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Abstract
This paper describes a general-purpose extension of max-value entropy search, a popular approach
for Bayesian Optimisation (BO). A novel approximation is proposed for the information gain
— an information-theoretic quantity central to solving a range of BO problems, including noisy,
multi-fidelity and batch optimisations across both continuous and highly-structured discrete spaces.
Previously, these problems have been tackled separately within information-theoretic BO, each
requiring a different sophisticated approximation scheme, except for batch BO, for which no
computationally-lightweight information-theoretic approach has previously been proposed. GIB-
BON (General-purpose Information-Based Bayesian OptimisatioN) provides a single principled
framework suitable for all the above, out-performing existing approaches whilst incurring sub-
stantially lower computational overheads. In addition, GIBBON does not require the problem’s
search space to be Euclidean and so is the first high-performance yet computationally light-weight
acquisition function that supports batch BO over general highly structured input spaces like molec-
ular search and gene design. Moreover, our principled derivation of GIBBON yields a natural
interpretation of a popular batch BO heuristic based on determinantal point processes. Finally, we
analyse GIBBON across a suite of synthetic benchmark tasks, a molecular search loop, and as part
of a challenging batch multi-fidelity framework for problems with controllable experimental noise.
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1. Introduction

A popular solution for the optimisation of high-cost black-box functions is Bayesian optimisation
(Mockus et al., 1978, BO). By sequentially deciding where to make each evaluation as the opti-
misation progresses, BO can direct resources into evaluating promising areas of the search space
to provide efficient optimisation. BO frameworks consist of two key components - a surrogate
model and an acquisition function. By fitting a probabilistic surrogate model, typically a Gaussian
process (Rasmussen, 2004, GP), to the previously collected objective function evaluations, we are
able to quantify our current belief about which areas of the search space maximize our objective
function. An acquisition function then uses this belief to predict the utility of making a particular
evaluation, producing large values at ‘reasonable’ locations. BO automatically evaluates the location
that maximises this acquisition function and repeats until a sufficiently high-performing solution
is found. A popular application of BO is hyper-parameter tuning, with successful applications
in computer vision (Bergstra et al., 2013), text-to-speech (Moss et al., 2020a) and reinforcement
learning (Chen et al., 2018). Of particular note are the recent extensions of BO beyond Euclidean
search spaces, for example when optimising synthetic genes (González et al., 2014; Tanaka and
Iwata, 2018; Moss et al., 2020b) or performing molecular search (Gómez-Bombarelli et al., 2018;
Griffiths and Hernández-Lobato, 2020; Vakili et al., 2020).

Various heuristic strategies have been developed to form BO acquisition functions, including
Expected Improvement (Jones et al., 1998, EI), Knowledge Gradient (Frazier et al., 2008, KG)
and Upper-Confidence Bound (Srinivas et al., 2010, UCB). More recently, a particularly intuitive
and empirically effective class of acquisition functions has arisen based on information theory.
Information-theoretic BO seeks to reduce uncertainty in the location of high-performing areas of the
search space, as measured in terms of differential entropy. Such entropy-reduction arguments have
motivated the three primary information-theoretic acquisition functions of Entropy Search (Hennig
and Schuler, 2012, ES), Predictive Entropy Search (Hernández-Lobato et al., 2014, PES) and Max-
value Entropy Search (Wang and Jegelka, 2017, MES), differing in their chosen measure of global
uncertainty and employed approximation methods. Of particular popularity are acquisition functions
based on MES, which reduce uncertainty in the maximum value attained by the objective function, a
one-dimensional quantity. In contrast, both ES and PES seek to reduce uncertainty in the location
of the maximum, a quantity which, as well as being well-defined only for Euclidean search spaces,
requires prohibitively expensive approximation schemes. Due to the large number of acquisition
function evaluations required to identify the next query point for each BO step, computational
complexity is an important practical consideration when designing acquisition functions, particularly
for applications with structured search spaces containing combinatorial elements.

Although the advent of MES acquisition functions has enabled the application of information-
theoretic BO beyond problems with low-dimensional Euclidean search spaces, MES can not yet be
regarded as a general-purpose acquisition function for two reasons.

