 0 : Π(A) ≤ Π′(Aε) + ε and Π′(A) ≤ Π(Aε) + ε for all A ∈ B1

}
.

Lemma 15 If P5 and P6, then (Γ1, ξ) is a compact metric space.

Proof of Lemma 15 By Prokhorov’s theorem (see Theorem 5.2 in van Gaans, 2003 for a
convenient version, or see Theorems 1.5.1 and 1.6.8 in Billingsley, 1999), P5 implies that Γ1

is relatively compact in (Γ0, ξ). The fact that Γ1 is closed (P6) implies the result.

We now define r1 : Se × Γ1 → [0,∞), which is the analogue of r0 : S × Γ→ [0,∞) from
Section 7.2.2:

r1(S,Π) :=

∫
EP

[∫
x0:(D,x0)∈D0

{Ȳ + s(Y )S(z(D, x0))− µP (x0)}2dPX(x0)

]
dΠ(P ). (12)

Note that, because each distribution in P is continuous, each distribution in P1 is also
continuous. Hence, D0 occurs with P -probability one for all P ∈ P1, and so the definition of
r1 combined with Lemma 12 shows that r(T,Π) = r1(ST ,Π) for any T ∈ Te and Π ∈ Γ1.

Lemma 16 If P5, then, for each S ∈ Se, r1(S, ·) is upper semicontinuous on (Γ1, ξ).

36



AMC Meta-Learning of Optimal Prediction Procedures

Proof of Lemma 16 Fix S ∈ Se, and note that, by Lemma 12, there exists a T ∈ Te such

that S = ST . Let {Πj}∞j=1 be such that Πj
k→∞−→ Π in (Γ1, ξ) for some Π ∈ Γ1. Because ξ

metrizes weak convergence (Theorem 1.6.8 in Billingsley, 1999), the Portmanteau theorem
shows that lim supk→∞ EΠj [f(P )] ≤ EΠ[f(P )] for every f : P1 → R that is upper semicon-
tinuous and bounded from above on (P1, ρ). By part (iii) of P5, we can apply this result
at f : P 7→ R(T, P ) to see that lim supk→∞ r(T,Πj) ≤ r(T,Π). As {Πj}∞j=1 was arbitrary,
r(T, ·) is upper semicontinuous on (Γ1, ξ). Because r(T, ·) = r1(ST , ·) and S = ST , we have
this shown that r1(S, ·) is upper semicontinuous on (Γ1, ξ).

Lemma 17 Under the conditions of Lemma 8, Se is a compact subset of C(Z,R).

Proof By Lemma 8, Se ⊂ S is relatively compact. Hence, it suffices to show that Se is
closed. By Lemma 7, a subset of C(Z,R) is closed in the topology of compact convergence
if it is sequentially closed. Let {Sj}∞j=1 be a sequence on Se such that Sj → S compactly.
Because Se ⊂ S and S is closed by T3, we see that S ∈ S. We now wish to show that S ∈ Se.
Fix z ∈ Z and g ∈ G0. Because the doubleton set {z, g · z} is compact, Sj(z)→ S(z) and
Sj(g ·z)→ S(g ·z), and thus Sj(z)−Sj(g ·z)→ S(z)−S(g ·z). Moreover, because Sj ∈ Se,
Sj(g · z) = Sj(z) for all j. Hence, Sj(z)− Sj(g · z)→ 0. As these two limits must be equal,
we see that S(z) = S(g · z). Because z ∈ Z and g ∈ G0 were arbitrary, S ∈ Se.

Lemma 18 Fix Π ∈ Γ1. If T1, T2, and P4 hold, then r1(·,Π) : Se → R is lower semicon-
tinuous.

Proof The proof is similar to that of Lemma 13 and is therefore omitted.

Lemma 19 If T6, then Se is convex.

Proof Fix S1, S2 ∈ Se and δ ∈ (0, 1). For any z ∈ Z and g ∈ G0,

g · (δS1 + [1− δ]S2)(z) = δS1(g · z) + [1− δ]S2(g · z) = δS1(z) + [1− δ]S2(z),

where the latter equality holds since S1, S2 ∈ Se. Hence, g · (δS1 +[1−δ]S2) = δS1 +[1−δ]S2

for all g ∈ G0. By T6, δS1 + [1− δ]S2 ∈ S. Hence, δS1 + [1− δ]S2 ∈ Se := {S ∈ S : g · S =
S for all g ∈ G0}.

Lemma 20 (Minimax theorem) Under the conditions of Theorem 3,

min
S∈Se

max
Π∈Γ1

r1(S,Π) = max
Π∈Γ1

min
S∈Se

r1(S,Π). (13)

37



Luedtke, Chung, and Sofrygin

Proof of Lemma 20 We will show that the conditions of Theorem 1 in Fan (1953) are
satisfied. By Lemma 7, C(Z,R) is metrizable by some metric ρ0. By Lemma 17, (Se, ρ0)
is a compact metric space. Moreover, by Lemma 15, (Γ1, ξ) is a compact metric space.
As all metric spaces are Hausdorff, (Se, ρ0) and (Γ1, ξ) are Hausdorff. By Lemma 16,
for each for each S ∈ Se, r1(S, ·) is upper semicontinuous on (Γ1, ξ). By Lemma 18, for
each Π ∈ Γ1, r1(·,Π) is lower semicontinuous on (Se, ρ0). It remains to show that r1 is
concavelike on Γ1 (called “concave on” Γ1 by Fan) and that r1 is convexlike on Se (called
“convex on” Se by Fan). To see that r1 is concavelike on Γ1, note that Γ1 is convex
(P7), and also that, for all S ∈ Se, r1(S, ·) is linear, and therefore concave, on Γ1. Hence,
r1 is concavelike on Γ1 (page 409 of Terkelsen, 1973). To see that r1 is convexlike on
Se, note that Se is convex (Lemma 19), and also that, for all Π ∈ Γ1, r1(·,Π) is convex
on Se. Hence, r1 is convexlike on Se (ibid.). Thus, by Theorem 1 in Fan (1953), (13) holds.

We conclude by proving Theorem 3.
Proof of Theorem 3 We follow arguments given on page 93 of Chang (2006) to show
that, under the conditions of this theorem, (13) implies that there exists an S? ∈ Se and a
Π? ∈ Γ1 such that

max
Π∈Γ1

r1(S?,Π) = r1(S?,Π?) = min
S∈Se

r1(S,Π?). (14)

Noting that pointwise maxima of lower semicontinuous functions are themselves lower
semicontinuous, Lemma 18 implies that maxΠ∈Γ1 r1(·,Π) is lower semicontinuous. Because
Se is compact (Lemma 17), there exists an S? ∈ Se such that

max
Π∈Γ1

r1(S?,Π) = min
S∈Se

max
Π∈Γ1

r1(S,Π).

Similarly, Lemma 16 implies that minS∈Se r1(S, ·) is upper semicontinuous on (Γ1, ξ). Because
(Γ1, ξ) is compact (Lemma 15), there exists a Π? ∈ Γ1 such that

min
S∈Se

r1(S,Π?) = max
Π∈Γ1

min
S∈Se

r1(S,Π).

By Lemma 20, the above two displays show that maxΠ∈Γ1 r1(S?,Π) = minS∈Se r1(S,Π?).
Combining this result with the elementary fact that minS∈Se r1(S,Π?) ≤ r1(S?,Π?) ≤
maxΠ∈Γ1 r1(S?,Π) shows that (14) holds.

Recall from below (12) that r1(ST ,Π) = r(T,Π) for all Π ∈ Γ1 and T ∈ Te. More-
over, since Se = {ST : T ∈ Te} (Lemma 12), there exists a T ? ∈ Te such that S = ST ? .
Combining these observations shows that (i) maxΠ∈Γ1 r1(S?,Π) = maxΠ∈Γ1 r1(ST ? ,Π) =
maxΠ∈Γ1 r(T

?,Π); (ii) r1(S?,Π?) = r1(ST ? ,Π
?) = r(T ?,Π?); and (iii) minS∈Se r1(S,Π?) =

minT∈Te r1(ST ,Π
?) = minT∈Te r(T,Π

?). Hence, by (14), maxΠ∈Π? r(T
?,Π) = r1(T ?,Π?) =

minT∈Te r1(T,Π?). Equivalently, for all T ∈ Te and Π ∈ Γ1, r(T ?,Π) ≤ r(T ?,Π?) ≤ r(T,Π?).

7.2.5 Proof of Theorem 4

Proof of Theorem 4 Fix T ∈M, and let (m1,m2,m3,m4) ∈
∏4
k=1Mk be the correspond-

ing modules. Recall from Algorithm 2 that, for a given (d, x0), x0
0 := x0−x̄

s(x) and d0 ∈ Rn×p×2

38



AMC Meta-Learning of Optimal Prediction Procedures

is defined so that d0
i∗1 = xi−x̄

s(x) for all i = 1, . . . , n and d0
∗j2 = y−ȳ

s(y) for all j = 1, . . . , p. Now,

for any (d, x0) ∈ D0,

T (d)(x0) = ȳ + s(y)m4

1

p

p∑
j=1

m3

([
m2

(
1

n

n∑
i=1

m1(d0)i∗∗

) ∣∣∣∣∣ x0
0

])
j∗

 ,

and so ST takes the form

ST (z(d, x0)) = m4

1

p

p∑
j=1

m3

([
m2

(
1

n

n∑
i=1

m1(d0)i∗∗

) ∣∣∣∣∣ x0
0

])
j∗

 .

Because ST does not depend on the last four arguments of z(d, x0), we know that T satisfies
(5), that is, is invariant to shifts and rescalings of the features and is equivariant to shifts
and rescalings of the outcome. It remains to show permutation invariance , namely (4). By
the permutation invariance of the sample mean and sample standard deviation, it suffices to
establish the analogue of this property for ST , namely that ST (z(AdB,Bx0)) = ST (z(d, x0))
for all (d, x0) ∈ D0, A ∈ A, and B ∈ B. For an array M of size Rn×p×o, we will write AMB
to mean the Rn×p×o array for which (AMB)∗∗` = AM∗∗`B for all ` = 1, 2, . . . , o. Note that

ST (z(AdB,Bx0)) = m4

1

p

p∑
j=1

m3

([
m2

(
1

n

n∑
i=1

m1(Ad0B)i∗∗

) ∣∣∣∣∣ B>x0
0

])
j∗


= m4

1

p

p∑
j=1

m3

([
m2

(
1

n

n∑
i=1

(Am1(d0)B)i∗∗

) ∣∣∣∣∣ B>x0
0

])
j∗


(by M1)

= m4

1

p

p∑
j=1

m3

([
m2

(
B>

1

n

n∑
i=1

(Am1(d0))i∗∗

) ∣∣∣∣∣ B>x0
0

])
j∗


= m4

1

p

p∑
j=1

m3

([
m2

(
B>

1

n

n∑
i=1

m1(d0)i∗∗

) ∣∣∣∣∣ B>x0
0

])
j∗


= m4

1

p

p∑
j=1

m3

([
B>m2

(
1

n

n∑
i=1

m1(d0)i∗∗

) ∣∣∣∣∣ B>x0
0

])
j∗

 (by M2)

= m4

1

p

p∑
j=1

m3

(
B>

[
m2

(
1

n

n∑
i=1

m1(d0)i∗∗

) ∣∣∣∣∣ x0
0

])
j∗


= m4

1

p

p∑
j=1

(
B>m3

([
m2

(
1

n

n∑
i=1

m1(d0)i∗∗

) ∣∣∣∣∣ x0
0

]))
j∗

 (by M3)

= m4

1

p

p∑
j=1

m3

([
m2

(
1

n

n∑
i=1

m1(d0)i∗∗

) ∣∣∣∣∣ x0
0

])
j∗


39



Luedtke, Chung, and Sofrygin

= ST (z(d, x0)).