1. Firstly, the existing extensions of MES supporting common BO extensions like Multi-fidelity
BO (Moss et al., 2020d) and batch BO (Takeno et al., 2020) require additional approximations
beyond those of vanilla MES, typically through the numerical integration of low-dimensional
integrals. Multi-fidelity BO (also known as multi-task BO) leverages cheap approximations
of the objective function to speed up optimisation, for example through exploiting coarse
resolution simulations when calibrating large climate models (Prieß et al., 2011), whereas batch
BO allows multiple objective function evaluations to be queried in parallel, a scenario arising
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often in science applications, for example when training a collection of robots to cook (Junge
et al., 2020). Therefore, although still cheaper than their ES- and PES-based counterparts,
extensions of MES for multi-fidelity and batch BO do not inherit the simplicity and low-cost
of vanilla MES.

2. Secondly, missing from the current extensions of MES is a computationally efficient method
for general batch BO. Asynchronous batch BO supports scenarios where each ofB workers are
allocated individually to evaluate different areas of the search space, returning queries and being
re-allocated one by one. In contrast, synchronous batch BO considers scenarios where where
B workers are to be allocated in parallel, as is the case for many real-world settings including
those relying on wet-lab evaluations, physical experiments, or any framework where workers do
not have sufficient autonomy to be controlled separately. Takeno et al. (2020) propose an low-
cost MES formulation suitable for asynchronous batch BO, however, their proposed extension
of this method to synchronous batch BO (a distinction discussed in depth by Kandasamy
et al. (2018a)) require prohibitively expensive approximations. Consequently, synchronous
batch applications of MES have so far relied on generic batch heuristics suitable for any BO
acquisition function, including greedy allocation through local penalisation (González et al.,
2016a; Alvi et al., 2019) or using probabilistic repulsion models like determinantal point
processes (Kathuria et al., 2016; Dodge et al., 2017), both of which support only Euclidean
search spaces.

In this work we provide a single generalisation of MES suitable for BO problems arising from any
combination of noisy, batch, single-fidelity, and multi-fidelity optimisation tasks. Crucially, unlike
existing extensions of MES, our general-purpose acquisition function retains the computational cost
of vanilla MES, with no requirement for numerical integration schemes. Therefore, we provide the
first high-performing yet computationally light-weight framework for synchronous batch BO suitable
for search spaces consisting of discrete structures.

Our primary contributions are as follows:

1. We propose an approximation for a general-propose extension of MES named General-purpose
Information-Based Bayesian Optimisation (GIBBON). This approximation enables application
of MES to a wide variety of problems, including those with combinations of synchronous
batch BO, multi-fidelity BO and non-Euclidean highly-structured input spaces.

2. Analysis of GIBBON leads to a novel connection between information-theoretic search,
determinantal point processes (Kulesza et al., 2012, DPP) and local penalisation (González
et al., 2016a), providing currently missing theoretical justification for key attributes of these
two popular heuristics previously chosen arbitrarily by users.

3. We analyse the computational complexity of GIBBON in the wider context of information-
theoretic acquisition functions, providing a comprehensive evaluation of the computational
overheads of information-theoretic BO.

4. We demonstrate the performance of GIBBON across a suite of popular benchmark optimisation
tasks, including the first application of information-theoretic acquisition functions to high-cost
string optimisation tasks and a sophisticated batch multi-fidelity framework for BO under
controllable observation noise.
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The remainder of the paper is structured as follows. Section 2 reviews prior work on MES and
introduces the extended acquisition function that will be the focus of this work. In section 3, we
propose the GIBBON acquisition function, before examining GIBBON in the context of existing
heuristics for batch BO (Section 4). In Section 5 we consider the computational complexity of
GIBBON in the wider context of information-theoretic BO. Finally, Section 6 provides a thorough
empirical evaluation.

2. Max-value Entropy Search for Black-Box Function Optimisation

We now introduce max-value entropy search (MES) for BO, providing an information-theoretic
motivation for the general-purpose framework that is the focus of this manuscript. We then introduce
existing work that has applied more restrictive formulations of MES to deal with specific BO tasks,
before briefly summarising additional popular acquisition functions that are not based on MES.