Hence, T satisfies (4).

8. Extensions and Discussion

We have focused on a particular set of invariance properties on the collection of priors Γ,
namely P1-P3. Our arguments can be generalized to handle other properties. As a simple
example, suppose P3 is strengthened so that Γ is invariant to nonzero (rather than only
nonnegative) rescalings b̃ of the outcome – this property is in fact satisfied in all of our
experiments. Under this new condition, the results in Section 2 remain valid with the
definition of the class of equivariant estimators Te defined in (4) and (5) modified so that b̃
may range over R\{0}. Moreover, for any T , Jensen’s inequality shows that the Γ-maximal
risk of the symmetrized estimator that averages T (x,y)(x0) and negative T (x,−y)(x0) is
no worse than that of T . To assess the practical utility of this observation, we numerically
evaluated the performance of symmetrizations of the estimators learned in our experiments.
Symmetrizing improved performance across most settings (see Appendix F). We, therefore,
recommend carefully characterizing the invariance properties of a given problem when setting
out to meta-learn an estimator.

Much of this work has focused on developing and studying a framework for meta-learning
a Γ-minimax estimator for a single, prespecified collection of priors Γ. In some settings,
it may be difficult to a priori specify a single such collection that is both small enough
so that the Γ-minimax estimator is not too conservative while also being rich enough so
that the priors in this collection actually place mass in a neighborhood of the true data-
generating distribution. Two approaches for overcoming this challenge seem to warrant
further consideration. The first would be to employ an empirical Bayes approach (Efron
and Morris, 1972), wherein a large dataset from a parallel situation can be used to inform
about the possible forms that the prior might take; this, in turn, would also inform about
the form that the collection Γ should take. Recent advances in the development of empirical
Bayes priors for prediction problems can be used if this approach is taken (e.g., Nabi et al.,
2020). The second approach involves using AMC to approximate Γ-minimax estimators over
various choices of Γ, and then to use a stacked ensemble to combine the predictions from
these various base estimators. In our data experiments, we saw that a simple version of this
ensemble that combined four base AMC estimators consistently performed at least as well
as the best of these base estimators.

In this work, we have focused on the case where the problem of interest is a supervised
learning problem and the objective is to predict a continuous outcome based on iid data.
While the AMC algorithm generalizes naturally to a variety of other sampling schemes and
loss functions (see Luedtke et al., 2020), our characterization of the equivariance properties
of an optimal estimator was specific to the iid regression setting that we considered. In
future work, it would be interesting to characterize these properties in greater generality,
including in classification settings and inverse reinforcement learning settings (e.g., Russell,
1998; Geng et al., 2020).

40



AMC Meta-Learning of Optimal Prediction Procedures

Appendices

Appendix A. Review of amenability

In this appendix, we review the definition of an amenable group, an important implication
of amenability, and also some sufficient conditions for establishing that a group is amenable.
This material will prove useful in our proof of Theorem 1 (see Section 7.2.2). We refer the
reader to Pier (1984) for a thorough coverage of amenability.

Definition S1 (Amenability) Let G be a locally compact, Hausdorff group and let L∞(G)
be the space of Borel measurable functions that are essentially bounded with respect to the
Haar measure. A mean on L∞(G) is defined as a linear functional M ∈ L∞(G)∗ such that
M(λ) ≥ 0 whenever λ ≥ 0 and M(1G) = 1. A mean M is said to be left invariant for a
group G if and only if M(δg ∗ λ) = M(λ) for all λ ∈ L∞(G), where (δg ∗ λ)(h) = λ(g−1h).
The group G is said to be amenable if and only if there is a left invariant mean on L∞(G).

We now introduce the fixed point property, and subsequently present a result showing
its close connection to the definition given above. Throughout this work, we equip all group
actions G ×W →W with the product topology.

Definition S2 (Fixed point property) We say that a locally compact, Hausdorff group
G has the fixed point property if, whenever G acts affinely on a compact convex set K in a
locally convex topological vector space E with the map G × K → K continuous, there is a
point in x0 ∈ K fixed under the action of G.

Theorem S3 (Day’s Fixed Point Theorem) A locally compact, Hausdorff group G has
the fixed point property if and only if G is amenable.

Proof See the proof of Theorem 5.4 in Pier (1984).

The following results are useful for establishing amenability.

Lemma S4 Any compact group is amenable.

Proof Take the normalized Haar measure as an invariant mean.

Lemma S5 Any locally compact Abelian group is amenable.

Proof See the proof of Proposition 12.2 in Pier (1984).

Lemma S6 Let G be a locally compact group and N a closed normal subgroup of G. If N
and G/N are amenable, then G is amenable.

41



Luedtke, Chung, and Sofrygin

Proof Assume that a continuous affine action of G on a nonempty compact convex set K is
given. Let KN be the set of all fixed points of N in K. Since N is amenable, Theorem S3
implies that KN is nonempty. Since the group action is continuous, KN is a closed subset of
K and hence is compact. Since the action is affine, KN is convex. Now, note that, for all
x ∈ KN , g ∈ G, and n ∈ N , the fact that g−1ng ∈ N implies that g−1ngx = x which implies
ngx = gx. Hence, KN is preserved by the action of G. The action of G on KN factors to an
action of G/N on KN , which has a fixed point x0 since G/N is amenable. But then x0 is
fixed by each g ∈ G. Hence, G is amenable.

Appendix B. Examples of collections S where T1-T6 hold

B.1 Infinite-dimensional class

We start by presenting an infinite-dimensional class S that satisfies T1-T6, and then we
subsequently present a finite-dimensional class. To define this class, we fix c, α > 0 and a
function F : Z → R+ some function that is invariant to permutations, shifts, and rescalings,
in the sense that both of the following hold:

F1. Permutations: For all ((x,y), x0) ∈ D0, A ∈ A and B ∈ B, it holds that

F (z((AxB,Ay), B>x0)) = F (z((x,y), x0).

F2. Shifts and rescalings: For all ((x,y), x0) ∈ D0, a ∈ Rp, b ∈ (R+)p, ã ∈ R, and b̃ > 0, it
holds that F (z((xa,b, ã + b̃y), a + b � x0)) = F (z((x,y), x0), where xa,b is the n × p
matrix with row i equal to a+ b� xi∗.

These conditions bear some resemblance to T4 and T5. One example of a function F satisfies
the above conditions is a constant function.

The infinite-dimensional class of Z → R functions that we consider is defined as

SF,α,c :=

{
S : ∀z ∈ Z, |S(z)| ≤ F (z), sup

z 6=z′∈Z

|S(z)− S(z′)|
‖z − z′‖α

≤ c

}
.

We will now show that this class satisfies T1-T6. Conditions T1 and T2 follow immediately
from the definition of SF,α,c. We now show that T3 holds. Because C(Z,R) is complete, it
suffices to show that, if Sn → S converges compactly and Sn ∈ SF,α,c, then S ∈ SF,α,c. Let
Sn → S compactly. To see that |S(z)| ≤ F (z), note that

|S(z)| ≤ |Sn(z)− S(z)|+ |Sn(z)| ≤ F (z) + |Sn(z)− S(z)|

and then take the limit as n→∞. To see that S satisfies the Hölder condition, note that,
for any z 6= z′ ∈ Z,

|S(z)− S(z′)|
‖z − z′‖α

≤ |S(z)− Sn(z)|
‖z − z′‖α

+
|Sn(z)− Sn(z′)|
‖z − z′‖α

+
|Sn(z′)− S(z′)|
‖z − z′‖α

and again take the limit as n → ∞. Hence, |S(z)−S(z′)|
‖z−z′‖α ≤ c for each z 6= z′, and so

supz 6=z′∈Z
|S(z)−S(z′)|
‖z−z′‖α ≤ c. Hence S ∈ SF,α,c, and thus T3 holds. We now show that T4

42



AMC Meta-Learning of Optimal Prediction Procedures

and T5 hold. To do this, we will use the group theoretic notation defined in Section 7.1.
As noted in that section, T4 and T5 are equivalent to the condition that g · S ∈ SF,α,c
for all g ∈ G0 and S ∈ SF,α,c. We will therefore fix S ∈ SF,α,c and g ∈ G0 and show that
g · S ∈ SF,α,c. For z ∈ Z, we have that

|(g · S)(z)| = |S(g · z)| ≤ F (g · z) = F (z),

where the inequality holds since S ∈ SF,α,c. Note that for any z, z′ ∈ Z, ‖g · z − g · z′‖ =
‖z − z′‖. Hence,

sup
z 6=z′∈Z

|(g · S)(z)− (g · S)(z′)|
‖z − z′‖α

= sup
z 6=z′∈Z

|(g · S)(z)− (g · S)(z′)|
‖g · z − g · z′‖α

= sup
z 6=z′∈Z

|S(z)− S(z′)|
‖z − z′‖α

≤ c,

where the inequality holds since S ∈ SF,α,c. Hence, g · S ∈ SF,α,c, and so T4 and T5 hold.
It remains to show T6. To see that this holds, fix S1, S2 ∈ SF,α,c and δ ∈ (0, 1) and let
S = δS1 + (1− δ)S2. By the triangle inequality and the fact that S1, S2 ∈ SF,α,c, we have
the following two displays for any z, z′ ∈ Z:

|S(z)| = |δS1(z) + (1− δ)S2(z)| ≤ δ|S1(z)|+ (1− δ)|S2(z)| ≤ F (z),

sup
z 6=z′∈Z

|S(z)− S(z′)|
‖z − z′‖α

≤ δ sup
z 6=z′∈Z

|S1(z)− S1(z′)|
‖z − z′‖α

+ (1− δ) sup
z 6=z′∈Z

|S2(z)− S2(z′)|
‖z − z′‖α

≤ c.

Hence, S ∈ SF,α,c, and so T6 holds.