BO routines seek the global maximum

x∗ = argmax
x⊂X

g(x)

of a ‘smooth’ but expensive to evaluate black-box function g : X → R. By sequentially choosing
where and how to make each evaluation, BO directs resources into promising areas to efficiently
explore the search space X ⊂ Rd and provide fast optimisation. In its simplest formulation
(henceforth referred to as standard BO), BO controls the locations x ∈ X at which to collect
(potentially noisy) queries of the objective function. A more general framework is that of multi-
fidelity BO (Swersky et al., 2013) (also known as multi-task BO), where the ‘quality’ of each function
query can also be controlled, for example by choosing the level of noise or bias across a (possibly
continuous) space of fidelities s ∈ F . If these lower-fidelity estimates of g are cheaper to evaluate,
then BO has access to cheap but approximate information sources that can be used to efficiently
maximise g. In practical terms, each step of multi-fidelity BO needs to choose a location-fidelity
pair z = (x, s) ∈ Z = X × F upon which to make the next evaluation. A further extension arises
as batch BO, where we wish to exploit parallel resources by choosing a set of B ≥ 1 locations
{z1, .., zB} ∈ ZB to be evaluated in parallel.

BO’s decisions are governed by two primary components - a surrogate model and an acquisition
function. The surrogate model makes probabilistic predictions of the objective function at not-yet-
evaluated locations using the already collected location-evaluation tuples Dn = {(zi, yzi)}i=1,..,n.
The most most popular choice of model is a Gaussian process (Rasmussen, 2004, GP). GPs provide
non-parametric regression over all functions of a smoothness controlled by a kernel k : X ×X → R.
Crucially, our GP conditioned on Dn produces a tractable Gaussian predictive distribution that
quantifies our current belief about the objective function across the whole search space. GP models
can also be defined for multi-fidelity optimisation tasks (Kennedy and O’Hagan, 2000; Le Gratiet and
Garnier, 2014; Klein et al., 2017a; Perdikaris et al., 2017; Cutajar et al., 2019) and when modelling
highly-structured input spaces likes strings (Beck and Cohn, 2017), trees (Beck et al., 2015) and
molecules (Moss and Griffiths, 2020).

Given such a probabilistic model over the search space, all that remains to perform an iteration of
BO is an acquisition function measuring the utility of making evaluations. The Max-value Entropy
Search (MES) of Wang and Jegelka (2017), with similar formulations considered by Hoffman and
Ghahramani (2015) and Ru et al. (2018), seeks to query the objective function at locations that reduce
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our current uncertainty in the maximum value of our objective function g∗ = argmaxx∈X g(x). In
information theory (see Cover and Thomas, 2012, for a comprehensive introduction), uncertainty
in the unknown g∗ is measured by its differential entropy H(g∗|Dn) = −Eg∗ [log p(g∗)], where p
is the predictive probability distribution function for g∗ (as induced by the surrogate model). In
particular, the utility of making an evaluation is measured as the reduction in the uncertainty of g∗ it
provides, a quantity known as the mutual information (MI).

Although initially proposed for just standard BO problems, an MES-based search strategy can be
readily formulated for the general batch multi-fidelity framework (described above) by measuring
the utility of evaluating a batch of fidelity evaluations as their joint mutual information with the
maximum value. We henceforth refer to this general formulation, formally expressed in Definition
1, as General-purpose MES (GMES).

Definition 1 (The GMES acquisition function) The GMES acquisition function is defined as

αGMES
n ({zi}Bi=1) :=MI(g∗; {yzi}Bi=1|Dn)

=H(g∗|Dn)− E{yzi}
B
i=1

[
H(g∗|Dn ∪ {yzi}Bi=1)

]
, (1)

where {zi}Bi=1 denotes the location-fidelity pairs of the batch elements and yz denote the yet-
unobserved results of querying location-fidelity pair z = (x, s) ∈ X × F .

Note that standard BO, batch BO and multi-fidelity BO are trivial special cases of this general-
purpose framework obtained by either or both of fixing the fidelity space F to a singleton containing
just the true objective function or setting B = 1.

To provide resource-efficient optimisation, we must balance how much we expect to learn about
g∗ with the computational cost of the evaluations. Therefore, following the arguments of Swersky
et al. (2013), each BO step chooses to evaluate the set ofB locations that maximises the cost-weighted
mutual information, i.e

{z|Dn|+1, .., z|Dn|+B} = argmax
{zi}Bi=1∈ZB

αGMES
n ({zi}Bi=1)

c({zi}Bi=1)
,

where c : ZB → R+ measures the costs of evaluating the batch. This cost function could be known
a priori or estimated from observed costs (Snoek et al., 2012). The optimisation of acquisition
functions is known as the inner-loop maximisation and, when considering continuous search spaces,
is typically performed with a gradient-based optimiser. For discrete search spaces it is common to
use local optimisation routines like DIRECT (Jones et al., 1993) or genetic algorithms (Moss et al.,
2020b). For search spaces with discrete and continuous dimensions, hybrid optimisers can be used
(Ru et al., 2020).

Unfortunately, calculating GMES in its full generality is challenging and providing a practically
viable approximation strategy is the major contribution of this work. The primary difficulty in its
computation arises from the lack of closed-form expression for the distribution of g∗, as required for
all differential entropy calculations. We now end this section by discussing the three scenarios where
specific sub-cases of GMES have already been used to provide highly effective BO — a noiseless
variant of standard BO, multi-fidelity BO, and a special case of batch BO.
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2.1 Max-value Entropy Search for noiseless standard BO

Firstly, we consider the original MES formulation of Wang and Jegelka (2017), where they perform
standard BO with noiseless observations. This acquisition function is formally expressed as

αMES
n (x) := MI(yx; g∗|Dn) = H(yx|Dn)− Eg∗ [H(yx|g∗, Dn)|Dn] . (2)

Here, the symmetric property of mutual information has been used to swap yx and g∗ in its definition,
yielding an equivalent (albeit less intuitive) expansion. Crucially, the first term of the expansion of
(2) is now simply the entropy of a multivariate Gaussian distribution with a convenient closed-form.
Moreover, Wang and Jegelka (2017) note that under the assumption of exact objective function
evaluations (where yx = g(x)), the distribution of yx conditional on its maximum possible value (i.e
knowing that yx ≤ g∗) is simply that of a truncated Gaussian, also with a closed-form differential
entropy. All that remains to calculate MES is to approximate an expectation over g∗. Wang and
Jegelka (2017) build a Monte-Carlo estimate of the expectation with a set of samplesM from g∗,
providing a closed-form approximation of MES as

αMES
n (x) ≈ 1

|M|
∑
m∈M

[
γx(m)φ (γx(m))

2Φ (γx(m))
− log Φ (γx(m))

]
, (3)

where Φ and φ are the standard normal cumulative distribution and probability density functions
(as arising from the expression for the differential entropy of a truncated Gaussian) and γx(m) =
m−µn(x)
σn(x) . Here, µn(x) and σ2

n(x) are the predictive mean and standard deviation for the objective
function value g at location x as easily extracted from our surrogate model. The set of sample
max-valuesM is built by modelling the empirical cumulative distribution function of g∗ with a
Gumbel distribution (see Wang and Jegelka (2017) for details) which can be sampled to yield M
cheap but approximate sampled max-values. This Gumbel approximation provides a fast sampling
strategy and has been successful across a wide range of BO applications (Wang and Jegelka, 2017;
Moss et al., 2020d,c)

For the limited set of BO problems supported by this original MES acquisition function, MES
has had great empirical success, typically outperforming other information-theoretic BO methods
with an order of magnitude smaller computational overhead. However, once MES arguments are
extended to support the more sophisticated BO frameworks (or even just to support noisy function
evaluations), we will see that the second term of (3) is no longer (the expectation of) the differential
entropy of a truncated Gaussian and additional approximations have to be made.

2.2 Max-value Entropy Search for multi-fidelity BO

MES-based search strategies have also been previously used for multi-fidelity BO through the
MUlti-task Max-value Bayesian Optimisation (MUMBO) acquisition function of Moss et al. (2020d)
(proposed in parallel by Takeno et al. (2020)) and, just like original MES, MUMBO has been
shown to perform highly efficient BO. However, unlike when collecting exact observations of g,
fidelity evaluations yz|g∗ no longer follow a truncated Gaussian distribution and instead follow an
extended skew Gaussian distribution (as shown by Moss et al. (2020d) and re-derived in Section
3) which has no closed-form expression for its differential entropy (Azzalini, 1985). Therefore,
the MUMBO acquisition function does not inherit all the computational savings of standard MES,
requiring numerical integration. Note that by considering a single fidelity system, where low-fidelity
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evaluations are just noisy observations of the true objective function, a multi-fidelity formulation of
MES also serves as an extended standard (single-fidelity) MES suitable for when evaluations are
contaminated with observation noise.