B.2 Finite-dimensional class

B.2.1 Overview

For an explicit representation of Z, we have

Z = Opn ×On × Rp × Rp × R× Rp × R,

where On = {a ∈ Rn | ā = 0, s(a) = 1}. For ease of communication, we will abbreviate

za =

(
x− x̄

s(x)
,
y − ȳ

s(y)

)
∈ Opn ×On,

zt =
x0 − x̄

s(x)
∈ Rp

zm =

(
x̄

s(x)
,

ȳ

s(y)

)
∈ Rp × R

zs = (log s(x), log s(y)) ∈ Rp × R,

so that z = (za, zt, zm, zs). Here, za stands for the angular component, zt stands for the test
point, zm stands for the mean, zs stands for the standard deviation.

To define our parametric example for S, we can use separation of variables to consider
the coordinates of z separately. We will consider estimators belonging to the class S of all

43



Luedtke, Chung, and Sofrygin

S for which there exist a B ∈ N, (Cb)
B
b=1 on the (B − 1)-simplex, Sa,b ∈ Sa, St,b ∈ St, and

Sg,b ∈ Sg such that

S(z) =

B∑
b=1

CbSa,b(za)St,b(zt)Sg,b(zm, zs). (S1)

We refer to Sa, St, and Sg as the angular part, test point part, and group part of S,
respectively. In what follows, we will describe conditions on Sa, St, and Sg that make it so
that T1-T6 hold. We will then describe interesting collections Sa, St, and Sg that satisfy
these conditions.

First note that we have the following inequality:

|S(z)− S(z′)| ≤
B∑
b=1

Cb|Sa,b(za)St,b(zt)Sg,b(zm, zs)− Sa,b(z′a)St,b(z′t)Sg,b(z′m, z′s)|

≤
B∑
b=1

Cb|St,b(zt)||Sg,b(zm, zs)||Sa,b(za)− Sa,b(z′a)|

+
B∑
b=1

Cb|Sa,b(z′a)||Sg,b(zm, zs)||St,b(zt)− St,b(z′t)|

+

B∑
b=1

cb|Sa,b(z′a)||St,b(z′t)||Sg,b(zm, zs)− Sg,b(z′m, z′s)|.

Thus if for all b, Sa,b, St,b, and Sg,b were uniformly bounded by M1/3 and each of their
global Hölder constant was less than or equal to c

3M2/3 , then supz∈Z |S(z)| ≤ M and

supz 6=z′∈Z
|S(z)−S(z′)|
‖z−z′‖α ≤ c. Hence, if Sa, St, and Sg are such that functions in these

collections are uniformly bounded by M1/3 and are c
3M2/3 -Hölder, then S ⊆ SM,α,c. In that

case, conditions T1 and T2 hold. Since every compact subset of Z can be written as a subset
of a product of compact sets K = K1 ×K2 ×K3, K1 ⊆ Op+1

n , K2 ⊂ Rp, K3 ⊂ R2p+2, for
condition T3 to hold, it suffices to show Sa,St, and Sg are closed. Condition T4 holds if
Sa is closed under rotations with respect to the n observations and if Sa, St, and Sg are
closed under permutations with respect to the p features. The latter can be done by letting
Sa, St, and Sg be p-fold tensor products of an identical space of functions. Condition T5
is satisfied when Sg is closed under shifts. Finally, condition T6 always holds by equation
(S1), but in our construction, we enforce that Sa, St, and Sg are convex so that if any two
were singletons, S would equal the remaining one. For example, if St = Sg = {1}, S = Sa.

B.2.2 Angular Part (Sa)

We define Sa by truncating an orthonormal basis for the tensor product space L2(On)⊗(p+1)

to a specified finite number of terms and then taking the subset of the span of those basis
vectors that are contained in SM1/3,α,c/(3M2/3) for some c and M . Note that On ∼= Sn−2,

where “∼=” denotes an isomorphic relation and Sn−2 is the (n− 2)-dimensional unit sphere.
Let 1 be the n-dimensional vector of 1’s, and note that On can be expressed in the following
form:

On = {w ∈ Rn | n−1/2wT1 = 0, n−1wTw = 1}.

44



AMC Meta-Learning of Optimal Prediction Procedures

Let U ∈ O(n), the orthogonal group, be such that n−1/2U1 = en, the nth elementary basis
vector. Such a U exists because ‖n−1/21‖ = 1. Then,

On = {
√
nUT v | v ∈ Rn, vn = 0, ‖v‖2 = 1}

We have the isomorphism ζ : L2(On)→ L2(Sn−2), ζ(f)(v) = f(
√
nUT v). Thus, if we have an

orthonormal basis for L2(Sn−2), we may use the operator ζ−1 to obtain an orthonormal basis
for L2(On). Let H` be the space of harmonic polynomials of degree ` in (n− 1)-dimensions.
By the Stone-Weierstrass theorem, the direct sum

⊕∞
`=0 H` is dense in L2(Sn−2). We can

truncate the series and stop at a prespecified point qa, so that

Sa =

(
(

qa⊕
`=0

H`) ◦ (
√
nUT )

)⊗(p+1)⋂
SM1/3,α,c/(3M2/3)(O

p+1
n ). (S2)

We use the orthonormal basis {Yl1,l2,··· ,ln−2 : |l1| ≤ l2 ≤ · · · ≤ ln−2} for the spherical
harmonics introduced in Higuchi (1987) (replacing “Y ” in their notation by “Y ” to avoid
notational overload), where an explicit expression for this basis is provided in that work.
Let N(n, p, q) = (

∑q
`=0 dimH`)

p+1 and

Ca =

A ∈ RN(n,p,qa) :

p∏
j=0

∑
|l1|≤l2≤···≤ln−2≤qa

Al1,··· ,ln−2Yl1,··· ,ln−2(
√
nUT zx,·,j) ∈ Sa

 ,

where zx,i,0 = zy,i. The set Ca is the coefficient space of the basis expansion in Sa and is
convex and compact if and only if Sa is convex and compact. The set Sa is closed under
rotations in the n observations since the spherical harmonics for any given degree is closed
under rotations. It is also closed under permutations due to the (p+ 1)-fold tensor product
form. As an intersection of closed convex sets, it is closed and convex.

B.2.3 Test Point Part (St)

Similarly to Sa, St is defined by truncating an orthonormal basis for L2(Rp). Let {ψk}∞k=0

be the normalized Hermite functions. They form an orthonormal basis of L2(R) and so their
p-fold tensor product is an orthonormal basis of L2(Rp). We can take

St = (span{ψk | k ∈ {0, 1, · · · , qt}})⊗p ∩ SM1/3,α,c/(3M2/3)(R
p).

We can similarly define the coefficient space Ct:

Ct =

A ∈ Rqtp :

zt 7→ p∏
j=1

qt∑
k=0

Ajkψk(zt,j)

 ∈ St
 .

Similarly to Sa, the p-fold tensor product form and it being an intersection of closed and
convex sets show all of the necessary conditions are satisfied.

45



Luedtke, Chung, and Sofrygin

B.2.4 Group Part (Sg)

The Sg that we will define imposes that the functions are periodic in each dimension, in
the sense that, if Sg ∈ Sg and zg − z′g = ±ei for some elementary basis vector ei, then
Sg(zg) = Sg(z

′
g). In other words, we will be dealing with functions on the (2p+2)-dimensional

torus, T2p+2 = (S1)2p+2. Since the torus is a product of 1-spheres, we can use the same
process as described when defining the angular part (Sa), namely letting

Sg =

( qg⊕
`=0

H`

)⊗(2p+2)⋂
SM1/3,α,c/(3M2/3)(T

2p+2) (S3)

In this case, H` = span{cos(2π`x), sin(2π`x)} and translations can be dealt with by the
sum and difference formulas for sine and cosine. Translations under periodicity are the
same as rotation, and since it is known that spherical harmonics are rotationally invariant,
Sg is closed under translations. Similarly, the tensor product form of Sa and its being
an intersection of closed and convex sets implies that the rest of the sufficient conditions
described at the end of Section B.2.1 are satisfied.

Appendix C. Examples of collections Γ where P5 holds

We now describe settings where P5 is often applicable. We will specify P1 in each of these
settings, and the model P is then defined by expanding P1 to contain the distributions of all
possible shifts and rescalings of a random variate drawn from some P1 ∈ P1. The first class of
models for which P5 is often satisfied is parametric in nature, with each distribution Pθ ∈ P1

indexed smoothly by a finite dimensional parameter θ belonging to a subset Θ of Rk. We
note here that, because the sample size n is fixed in our setting, we can obtain an essentialy
unrestricted model by allowing k to be large relative to n. In parametric settings, ρ can
often be defined as ρ(Pθ, Pθ′) = ‖θ − θ′‖2, where we recall that ‖ · ‖2 denotes the Euclidean
norm. If Γ1 is uniformly tight, which certainly holds if Θ is bounded, then P5 holds provided
θ 7→ R(T, Pθ) is upper-semicontinuous for all T ∈ Te. For a concrete example where the
conditions of P5 are satisfied, consider the case that Θ = {θ : ‖θ‖0 ≤ s0, ‖θ‖1 ≤ s1} for
sparsity parameters s0 and s1 on ‖θ‖0 := #{j : θj 6= 0} and ‖θ‖1 :=

∑
j |θj |, and Pθ is

the distribution for which X ∼ N(0p, Idp), and Y |X ∼ N(θ>X, 1). This setting is closely
related to the sparse linear regression example that we study numerically in Section 5.3.2.

Condition P5 also allows for nonparametric regression functions. Define φp to be the p-
dimensional standard Gaussian measure. Define L2

0(φp) = {f ∈ L2(φp) |
∫
f(x)dφp(x) = 0}.

Let F ⊂ L2
0(φp) satisfy the following conditions:

(i) F is bounded. supf∈F ‖f‖L2(φp) <∞.

(ii) F is uniformly equivanishing. limN→∞ supf∈F ‖f1B(0,N)c‖L2(φp) = 0.

(iii) F is uniformly equicontinuous. limr↘0 supf∈F supy∈B(0,r) ‖τyf − f‖L2(φp) = 0 where
τy is the translation by y operator.

(iv) F is closed in L2(φp).

(v) There exists q′ > 2 such that F ⊂ Lq′(φp).

46



AMC Meta-Learning of Optimal Prediction Procedures

By a generalization of the Riesz-Kolmogorov theorem as seen in Guo and Zhao (2019),
F is compact under assumptions (i) through (iv). Let c > 0, α ∈ (0, 1]. We suppose
that S = S0 where S0 is the set of all functions S : Z → R such that |S(z)| ≤ F (z),
|S(z)− S(z′)| ≤ c‖z − z′‖α2 for all z, z′ ∈ Z. Assume further that F is bounded, i.e.

sup
z∈Z
|F (z)| = BS0 <∞, (S4)

and also that F is constant in the orbits induced by the group action on Z defined in
Section 7.1.