2.3 Max-value Entropy Search for Batch BO

Motivated by the empirical success of MES-based acquisition functions, it is natural to wonder if
they can be used for batch BO. However, of the two popular batch scenarios of asynchronous and
synchronous batches commonly considered in the BO literature, only asynchronous batch BO is
currently supported by a MES-based acquisition function (Takeno et al., 2020). The primary practical
distinction is that, while synchronous batch acquisition functions must be able to measure the total
reduction in entropy provided by the joint evaluation of B locations, asynchronous batch BO has only
to measure the relative reduction in entropy provided by making a single evaluation whilst taking
into account the B − 1 pending evaluations. Through clever algebraic manipulations, Takeno et al.
(2020) require only single-dimensional numerical integrations when calculating the relative entropy
reduction required for asynchronous batch BO. Unfortunately, as demonstrated in Section 3, complex
interactions between each of the B fidelity evaluations yzi once conditioned on g∗ (as present in
the second term of (1)) prevents the approximation strategies employed by Takeno et al. (2020) (or
those of Wang and Jegelka (2017) or Moss et al. (2020d)) being extended to the synchronous batch
setting. In particular, a naive extension of Takeno et al. (2020)’s approach requires the prohibitively
expensive numerical approximations of B-dimensional multivariate Gaussian cumulative density
functions. In this work, we propose a novel approximation strategy for (1) completely free from
numerical integrations, thus providing the first computationally light-weight information-theoretic
acquisition function for synchronous batch BO.

2.4 Alternatives to Max-value Entropy Search

As discussed in Section 1, MES is not the only information-theoretic BO acquisition function and
is a descendent of ES and PES. However, the original ES and PES, as-well as their extensions
for batch BO (Shah and Ghahramani, 2015; Hernández-Lobato et al., 2017) and multi-fidelity BO
(Swersky et al., 2013; Zhang et al., 2017), seek to reduce the differential entropy of the d-dimensional
maximiser x∗ (rather than the single dimensional g∗ targeted by MES). The calculation of this
entropy is challenging, requiring sophisticated and expensive approximation strategies (see Section
5). As well as being substantially more expensive than MES, the reliance of ES and PES on coarse
approximations means they provide less effective optimisation (Wang and Jegelka, 2017; Moss et al.,
2020d; Takeno et al., 2020). Moreover, the approximation strategy employed by PES restricts its use
to only Euclidean search spaces

Of course, attempts have been made to adapt other standard acquisition functions to multi-fidelity
and batch BO, with examples including EI (Picheny et al., 2010; Chevalier and Ginsbourger, 2013;
Marmin et al., 2015), UCB (Contal et al., 2013; Kandasamy et al., 2016, 2017) and KG (Wu and
Frazier, 2016, 2017). However, extensions of EI and UCB, although computationally cheap and
often enjoying strong theoretical guarantees, are typically lacking in performance and even though
KG-based methods can provide highly effective optimisation, their large computational cost restricts
them to problems with function query costs large enough to overshadow very significant overheads
(as demonstrated in Section 6). For batch BO, additional heuristic strategies have been developed
that are compatible with any acquisition function, with the most popular and empirically successful
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being the Local Penalisation of González et al. (2016a) and DPP-based approach of Kathuria et al.
(2016) (see Section 4 for a thorough discussion). Alternative but less performant heuristics include
approaches based on Stein methods (Gong et al., 2019) and Thompson sampling (Kandasamy et al.,
2018a).

3. A Novel Approximation of General-purpose Max-value Entropy Search

In this section, we present the key theoretical contribution of this work: a novel approximation of the
GMES acquisition function proposed in Section 2. In particular, we formulate GMES in terms of a
the Information Gain (IG) — a measure of entropy reduction often used when pruning decision tree
classifiers (Raileanu and Stoffel, 2004) and when selecting features for statistical models of textual
data (Yang and Pedersen, 1997). The remainder of the section then details a novel approximation
strategy for the information gain based on simple well-known information-theoretic inequalities,
before demonstrating explicitly how this IG approximation can be used to approximate the GMES
acquisition function.