For each f ∈ F , let Pf denote the distribution of X ∼ N(0, Idp), Y | X ∼ N(f(X), 1).
Suppose that P1 = {Pf | f ∈ F}. With the metric ρ(f, g) = ‖f − g‖L2(φp), (P1, ρ) is a
complete separable compact metric space. We also see that P 7→ R(T, P ) is continuous.

Lemma S7 For all T ∈ Te, P 7→ R(T, P ) is continuous in this example.

Proof To ease presentation, we introduce some notation. For f ∈ F , let f(x) := (f(xi))
n
i=1,

f̄(x) := 1
n

∑n
i=1 f(xi), sf (d) := s(y + f(x)), and ȳ(y) := ȳ. Let ST,f denote the map

(d, x0) 7→ ST (zf (d, x0)), where zf (d, x0) takes the same value as zf (d, x0) except that

the entry y−ȳ
s(y) is replaced with y+f(x)−ȳ−f̄(x)

sf
. Also let φ? := φp(n+1)+n. For q ∈ [1,∞)

and a function f : D × X , we let ‖f‖Lq(φ?) := [
∫
|f(x,y, x0)|qφ?(dx, dy, dx0)]1/q. We let

‖f‖L∞(φ?) := inf{c ≥ 0 : f(x,y, x0) ≤ c φ?−a.s.}. For f : D → R, we write ‖f‖Lq(φ?) to
mean ‖(d, x0) 7→ f(d)‖Lq(φ?), and follow a similar convention for functions that only take as
input x, xi, y, or x0. We will write . to mean inequality up to a positive multiplicative
constant that may only depend on S or F .

Fix ε ∈ (0, 1) and T ∈ Te. Now, for any f ∈ F , a change of variables shows that

R(T, Pf ) = EPf

[∫
[T (X,Y )(x0)− f(x0)]2 dφp(x0)

]
=

∫
[T (x,y)(x0)− f(x0)]2 (2π)−

n
2 exp

[
−1

2

n∑
i=1

{yi − f(xi·)}2
]
φp(n+1)(dx, dx0)dy

=

∫
[T (x,y + f(x))(x0)− f(x0)]2 φ?(dx, dx0, dy)

=

∫ [
ȳ + s(y + f(x))ST,f (d, x0) + f̄(x)− f(x0)

]2
φ?(dx, dx0, dy).

Hereafter we write dφ? to denote φ?(dx, dx0, dy).

Fix f, g ∈ F . Most of the remainder of this proof will involve establishing that R(T, Pf )−
R(T, Pg) . ε−2‖f − g‖L2(φp) + ε. By symmetry, it will follow that |R(T, Pf )−R(T, Pg)| ≤
ε−2‖f − g‖L2(φp) + ε.

In what follows we will use the notation (g − f)(x0) to mean g(x0)− f(x0), (ḡ − f̄)(x)
to mean ḡ(x)− f̄(x), etc. The above yields that

R(T, Pf )−R(T, Pg)

=

∫ [
(f̄(x)− f(x0))2 − (ḡ(x)− g(x0))2

]
dφ? (S5)

47



Luedtke, Chung, and Sofrygin

+ 2

∫
ȳ
[
(g − f)(x0)− (ḡ − f̄)(x)

]
dφ? (S6)

+ 2

∫
ȳ [sf (d)ST,f (d, x0)− sg(d)ST,g(d, x0)] dφ? (S7)

+

∫ [
s2
f (d)ST,f (d, x0)2 − s2

g(d)ST,g(d, x0)2
]
dφ? (S8)

+ 2

∫ [
(f̄(x)− f(x0))sf (d)ST,f (d, x0)− (ḡ(x)− g(x0))sg(d)ST,g(d, x0)

]
dφ?. (S9)

We bound the labeled terms on the right-hand side separately. After some calculations,
it can be seen that (S5) and (S6) are bounded by a constant multiplied by ‖f − g‖L2(φp).
These calculations, which are omitted, involve several applications of the triangle inequality,
the Cauchy-Schwarz inequality, and condition (i).

The integral in (S7) bounds as follows:∫
ȳ [sf (d)ST,f (d, x0)− sg(d)ST,g(d, x0)] dφ?

=

∫
ȳST,f (d, x0)[sf (d)− sg(d)]dφ? +

∫
ȳsg(d)[ST,f (d, x0)− ST,g(d, x0)]dφ?

≤ ‖ȳST,f [sf − sg]‖L1(φ?) + ‖ȳsg[ST,f − ST,g]‖L1(φ?). (S10)

We start by studying first term of the right-hand side above. Note that, by (S4) and the
assumption that |S(z)| ≤ F (z) for all z ∈ Z and S ∈ S, we have that |ST,f (d, x0)| ≤ BS0 .
Combining this with Cauchy-Schwarz, the first term on the right-hand side above bounds as

‖ȳST [sf − sg]‖L1(φ?) ≤ BS0‖ȳ‖L2(φ?)‖sf − sg‖L2(φ?). (S11)

To continue the above bound, we will show that ‖sf − sg‖L2(φ?) . ‖f − g‖
1/2
L2(φp)

. Noting

that

s2
f (d)− s2

g(d) =
1

n

n∑
i=1

[
f(xi)

2 − g(xi)
2 + 2(yi − ȳ)[f(xi)− g(xi) + ḡ(x)− f̄(x)]

+ 2[g(xi)ḡ(x)− f(xi)f̄(x)] + f̄(x)2 − ḡ(x)2

]

we see that, by the triangle inequality and the Cauchy-Schwarz inequality,

‖s2
f − s2

g‖L1(φ?) . ‖f − g‖L2(φp).

For a > 0, b > 0, |
√
a−
√
b| ≤

√
|a− b|, and so |sf (d)− sg(d)| ≤

√
|s2
f (d)− s2

g(d)|, which

implies that |sf (d)− sg(d)|2 ≤ |s2
f (d)− s2

g(d)|, which in turn implies that ‖sf − sg‖2L2(φ?) ≤
‖s2
f − s2

g‖L1(φ?). Combining this with the above and taking square roots of both sides gives
the desired bound, namely

‖sf − sg‖L2(φ?) . ‖f − g‖
1/2
L2(φp)

. (S12)

48



AMC Meta-Learning of Optimal Prediction Procedures

Recalling (S11), we then see that the first term on the right-hand side of (S10) satisfies

‖ȳST,f [sf − sg]‖L1(φ?) . ‖f − g‖
1/2
L2(φp)

.

We now study the second term in (S10). Before beginning our analysis, we note that, for all
d,

1 ≤ 1{sg(d)≤ε} + 1{sg(d)>ε}∩{|sg(d)−sf (d)|<ε/2} + 1{|sg(d)−sf (d)|≥ε/2}. (S13)

Combining the above with the triangle inequality, the second term in (S10) bounds as:

‖ȳsg[ST,f − ST,g]‖L1(φ?) ≤ ‖ȳsg[ST,f − ST,g]1{sg≤ε}‖L1(φ?)

+ ‖ȳsg[ST,f − ST,g]1{sg>ε}∩{|sf−sg |<ε/2}‖L1(φ?)

+ ‖ȳsg[ST,f − ST,g]1{|sg−sf |≥ε/2}‖L1(φ?). (S14)

In the above normed quantities, expressions like 1{sg≤ε} should be interpreted as functions,
e.g. 1{sg(·)≤ε}. By (S4), the first term on the right-hand side bounds as

‖ȳsg[ST,f − ST,g]1sg≤ε‖L1(φ?) . ε.

For the second term, we start by noting that

‖zf (d)− zg(d)‖2

=

∥∥∥∥(sg − sf )(d)

sg(d)sf (d)
(y − ȳ) +

1

sf (d)sg(d)
[sf (d)(f − g + ḡ − f̄)(x) + (sg − sf )(d)(f − f̄)(x)]

∥∥∥∥
2

.

Using that (a+ b+ c)κ ≤ aκ + bκ + cκ whenever a, b, c > 0 and κ ∈ (0, 1], this then implies
that

‖zf (d)− zg(d)‖α2 ≤
∥∥∥∥(sg − sf )(d)

sg(d)sf (d)
(y − ȳ)

∥∥∥∥α
2

+

∥∥∥∥(f − g + ḡ − f̄)(x)

sg(d)

∥∥∥∥α
2

+

∥∥∥∥(sg − sf )(d)(f − f̄)(x)

sf (d)sg(d)

∥∥∥∥α
2

,

where above α is the exponent from the Hölder condition satisfied by S0. Combining the
Hölder condition with the above, we then see that

|ST,f (d, x0)− ST,g(d, x0)| .
∥∥∥∥(sg − sf )(d)

sg(d)sf (d)
(y − ȳ)

∥∥∥∥α
2

+

∥∥∥∥(f − g + ḡ − f̄)(x)

sg(d)

∥∥∥∥α
2

+

∥∥∥∥(sg − sf )(d)(f − f̄)(x)

sf (d)sg(d)

∥∥∥∥α
2

.

Multiplying both sides by |ȳsg(d)1{sg(d)>ε,|(sf−sg)(d)|<ε/2}|, we then see that∣∣∣ȳsg(d)[ST,f (d, x0)− ST,g(d, x0)]1{sg(d)>ε,|(sf−sg)(d)|<ε/2}

∣∣∣
. |ȳ|sg(d)

∥∥∥∥(sg − sf )(d)

sg(d)sf (d)
(y − ȳ)

∥∥∥∥α
2

1{sg(d)>ε,|(sf−sg)(d)|<ε/2}

49



Luedtke, Chung, and Sofrygin

+ |ȳ|sg(d)

∥∥∥∥(f − g + ḡ − f̄)(x)

sg(d)

∥∥∥∥α
2

1{sg(d)>ε,|(sf−sg)(d)|<ε/2}

+ |ȳ|sg(d)

∥∥∥∥(sg − sf )(d)(f − f̄)(x)

sf (d)sg(d)

∥∥∥∥α
2

1{sg(d)>ε,|(sf−sg)(d)|<ε/2}

. ε−α|ȳ|sg(d)1−α ‖y − ȳ‖α2 |(sg − sf )(d)|α

+ |ȳ|sg(d)1−α ∥∥(f − g + ḡ − f̄)(x)
∥∥α

2

+ ε−α|ȳ|s1−α
g

∥∥(f − f̄)(x)
∥∥α

2
|(sg − sf )(d)|α.

The inequality above remains true if we integrate both sides against φ?. The resulting three
terms on the right-hand side can be bounded using Hölder’s inequality. In particular, we
have that

ε−α
∥∥∥|ȳ|α‖y − ȳ‖α2 |sg − sf |α|ȳ|1−αs1−α

g

∥∥∥
L1(φ?)

≤ ε−α
∥∥∥ȳ‖y − ȳ‖2(sg − sf )

∥∥∥α
L1(φ?)

‖ȳsg
∥∥∥1−α

L1(φ?)

. ε−α‖f − g‖α/2
L2(φp)

,∥∥∥ȳs1−α
g ‖(f − g + ḡ − f̄)(x)‖α2

∥∥∥
L1(φ?)

≤ ‖ȳsg‖1−αL1(φ?)

∥∥∥ȳ‖(f − g + ḡ − f̄)(x)‖2
∥∥∥α
L1(φ?)

. ‖f − g‖α/2
L2(φp)

,

ε−α
∥∥∥ȳs1−α

g ‖(f − f̄)(x)‖α2 ‖sg − sf‖α
∥∥∥
L1(φ?)

≤ ε−α‖ȳsg‖1−αL1(φ?)

∥∥∥‖(f − f̄)(x)‖2|sg − sf |
∥∥∥α
L1(φ?)

. ε−α‖f − g‖α/2
L2(φp)

.

Hence, we have shown that the second term on the right-hand side of (S14) satisfies∥∥∥ȳsg[ST,f − ST,g]1sg>ε,|sg−sf |<ε/2∥∥∥L1(φ?)
. ε−α‖f − g‖α/2

L2(φp)
.

We now study the third term on the right-hand side of (S14). We start by noting that, by
Markov’s inequality and (S12),

Pφ?
(
|sg(D)− sf (D)| ≥ ε

2

)
= P

(
|sg(D)− sf (D)|2 ≥ ε2

4

)
≤ 4

ε2
‖sf − sg‖2L2(φ?) . ε−2‖f − g‖L2(φp).

Moreover, by the generalized Hölder’s inequality with parameters (4, 2,∞, 4), we see that∥∥∥ȳsg[ST,f − ST,g]1{|sg−sf |≥ε/2}∥∥∥L1(φ?)

≤ ‖ȳ‖L4(φ?) ‖sg‖L2(φ?) ‖ST,f − ST,g‖L∞(φ?)

∥∥∥1{|sg−sf |≥ε/2}

∥∥∥
L4(φ?)

≤ 2‖ȳ‖L4(φ?)‖sg‖L2(φ?)BS0P (|sg − sf | ≥ ε/2)1/4

. ε−1/2‖f − g‖1/4
L2(φp)

.

50



AMC Meta-Learning of Optimal Prediction Procedures

Combining our bounds for the three terms on the right-hand side of (S14), we have shown
that

‖ȳsg[ST,f − ST,g]‖L1(φ?) . ε+ ε−α‖f − g‖α/2
L2(φp)

+ ε−1/2‖f − g‖1/4
L2(φp)

. (S15)

The above provides our bound for the (S7) term from the main expression.

We now study the (S8) term from the main expression. We start by decomposing this
term as ∫

[s2
fS

2
T,f − s2

gS
2
T,g]dφ

? =

∫
S2
T,f (s2

f − s2
g)dφ

? +

∫
s2
g[S

2
T,f − S2

T,g]dφ
?,

where for brevity, we have suppressed the dependence on sf , sg, ST,f , and ST,g on their
arguments. By (S12), the first term is bounded by a constant times ‖f − g‖L2(φp). For the
second term, we note that the uniform bound on ST,f and ST,g shows that

‖s2
g[S

2
T,f − S2

T,g]‖L1(φ?) . ‖s2
g[ST,f − ST,g]‖L1(φ?)

Similarly to as we did when studying (S7), we can use (S13) and the triangle inequality to
write

‖s2
g[ST,f − ST,g]‖L1(φ?) ≤

∥∥s2
g[ST,f − ST,g]1{sg≤ε}

∥∥
L1(φ?)

+
∥∥∥s2

g[ST,f − ST,g]1{sg>ε,|sf−sg |<ε/2}
∥∥∥
L1(φ?)

+
∥∥∥s2

g[ST,f − ST,g]1{|sg−sf |≥ε/2}
∥∥∥
L1(φ?)

.

The first term on the right upper bounds by a constant times ε2. The analyses of the
second and third terms are similar to the analysis of the analogous terms from (S7). A
minor difference between the study of these terms and that of (S7) is that, when applying
Hölder’s inequality to separate the terms in each normed expression, we use (v) to ensure
that ‖sg‖Lq′ (φ?) <∞ for some q′ > 2. This helps us deal with the fact that s2

g, rather than
sg, appears in the normed expressions above. Due to the similarity of the arguments to
those given for (S7), the calculations for controlling the second and third terms are omitted.
After the relevant calculations, we end up showing that, like (S7), (S8) is bounded by a
constant times the right-hand side of (S15).

To study (S9) from the main expression, we rewrite the integral as∫ [
(f̄(x)− f(x0))sf (d)ST,f (d, x0)− (ḡ(x)− g(x0))sg(d)ST,g(d, x0)

]
dφ?

=

∫
sf (d)ST,f (d, x0)[f̄(x)− ḡ(x) + f(x0)− g(x0)]dφ?

+

∫
ST,f (d, x0)(ḡ(x) + g(x0))(sf − sg)(d)dφ?

+

∫
sg(d)(ḡ(x) + g(x0))[ST,f (d, x0)− ST,g(d, x0)]dφ?.

51



Luedtke, Chung, and Sofrygin

Each of the terms in the expansion can be bounded using similar techniques to those used
earlier in this proof. Combining our bounds on (S5) through (S9), we see that

|R(T, Pf )−R(T, Pg)| . ε−2‖f − g‖L2(φp) + ε.

As f, g were arbitrary, we see that, for any sequence {fk} in F such that fk → f in L2(φp)
as k → ∞, it holds that lim supk |R(T, Pfk) − R(T, Pf )| . ε. As ε ∈ (0, 1) was arbitrary,
this shows that R(T, Pfk)→ R(T, Pf ) as k →∞. Hence, P 7→ R(T, P ) is continuous in this
example.

Appendix D. Further details on numerical experiments

D.1 Meta-Learning Benchmarks

We implemented MAML via the learn2learn python package (Arnold et al., 2020), which
in turn makes use of the Torchmeta package (Deleu et al., 2019) when generating the
sinusoid functions. We trained MAML on a total of 106 datasets with a batch size of 25
datasets and used the same learning rates and number of adaptation steps as were used
in learn2learn/examples/maml sine.py. We tried two network architectures, namely the
same two-hidden layer perceptron architecture that was used in the sinusoid experiments in
Finn et al. (2017) and a larger network whose hidden layers contained the same number
of nodes (40) but that used a total of five hidden layers. For each of the three regression
settings considered (sinusoid, Gaussian process with a 1-dimensional feature, and Gaussian
process with a 5-dimensional feature), we reported results for the architecture that performed
best across the sample sizes considered. This ended up corresponding to reporting results
for the smaller network architecture across all three settings.

For the Gaussian process example with a 1-dimensional feature, we used the implemen-
tation of CNPs provided by Jiang (2021), which corresponds to a Pytorch implementation
of the code from Garnelo et al. (2018). We also modified this code so that it could apply to
the sinusoidal regression example and the Gaussian process example where the feature is
5-dimensional. The CNPs were updated over the same number of iterations and using the
same batch size as AMC, namely 106 and 25, respectively. We tried two network architectures
for the CNPs, namely the same architecture as was used in Garnelo et al. (2018), with the
input size modified in one of the Gaussian process settings to account for the 5-dimensional
feature, and also a deeper architecture that has a similar number of hidden layers as does the
architecture used for AMC. In particular, the encoder and decoder in this larger architecture
each had nine hidden layers consisting of 100 nodes. Similar to as we did for MAML, for
each of the three regression settings considered, we reported results for the architecture that
performed best across the sample sizes considered. This corresponded to reporting CNP
results for the smaller architecture for the Gaussian process with a 5-dimensional feature,
and the larger architecture for the Gaussian process with a 1-dimensional feature and the
sinusoidal regression.

52



AMC Meta-Learning of Optimal Prediction Procedures

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●● ●
●

●

●● ●●●

●
●

●

●

●

●

●●●

*

● ●
●

●

●

●
●

●

●

●

● ●●●●

●● ●●●

Scale x Scale y Shift x Shift y
n =

 5
10

20

1 2 3 4 5 1 2 3 4 5 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

Shift or Scale

S
ta

nd
ar

di
ze

d 
M

S
E

Method ● MAML CNP MAML−Eq CNP−Eq AMC

*: Due to numerical instability, MAML failed to evaluate when n=10 and x was shifted by 2. Similar
   instability was observed for MAML across all values of n when the shift size was made larger.

Figure S5: Bayesian standardized MSE (EΠ[R(T, P )], where R is defined in Eq. 1) of the
five meta-learning algorithms considered in the sinusoidal regression example when the
feature x or the outcome y is scaled down by a multiplicative factor (left two columns)
or when x or y is shifted by an additive factor (right two columns). For reference, the
numbers reported in Table 1 in the main text are equal to the standardized MSE reported
on the far-left side of each facet times the variance of the error (0.09). The three equivariant
procedures (MAML-Eq, CNP-Eq, and AMC) have constant standardized MSE under the
shifts and rescalings considered. The non-equivariant procedures, namely MAML and CNPs,
are sensitive even to small shifts or rescalings of x, and CNPs are also sensitive to small
shifts in y.

D.2 Comparing to Analytically-Derived Estimators with Known Theoretical
Performance Guarantees

D.2.1 Preliminaries

We now introduce notation that will be useful for defining Γ1 in the two examples. In
both examples, all priors in Γ1 imply the same prior ΠX over the distribution PX of
the features. This prior ΠX imposes that the Σ indexing PX is equal in distribution
to diag(W−1)−1/2W−1diag(W−1)−1/2, where W is a p × p matrix drawn from a Wishart
distribution with scale matrix 2 Idp and 20 degrees of freedom, and diag(W−1) denotes a

53



Luedtke, Chung, and Sofrygin

matrix with the same diagonal as W−1 and zero in all other entries. The expression for
Σ normalizes by diag(W−1)−1/2 to ensure that the diagonal of Σ is equal to 1p, which we
require of distributions in PX . We let Γµ be a collection of Markov kernels κ : PX → R, so
that, for each κ and PX ∈ PX , κ(·, PX) is a distribution on R. The collections Γµ differ in
the two examples, and will be presented in the coming subsections. Let Unif(B) denote a
uniform distribution over the permutations in B. For each κ ∈ Γµ, we let Πκ represent a
prior on P1 from which a draw P can be generated by sampling PX ∼ ΠX , µ|PX ∼ κ(·, PX),
and B|PX , µ ∼ Unif(B), and subsequently returning the distribution of (X,µ(BX) + εP ),
where X ∼ PX and εP ∼ N(0, 1) are independent. We let Γ1 := {Πκ : κ ∈ Γµ}. For a
general class of estimators T , enforcing that each draw P has a regression function µP of
the form x 7→ µ(Bx) for some permutation B is useful because it allows us to restrict the
class Γµ so that each function in this class only depends on the first s coordinates of the
input, while yielding a regression function µP that may depend on any arbitrary collection
of s out of the p total coordinates. For the equivariant class that we consider (Algorithm 2),
enforcing this turns out to be unnecessary – the invariance of functions in T to permutations
of the features implies that the Bayes risk of each T ∈ T remains unchanged if the random
variable B defining Πκ ∈ Γ1 is replaced by a degenerate random variable that is always
equal to the identity matrix. Nonetheless, allowing B to be a random draw from Unif(B)
allows us to ensure that our implied collection of priors Γ satisfies P1, P2, and P3, thereby
making the implied Γ compatible with the preservation conditions imposed in Section 2.