3.1 GMES as a Function of Information Gain

Recall our proposed GMES acquisition function (1), defined as the mutual information between a set
of B fidelity evaluations and the objective function’s maximum value g∗. As in the derivation of the
original MES acquisition function (2), the symmetric property of mutual information can be used to
yield the expansion

αGMES
n ({zi}Bi=1) := H({yzi}Bi=1|Dn)− Eg∗

[
H({yzi}Bi=1|Dn, g

∗)|Dn

]
. (4)

For ease of notation, we now defineAi = yzi andCi = g(xi) for each of theB candidate location-
fidelity tuples zi, as well as the multivariate random variables A = (A1, .., AB) and C = (C1, .., CB).
The information gain is then defined as the reduction in the entropy of A provided by knowing the
maximal value of C∗ = max C, i.e.

IGn (A,m|Dn) := H(A|Dn)−H(A|C∗ < m,Dn), (5)

Comparing (4) and (5), it follows that the GMES acquisition function can be expressed in terms of
IG as

αGMES
n ({zi}Bi=1) = Em∼g∗ [IGn (A,m|Dn)] .

We can now see that efficiently calculating (5) in general scenarios will allow principled max-
value entropy search across a wide range of BO settings. This goal is therefore the focus of the
remainder of this section.

3.2 Required Predictive Quantities

Before presenting our proposed approximation for IG, it is convenient to discuss the distributional
forms induced by our surrogate GP model. All random variables are now assumed to be conditioned
on the arbitrary information set Dn, which, alongside references to n, is henceforth dropped from
our notation.
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Figure 1: The considered dependency structure between the two set of random variables {A1, .., AB}
and {C1, .., CB}. Arrows denote the direction of dependence and latent variables are drawn in
squares.

Courtesy of our GP surrogate model, we have that

A ∼ N(µA,ΣA), C ∼ N(µC ,ΣC) and Corr(Ai, Ci) = ρi,

for predictive means µC ,µA ∈ RB , predictive covariances ΣC ,ΣA ∈ RB×B and a vector of
pairwise predictive correlations ρ ∈ RB (Rasmussen, 2004; see Appendix A for details on how these
predictive quantities are easily extracted from a GP).

In addition to these well-known distributional forms, we can exploit the specific conditional
structure of our GP surrogate model (which we describe below and summarise in Figure 1) to
derive the conditional distribution of the random variable A given that C∗ < m. In particular, our
planned BO applications ensure that each Aj is conditionally independent of {Ci}i 6=j given Cj .
This condition holds trivially for single-fidelity BO, where the difference between each Ai and Ci
is just independent Gaussian noise. For multi-fidelity BO, this condition corresponds exactly to
the multi-fidelity Markov property that is a key assumption underlying multi-fidelity GP modelling
(Kennedy and O’Hagan, 2000; Le Gratiet and Garnier, 2014; Perdikaris et al., 2017). This is not a
restrictive assumption, with O’Hagan (1998) showing that the multivariate Markov property holds
for any GP surrogate model with a kernel that can be factorised into a product of kernels, one defined
across the fidelity and one across the search space.

Under these dependence assumptions, Theorem 2 provides the distribution of A|C∗ < m in
closed-form, yielding a probability density function that, to the authors’ knowledge, has not been
previously considered in the statistics literature. Theorem 2 provides our first intuition for why the
efficient calculation of the differential entropy H(A|C∗ < m) is challenging, i.e. the presence of the
multivariate Gaussian cumulative density in its probability density function.

Theorem 2 (Distribution of A given C∗ < m) Consider two B-dimensional multivariate Gaus-
sian random variables A and C where C ∼ N(µC ,ΣC) and each individual component of A is
distributed asAj ∼ N(µAj ,Σ

A
j,j). Suppose further that each each pair {Aj , Cj} are jointly Gaussian

with correlation ρj , and that each Aj is conditionally independent of {Ci}i 6=j given Cj . Define
C∗ = max C. Then the conditional density of A given that C∗ < m is given by

1

P(C∗ < m)
φX1(a)ΦX2(m),
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where m = (m, ..,m) ∈ RB and φX1 and ΦX2 are the probability density and cumulative density
functions for the multivariate Gaussian random variables

X1 ∼ N
(
µA, S +DΣCD

)
and X2 ∼ N

(
µC + Σ−1DS−1(a− µA),Σ−1

)
,

where ΣA = DΣCD + S for D and S, diagonal matrices with elements Dj,j = ρj

√
ΣAj,j
ΣCj,j

and

Sj,j = (1− ρ2
j )Σ

A
j,j , and Σ =

((
ΣC
)−1

+DS−1D
)

.