We now use the notation of Kingma and Ba (2014) to detail the hyperparameters that
we used. In all settings, we set (β2, ε) = (0.999, 10−8). Whenever we were updating the
prior network, we set the momentum parameter β1 to 0, and whenever we were updating
the estimator network, we set the momentum parameter to 0.25. The parameter α differed
across settings. In the sparse linear regression setting with s = 1, we found that choosing
α small helped to improve stability. Specifically, we let α = 0.0002 when updating both
the estimator and prior networks. In the sparse linear regression setting with s = 5, we
used the more commonly chosen parameter setting of α = 0.001 for both networks. In the
FLAM example, we chose α = 0.001 and α = 0.005 for the estimator and prior networks,
respectively.

The learning rates were of the estimator and prior networks were decayed at rates t−0.15

and t−0.25, respectively. Such two-timescale learning rate strategies have proven to be
effective in stabilizing the optimization problem pursued by generative adversarial networks
(Heusel et al., 2017). As noted in Fiez et al. (2019), using two-timescale strategies can cause
the optimization problem to converge to a differential Stackelberg, rather than a differential
Nash, equilibrium. Indeed, under some conditions, the two-timescale strategy that we use is
expected to converge to a differential Stackelberg equilibrium in the hierarchical two-player
game where a prior Π is first selected from Γ, and then an estimator T is selected from T
to perform well against Π. An optimal prior Π? in this game is called Γ-least favorable,
in the sense that this prior maximizes infT∈T r(T, ·) over Γ. For a given Γ-least favorable
prior Π?, an optimal estimator T ? in this game is a Bayes estimator against Π?, that is,
an estimator that minimizes r(·,Π?) over T . This T ? may not necessarily be a Γ-minimax
strategy, that is, T ? may not minimize supΠ∈Γ r(·,Π) over T . Nevertheless, we note that,
under appropriate conditions, the two notions of optimality necessarily agree. Though such
a theoretical guarantee is not likely to hold in our experiments given the neural network

54



AMC Meta-Learning of Optimal Prediction Procedures

parameterizations that we use, we elected to use this two-timescale strategy because of the
improvements in stability that we saw.

In all settings, the prior and estimator were updated over 106 iterations using batches of
100 datasets. For each dataset, performance is evaluated at 100 values of x0.

D.2.2 Sparse linear regression

We now introduce notation that will be useful for presenting the collection Γµ in the sparse
linear regression example. For a function G : R → R and a distribution PX ∈ PX , we let
κG(·, PX) be equal to the distribution of

x 7→

(
U0

(
eG(U1), . . . , eG(Us), 0, . . . , 0

)∑s
j=1 e

G(Uj)

)>
x,

where U0 ∼ Unif(−5, 5) and (U1, . . . , Us) ∼ N(0s, Ids) are drawn independently. Notably,
here κG(·, PX) does not depend on PX . We let Γµ := {κG : G ∈ G }, where G takes different
values when s = 1 and when s = 5. When s = 1, G consists of all four-hidden layer
perceptrons with identity output activation, where each hidden layer consists of forty leaky
ReLU units. When s = 5, G consists of all four-hidden layer neural networks with identity
output activation, but in this case each layer is a multi-input-output channel equivariant
layer as described in Eq. 22 of Zaheer et al. (2017). Each hidden layer is again equipped with
a ReLU activation function. The output of each such network is equivariant to permutations
of the s = 5 inputs.

In each sparse linear regression setting considered, we initialized the estimator network
by pretraining for 5,000 iterations against the initial fixed prior network. After these 5,000
iterations, we then began to adversarially update the prior network against the estimator
network.

Five thousand Monte Carlo replicates were used to obtain the performance estimates in
Table 2.

D.2.3 Fused lasso additive model

When discussing the FLAM example, we will write xj to denote the jth feature, that is, we
denote a generic x ∈ X by x = (x1, x2, . . . , xp). We emphasize this to avoid any notational
confusion with the fact that, elsewhere in the text, Xi ∈ X is used to denote the random
variable corresponding to the ith observation.

In the FLAM example, each prior κG in Γµ is indexed by a function G : Rs+2 → [0,∞)s

belonging to the collection of four-hidden layer perceptrons with identity output activation,
where each hidden layer consists of forty leaky ReLU units. Specifically, κG(·, PX) is a
distribution over generalized additive models x 7→

∑p
j=1 µj(xj) for which each component

µj is piecewise-constant and changes values at most 500 times. To obtain a draw µP from
κG(·, PX), we can first draw 500 iid observations from PX and store these observations
in the matrix X̃. Each component µj can only have a jump at the 500 points in X̃∗j .
The magnitude of each jump is defined using the function G and the sign of the jump
is defined uniformly at random. More specifically, these increments are defined based
on the independent sources of noise (Hjk : j = 1, . . . , p; k = 1, . . . , 500), which is an

55



Luedtke, Chung, and Sofrygin

iid collection of Rademacher random variables, and (Uk : k = 1, . . . , 500), which is an
iid collection of N(0s+2, Ids+2) random variables. The component µj is chosen to be
proportional to the function fj(xj) =

∑500
k=1HjkG(Uk)jI{xj ≥ X̃kj}. The proportionality

constant c :=
∑p

j=1

∑500
k=1G(Uk)j is defined so that the function µP (x) = c−1

∑p
j=1 fj(xj)

saturates the constraint ‖v(µ)‖1 ≤M that is imposed by R. To recap, the random draw µP
from κG(·, PX) can be obtained by independently drawing X̃, (Hj,k : j, k), and (Uk : k), and
subsequently following the steps described above to define the corresponding proportionality
constant c and components fj , j = 1, . . . , p.

We evaluated the performance of the learned prediction procedures using a variant of the
simulation scenarios 1-4 from the paper that introduced FLAM (Fig. 2 in Petersen et al.,
2016). As presented in that work, the four scenarios have p independent Unif(−2.5, 2.5)
features, with the components corresponding to s0 = 4 of these features being nonzero.
These scenarios offer a range of smoothness settings, with scenarios 1-4 enforcing that the
components be (1) piecewise constant, (2) smooth, (3) a mix of piecewise constant and
smooth functions, and (4) constant in some areas of its domain and highly variable in
others. To evaluate our procedures trained with ‖v(µP )‖0 ≤ 5, we used the R function
sim.data in the flam package (Petersen, 2018) to generate training data from the scenarios
in Petersen et al. (2016) with p = 10 features. We then generated new outcomes by rescaling
the regression function by a positive multiplicative constant so that ‖v(µP )‖1 = 10, and
subsequently added standard Gaussian noise. To evaluate our procedures trained at sparsity
level s = 1 in a given scenario, we defined a prior over the regression function that first
randomly selects one of the four signal components, then rescales this component so that it
has total variation equal to 10, and then sets all other components equal to zero. Outcomes
were generated by adding Gaussian noise to the sampled regression function. We compared
our approach to the FLAM method as implemented in the flam package when, in the
notation of Petersen et al. (2016), α = 1 and λ was chosen numerically to enforce that the
resulting regression function estimate µ̂ satisfied ‖v(µ̂)‖1 ≈ 10. Choosing λ in this fashion is
reasonable in light of the fact that ‖v(µP )‖1 = 10 for all settings considered.

Two thousand Monte Carlo replicates were used to obtain the performance estimates in
Table 3.

Appendix E. Additional details and results for data experiments

E.1 Datasets

We start by describing the six datasets that we considered that are available through the UCI
Machine Learning Repository (Dua and Graff, 2017). The first dataset (“abalone”) contains
information on 4177 abalones. The objective is to predict their age based on 7 features,
namely length, diameter, height, whole weight, shucked weight, viscera weight, and shell
weight (Nash et al., 1994). The second dataset (“airfoil”) is from the National Aeronautics
and Space Administration (NASA) that contains information on 1,503 airfoils at various wind
tunnel speeds and angles of attack (Brooks et al., 1989). The objective is to estimate the
scaled sound level in decibels. Five features are available, namely frequency, angle of attack,
chord length, free-stream velocity, and suction side displacement thickness. The third dataset
(“fish”) was originally used to develop quantitative structure-activity relationship (QSAR)
models to predict acute aquatic toxicity towards the fathead minnow. This dataset contains

56



AMC Meta-Learning of Optimal Prediction Procedures

908 total observations, each of which corresponds to a distinct chemical. The outcome is the
LC50 for that chemical, which represents the concentration of the chemical that is lethal for
50% of test fish over 96 hours. Six features that describe the molecular characteristics of
the chemical are available — see the UCI Machine Learning Repository and Cassotti et al.
(2015) for details. The fourth and fifth datasets contain information on 1,599 red wines
(“wine-red”) and 4,898 white wines (“wine-white”) (Cortez et al., 2009). The objective is to
predict wine quality score based on 11 available features — see the UCI Machine Learning
Repository and Cassotti et al. (2015) for details. The sixth dataset (“yacht”) contains
information on 308 sailing yachts. The objective is to learn to predict a ship’s performance
in terms of residuary resistance. Six features describing a ship’s dimensions and velocity
are available, namely: the longitudinal position of the center of buoyancy, the prismatic
coefficient, the length-displacement ratio, the beam-draught ratio, the length-beam ratio,
and the Froude number. See Gerritsma et al. (1981) for more information on these features.

The seventh and eighth of our datasets that we considered were used to illustrate
regression procedures in James et al. (2013). They are available through the ISLR R package
(James et al., 2017). One of these datasets (“college”) consists of information on 777 colleges
in the United States. The objective is to predict out-of-state tuition based on 16 available
continuous features. The second of these datasets (“hitters”) contains information on 322
baseball players. The objective is to predict salary based on the 16 available continuous
features. The ninth dataset (“LAozone”) was used to illustrate regression procedures in
(Friedman, 2001). It consists of 330 daily meteorological measurements in the Los Angeles
basin in 1976. The objective is to predict ozone levels based on 9 available features. The final
dataset that we considered (“happiness”) was used in the paper that introduced the FLAM
to illustrate the performance of the method (Petersen et al., 2016). This dataset consists of
information about 109 countries. The objective is to predict the national happiness level via
12 country-level features.

E.2 Additional results for data experiments

Table S5 displays the cross-validated MSEs across the ten datasets in numerical form.
Figure S6 shows the performance of the individual linear algorithms considered at different
sparsity levels, and Figure S7 shows the same results but for the stacking algorithms.

Appendix F. Performance of symmetrized estimators in experiments

We now present the additional experimental results that we alluded to in Section 8. These
results were obtained by symmetrizing the meta-learned AMC100 and AMC500 estimators
whose performance was reported in Section 5. In particular, we symmetrized a given AMC
estimator T as

T sym(x,y)(x0) :=
1

2
[T (x,y)− T (x,−y)(x0)] .

When reporting our experimental results, we refer to the symmetrized estimator derived
from the meta-learned AMC100 and AMC500 estimators as ‘symmetrized AMC100’ and
‘symmetrized AMC500’, respectively. We emphasize that these symmetrized estimators are

57



Luedtke, Chung, and Sofrygin

Features OLS Lasso AMC
Linear
(ours)

FLAM AMC
FLAM
(ours)

Stacked
Existing

Stacked
AMC
(ours)

Stacked
Both
(ours)

college 10 0.414 0.397 0.377 0.392 0.395 0.358 0.354 0.348
happiness 10 0.270 0.277 0.275 0.315 0.311 0.280 0.261 0.256
hitters 10 0.667 0.660 0.662 0.626 0.619 0.602 0.615 0.585
wine-red 10 0.768 0.737 0.746 0.826 0.776 0.737 0.737 0.731
wine-white 10 0.833 0.814 0.824 0.899 0.860 0.809 0.815 0.802
LAozone 9 0.341 0.335 0.337 0.335 0.367 0.310 0.320 0.309
abalone 7 0.559 0.546 0.540 0.709 0.675 0.539 0.538 0.537
fish 6 0.471 0.475 0.480 0.544 0.554 0.464 0.476 0.468
yacht 6 0.381 0.372 0.350 0.019 0.035 0.015 0.029 0.015
airfoil 5 0.524 0.525 0.528 0.617 0.701 0.516 0.523 0.520

Table S5: Cross-validated MSEs on the ten datasets. The first 5 datasets had the same
number of features the same as were used during meta-training (10), whereas the others had
fewer. For each of the three categories (linear estimators, FLAM estimators, and stacked
estimators) and each dataset, the algorithm with the lowest Monte Carlo MSE is emphasized
in bold. There was no clear ordering between the performance of AMC Linear and the
existing estimators (OLS and lasso). AMC FLAM tended to outperform FLAM when
the number of features was the same as were used during meta-training, and be slightly
outperformed otherwise. When the number of features was the same as were used during
meta-training, stacking the existing and AMC estimators consistently outperformed all other
approaches. When there were fewer features than were used during meta-training, stacking
all available learners performed similarly to stacking only the existing algorithms and still
outperformed all individual learners.

derived directly from the AMC100 and AMC500 fits that we reported in Section 5 – we did
not rerun our AMC meta-learning algorithm to obtain these estimators.

Table S6 reports the results for the linear regression example. In many settings, the
two approaches performed similarly. However, in the sparse setting, the improvements that
resulted from symmetrization sometimes resulted in the MSE being cut in half. In one
setting (dense, interior, n = 100), AMC100 outperformed symmetrized AMC100 slightly –
though not deducible from the table, we note here that the difference in MSE in this case
was less than 0.003, and it seems likely that this discrepancy is a result of Monte Carlo error.
Table S6 reports the results for the fused lasso additive model example. Symmetrization led
to a reduction in MSE in most settings. In all other settings, the MSE remained unchanged.

References

Sébastien MR Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstanti-
nos Saitas Zarkias. learn2learn: A library for meta-learning research. arXiv preprint
arXiv:2008.12284, 2020.

James O Berger. Statistical Decision Theory and Bayesian Analysis. Springer Science &
Business Media, 1985.

58



AMC Meta-Learning of Optimal Prediction Procedures

●

●
●

●
●

● ●

●

●

●
●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ● ●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

●

hitters LAozone wine−red wine−white yacht

abalone airfoil college fish happiness

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6

1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Signal Sparsity

C
ro

ss
−

V
al

id
at

ed
 M

ea
n−

S
qu

ar
ed

 E
rr

or

● OLS Lasso AMC Linear (ours)

Figure S6: Performance of OLS, lasso, and AMC Linear at different sparsity levels. For
each training-validation split of the data, between 1 and q features are selected at random
from the original dataset (x-axis), where q is the minimum of 10 and the total number of
features in the dataset, and Gaussian noise features are then added so that there are 10
total features. Therefore, the signal is expected to become denser and stronger as the x-axis
value increases. AMC Linear consistently outperformed OLS and performed similarly to or
better than lasso in most settings (54% of all sparsity-dataset pairs).

Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning
with differentiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

Patrick Billingsley. Convergence of probability measures. Wiley, 1999.

Tom Bosc. Learning to learn neural networks. arXiv preprint arXiv:1610.06072, 2016.

Leo Breiman. Stacked regressions. Machine learning, 24(1):49–64, 1996.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Thomas F Brooks, D Stuart Pope, and Michael A Marcolini. Airfoil self-noise and prediction,
volume 1218. National Aeronautics and Space Administration, Office of Management . . . ,
1989.

M Cassotti, D Ballabio, R Todeschini, and V Consonni. A similarity-based qsar model for
predicting acute toxicity towards the fathead minnow (pimephales promelas). SAR and
QSAR in Environmental Research, 26(3):217–243, 2015.

59



Luedtke, Chung, and Sofrygin

●
●

●
●

● ● ●

●

●

●
●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

●
● ●

● ● ●

●

●

●

●

●
●

●

●

● ●
● ● ●

● ● ●

●

●

●

●
●

● ● ●
● ●

●

●

●

●

●

●

hitters LAozone wine−red wine−white yacht

abalone airfoil college fish happiness

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6

1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Signal Sparsity

C
ro

ss
−

V
al

id
at

ed
 M

ea
n−

S
qu

ar
ed

 E
rr

or

● Stacked Existing Stacked AMC Stacked Both

Figure S7: Performance of the three stacking algorithms at different sparsity levels. For
each training-validation split of the data, between 1 and q features are selected at random
from the original dataset (x-axis), where q is the minimum of 10 and the total number of
features in the dataset, and Gaussian noise features are then added so that there are 10
total features. Therefore, the signal is expected to become denser and stronger as the x-axis
value increases. Though all algorithms performed similarly, the stacking algorithm that
combined all available algorithms (Stacked Both) performed slightly better than the others
in a majority of the settings (53% of all sparsity-dataset pairs), and Stacked AMC performed
best in most other settings (39% of all sparsity-dataset pairs).

Gary Chamberlain. Econometric applications of maxmin expected utility. Journal of Applied
Econometrics, 15(6):625–644, 2000.

Kung-Ching Chang. Methods in nonlinear analysis. Springer Science & Business Media,
2006.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pages 785–794. ACM, 2016.

Donald L Cohn. Measure theory. Springer, 2013.

John B Conway. A course in functional analysis, volume 96. Springer, 2010.

60



AMC Meta-Learning of Optimal Prediction Procedures

(a) Sparse signal

Boundary Interior
n=100 500 100 500

OLS 0.12 0.02 0.12 0.02
Lasso 0.06 0.01 0.06 0.01
AMC100 (ours) 0.02 <0.01 0.11 0.09
Symmetrized AMC100 (ours) 0.02 <0.01 0.06 0.04
AMC500 (ours) 0.02 <0.01 0.07 0.04
Symmetrized AMC500 (ours) 0.02 <0.01 0.06 0.03

(b) Dense signal

Boundary Interior
n=100 500 100 500

OLS 0.13 0.02 0.13 0.02
Lasso 0.11 0.02 0.09 0.02
AMC100 (ours) 0.10 0.04 0.08 0.02
Symmetrized AMC100 (ours) 0.09 0.03 0.09 0.02
AMC500 (ours) 0.09 0.02 0.09 0.02
Symmetrized AMC500 (ours) 0.09 0.02 0.09 0.02

Table S6: MSEs based on datasets of size n in the linear regression settings. All Monte Carlo
standard errors are less than 0.001. Symmetrized AMC100 entries appear in bold when they
had lower MSE (rounded to the nearest hundredth) than the corresponding AMC100 entry,
and vice versa. Similarly, symmetrized AMC500 entries appear in bold when they had lower
MSE than the corresponding AMC500 entry, and vice versa.

Paulo Cortez, Juliana Teixeira, António Cerdeira, Fernando Almeida, Telmo Matos, and
José Reis. Using data mining for wine quality assessment. In International Conference on
Discovery Science, pages 66–79. Springer, 2009.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, and Deepak Verma. Adversarial classification.
In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 99–108, 2004.

Mahlon M Day. Fixed-point theorems for compact convex sets. Illinois Journal of Mathe-
matics, 5(4):585–590, 1961.

Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua Bengio.
Torchmeta: A Meta-Learning library for PyTorch, 2019. URL https://arxiv.org/abs/

1909.06576. Available at: https://github.com/tristandeleu/pytorch-meta.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://

archive.ics.uci.edu/ml.

61

https://arxiv.org/abs/1909.06576
https://arxiv.org/abs/1909.06576
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Luedtke, Chung, and Sofrygin

Bradley Efron and Carl Morris. Limiting the risk of bayes and empirical bayes estima-
tors—part ii: The empirical bayes case. Journal of the American Statistical Association,
67(337):130–139, 1972.

Ky Fan. Minimax theorems. Proceedings of the National Academy of Sciences of the United
States of America, 39(1):42, 1953.

Tanner Fiez, Benjamin Chasnov, and Lillian J Ratliff. Convergence of learning dynamics in
stackelberg games. arXiv preprint arXiv:1906.01217, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1126–1135. JMLR. org, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning.
arXiv preprint arXiv:1806.02817, 2018.

Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of statistical
learning, volume 1. Springer series in statistics New York, 2001.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals
of statistics, pages 1189–1232, 2001.

(a) Sparse signal

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n=100 500 100 500 100 500 100 500

FLAM 0.44 0.12 0.47 0.17 0.38 0.11 0.51 0.19
AMC100 (ours) 0.34 0.20 0.18 0.08 0.27 0.14 0.17 0.08
Symmetrized AMC100 (ours) 0.32 0.18 0.18 0.08 0.26 0.13 0.16 0.08
AMC500 (ours) 0.48 0.12 0.19 0.06 0.35 0.10 0.23 0.08
Symmetrized AM5100 (ours) 0.43 0.12 0.17 0.05 0.32 0.09 0.21 0.07

(b) Dense signal

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n=100 500 100 500 100 500 100 500

FLAM 0.59 0.17 0.65 0.24 0.53 0.16 0.76 0.36
AMC100 (ours) 1.20 0.91 0.47 0.39 0.87 0.57 0.30 0.30
Symmetrized AMC100 (ours) 1.16 0.84 0.45 0.37 0.83 0.52 0.29 0.30
AMC500 (ours) 0.58 0.15 0.37 0.08 0.46 0.12 0.36 0.09
Symmetrized AM5100 (ours) 0.55 0.15 0.36 0.08 0.43 0.11 0.34 0.09

Table S7: MSEs based on datasets of size n in the FLAM settings. The Monte Carlo
standard errors for the MSEs of FLAM and (symmetrized) AMC are all less than 0.04 and
0.01, respectively. Symmetrized AMC100 entries appear in bold when they had lower MSE
(rounded to the nearest hundredth) than the corresponding AMC100 entry, and vice versa.
Similarly, symmetrized AMC500 entries appear in bold when they had lower MSE than the
corresponding AMC500 entry, and vice versa.

62



AMC Meta-Learning of Optimal Prediction Procedures

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton,
Murray Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional
neural processes. In International Conference on Machine Learning, pages 1704–1713.
PMLR, 2018.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on pattern analysis and machine
intelligence, (6):721–741, 1984.

Sinong Geng, Houssam Nassif, Carlos A Manzanares, A Max Reppen, and Ronnie Sircar.
Deep pqr: Solving inverse reinforcement learning using anchor actions. arXiv e-prints,
pages arXiv–2007, 2020.

J Gerritsma, R Onnink, and A Versluis. Geometry, resistance and stability of the delft
systematic yacht hull series. International shipbuilding progress, 28(328):276–297, 1981.

Subhashis Ghosal and Aad Van der Vaart. Fundamentals of nonparametric Bayesian
inference, volume 44. Cambridge University Press, 2017.

Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien.
A variational inequality perspective on generative adversarial networks. arXiv preprint
arXiv:1802.10551, 2018.

P W Glynn. Likelihood ratio gradient estimation: an overview. In Proceedings of the 19th
conference on Winter simulation, pages 366–375. ACM, 1987.

Micah Goldblum, Liam Fowl, and Tom Goldstein. Adversarially robust few-shot learning:
A meta-learning approach. arXiv preprint arXiv:1910.00982v2, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

Weichao Guo and Guoping Zhao. An improvement on the relatively compactness criteria.
arXiv preprint arXiv:1904.03427, 2019.

Jason Hartford, Devon R Graham, Kevin Leyton-Brown, and Siamak Ravanbakhsh. Deep
models of interactions across sets. arXiv preprint arXiv:1803.02879, 2018.

W Keith Hastings. Monte carlo sampling methods using markov chains and their applications.
1970.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium.
In Advances in neural information processing systems, pages 6626–6637, 2017.

Atsushi Higuchi. Symmetric tensor spherical harmonics on the n-sphere and their application
to the de sitter group so (n, 1). Journal of mathematical physics, 28(7):1553–1566, 1987.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

63



Luedtke, Chung, and Sofrygin

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient
descent. In International Conference on Artificial Neural Networks, pages 87–94. Springer,
2001.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2):251–257, 1991.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in
neural networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

G Hunt and C Stein. Most stringent tests of statistical hypotheses. Unpublished manuscript,
1946.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to
statistical learning, volume 112. Springer, 2013.

Gareth James, Daniela Witten, Trevor Hastie, and Rob Tibshirani. ISLR: Data for an
Introduction to Statistical Learning with Applications in R, 2017. URL https://CRAN.

R-project.org/package=ISLR. R package version 1.2.

Shali Jiang. Conditional neural process pytorch implementation, 2021. URL https:

//github.com/shalijiang/neural-process.

Peter J Kempthorne. Numerical specification of discrete least favorable prior distributions.
SIAM Journal on Scientific and Statistical Computing, 8(2):171–184, 1987.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Galina M Korpelevich. The extragradient method for finding saddle points and other
problems. Matecon, 12:747–756, 1976.

Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer Science &
Business Media, 2012.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning
with differentiable convex optimization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 10657–10665, 2019.

Tianyi Lin, Chi Jin, and Michael I Jordan. On gradient descent ascent for nonconvex-concave
minimax problems. arXiv preprint arXiv:1906.00331v6, 2019.

A Luedtke, M Carone, N R Simon, and O Sofrygin. Learning to learn from data: using
deep adversarial learning to construct optimal statistical procedures. Science Advances
(in press; available online late Feb or Mar 2020), 2020.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of
invariant networks. arXiv preprint arXiv:1901.09342, 2019.

64

https://CRAN.R-project.org/package=ISLR
https://CRAN.R-project.org/package=ISLR
https://github.com/shalijiang/neural-process
https://github.com/shalijiang/neural-process


AMC Meta-Learning of Optimal Prediction Procedures

J.R. Munkres. Topology. Featured Titles for Topology Series. Prentice Hall, Incor-
porated, 2000. ISBN 9780131816299. URL https://books.google.com/books?id=

XjoZAQAAIAAJ.

Sareh Nabi, Houssam Nassif, Joseph Hong, Hamed Mamani, and Guido Imbens. Decoupling
learning rates using empirical bayes priors. arXiv preprint arXiv:2002.01129, 2020.

Warwick J Nash, Tracy L Sellers, Simon R Talbot, Andrew J Cawthorn, and Wes B Ford.
The population biology of abalone (haliotis species) in tasmania. i. blacklip abalone (h.
rubra) from the north coast and islands of bass strait. Sea Fisheries Division, Technical
Report, 48:p411, 1994.

John Ashworth Nelder and Robert WM Wedderburn. Generalized linear models. Journal of
the Royal Statistical Society: Series A (General), 135(3):370–384, 1972.

Wayne Nelson. Minimax solution of statistical decision problems by iteration. The Annals
of Mathematical Statistics, pages 1643–1657, 1966.

Roger Fandom Noubiap and Wilfried Seidel. An algorithm for calculating γ-minimax decision
rules under generalized moment conditions. The Annals of Statistics, 29(4):1094–1116,
2001.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, and Luca Antiga. Pytorch: An imper-
ative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems, pages 8024–8035, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Ashley Petersen. flam: Fits Piecewise Constant Models with Data-Adaptive Knots, 2018.
URL https://CRAN.R-project.org/package=flam. R package version 3.2.

Ashley Petersen, Daniela Witten, and Noah Simon. Fused lasso additive model. Journal of
Computational and Graphical Statistics, 25(4):1005–1025, 2016.

Jean-Paul Pier. Amenable locally compact groups. Wiley-Interscience, 1984.

Eric C Polley and Mark J Van der Laan. Super learner in prediction. Technical report,
University of California, Berkeley, 2010.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Deep learning with sets and
point clouds. arXiv preprint arXiv:1611.04500, 2016.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through parameter-
sharing. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 2892–2901. JMLR. org, 2017.

65

https://books.google.com/books?id=XjoZAQAAIAAJ
https://books.google.com/books?id=XjoZAQAAIAAJ
https://CRAN.R-project.org/package=flam


Luedtke, Chung, and Sofrygin

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In
International Conference on Learning Representations (ICLR), 2017.

Christian Robert. The Bayesian choice: from decision-theoretic foundations to computational
implementation. Springer Science & Business Media, 2007.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale
visual recognition challenge. International journal of computer vision, 115(3):211–252,
2015.

Stuart Russell. Learning agents for uncertain environments. In Proceedings of the eleventh
annual conference on Computational learning theory, pages 101–103, 1998.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In International conference on
machine learning, pages 1842–1850, 2016.

Chad M Schafer and Philip B Stark. Constructing confidence regions of optimal expected
size. Journal of the American Statistical Association, 104(487):1080–1089, 2009.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how
to learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Frode Terkelsen. Some minimax theorems. Mathematica Scandinavica, 31(2):405–413, 1973.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In
Learning to learn, pages 3–17. Springer, 1998.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

Mark J Van der Laan, Eric C Polley, and Alan E Hubbard. Super learner. Statistical
applications in genetics and molecular biology, 6(1), 2007.

Aad W Van der Vaart, Sandrine Dudoit, and Mark J van der Laan. Oracle inequalities for
multi-fold cross validation. Statistics and Decisions, 24(3):351–371, 2006.

Onno van Gaans. Probability measures on metric spaces. Technical report, Technical report,
Delft University of Technology, 2003.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18(2):77–95, 2002.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, and Daan Wierstra. Matching networks
for one shot learning. In Advances in neural information processing systems, pages
3630–3638, 2016.

Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Toward multimodal model-
agnostic meta-learning. arXiv preprint arXiv:1812.07172, 2018.

66



AMC Meta-Learning of Optimal Prediction Procedures

Abraham Wald. Statistical decision functions which minimize the maximum risk. Annals of
Mathematics, pages 265–280, 1945.

Chengxiang Yin, Jian Tang, Zhiyuan Xu, and Yanzhi Wang. Adversarial meta-learning.
arXiv preprint arXiv:1806.03316, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhut-
dinov, and Alexander J Smola. Deep sets. In Advances in neural information processing
systems, pages 3391–3401, 2017.

67


	Introduction
	Problem Formulation
	Overview of Our Strategy and Our Contributions
	Related Works
	Notation

	Characterization of Optimal Procedures
	Optimality of Equivariant Estimators
	Focusing Only on Distributions with Standardized Predictors and Outcome
	Existence of an Equilibrium Point

	AMC Meta-Learning Algorithm
	Proposed Class of Estimators
	Equivariant Estimator Architecture
	Neural Network Parameterization
	Pros and Cons of Proposed Architecture

	Numerical Experiments
	Overview
	Meta-Learning Benchmarks
	Preliminaries
	Sinusoidal Regression
	Gaussian Process Regression

	Comparing to (Regularized) Empirical Risk Minimizers
	Preliminaries
	Sparse Linear Regression
	Fused Lasso Additive Model

	Ablation Study to Evaluate the Performance of Permutation Invariance

	Data Experiments
	Proofs
	A Study of Group Actions that are Useful for Our Setting
	Proofs of Theorems 1 through 4
	Preliminary lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4


	Extensions and Discussion
	Review of amenability
	Examples of collections S where T1-T6 hold
	Infinite-dimensional class
	Finite-dimensional class
	Overview
	Angular Part (Sa)
	Test Point Part (St)
	Group Part (Sg)


	Examples of collections  where P5 holds
	Further details on numerical experiments
	Meta-Learning Benchmarks
	Comparing to Analytically-Derived Estimators with Known Theoretical Performance Guarantees
	Preliminaries
	Sparse linear regression
	Fused lasso additive model


	Additional details and results for data experiments
	Datasets
	Additional results for data experiments

	Performance of symmetrized estimators in experiments