Proof See Appendix B

Note that in the uni-variate case (i.e B = 1 and C∗ = C1), Theorem 2 collapses to the settings
already considered when calculating MES and MUMBO in Section 2. Firstly, under the strong
restriction that C1 = A1 (arising from BO without observation noise), A1|C∗ < m follows the
well-known truncated Gaussian distribution, which can be seen directly from Theorem 2 by setting
ρj = 1, µCj,j = µAj and ΣC

j,j = ΣA
j . This truncated Gaussian has a simple analytical expression for

its differential entropy which is exploited by standard MES. Secondly, if Cj and Aj are not perfectly
correlated, we see that the density of Theorem 2 reduces to that of an Extended Skew Gaussian (ESG)
distribution (Azzalini, 1985) as required for the MUMBO acquisition function (see Appendix A of
Moss et al. (2020d)). Although the differential entropy of an ESG has no closed-form expression
(Arellano-Valle et al., 2013), we will later exploit the fact that its variance has an analytical form

Var(Aj |Cj < m) = ΣA
j

(
1− ρ2

j

φ(γj(m))

Φ(γj(m))

[
γj(m) +

φ(γj(m))

Φ(γj(m))

])
, (6)

where γj(m) = (m − µCj )/
√

ΣC
j,j . We stress that, due to the complex interactions between each

Aj |C∗ < m, the joint distribution of A|C∗ < m is not the multivariate ESG discussed by Azzalini
and Valle (1996)).

3.3 Approximating Information Gain

We now present a lower bound IGAPPROX for IG as Theorem 3. This bound is to be used as an
approximation IG ≈ IGApprox. We stress that replacing the maximisation of an intractable quantity
with the maximisation of a lower bound is a well established strategy in the ML literature, for
example in variational inference (Blei et al., 2017).

Theorem 3 (A lower bound for information gain) Under the assumptions of Theorem 2, it holds
that IG(A,m) ≥ IGApprox(A,m), where

IGApprox (A,m) :=
1

2
log |RA| − 1

2

B∑
i=1

log

(
1− ρ2

i

φ(γi(m))

Φ(γi(m))

[
γi(m) +

φ(γi(m))

Φ(γi(m))

])
, (7)

where RA ∈ RB×B is the predictive correlation matrix of A with entries RAi,j = ΣA
i,j/
√

ΣA
i,iΣ

A
j,j .

Proof
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Recall the definition of information gain IG (A,m) := H(A) − H(A|C∗ < m). The first
term of IG is simply the differential entropy of a multivariate Gaussian distribution and so can be
written in closed-form as H(A) = 1

2 log
[
(2πe)B

∣∣ΣA

∣∣], where
∣∣ΣA

∣∣ is the determinant of the B×B
co-variance matrix of A. Unfortunately calculating the second term of IG is significantly more
complicated, with a closed form expression only in the limited cases discussed above.

We now build an analytical upper bound for H (A|C∗ < m) by exploiting three common
information-theoretic inequalities. As derived in Cover and Thomas (2012), we know that,

H(A) ≤
B∑
i=1

H(Ai), H(Ai|C∗ < m) ≤ H(Ai|Ci < m), and H(Ai) ≤
1

2
log 2πeVar(Ai),

where the second inequality is due to {C∗ < m} being a stronger condition than (i.e. implying that)
{Ci < m}.

Applying the first two of these inequalities in sequence to A|C∗ < m yields the upper-bound

H(A|C∗ < m) ≤
B∑
i=1

H(Ai|Ci < m).

Then, as we know that Aj |Cj < m is an ESG (with a closed form expression for its variance), we
can apply the third information-theoretic inequality to yield the analytical upper bound

H(A|C∗ < m) ≤1

2

B∑
i=1

log(2πeVar(Ai|Ci < m))

=
1

2

B∑
i=1

log 2πeΣA
i,i

(
1− ρ2

j

φ(γi(m))

Φ(γi(m))

[
γi(m) +

φ(γi(m))

Φ(γi(m))

])
.

Substituting this upper bound into (5), we have a lower bound for the information gain

IGApprox (A,m) :=
1

2
log
∣∣ΣA

∣∣−1

2

B∑
i=1

log ΣA
i,i

(
1− ρ2

j

φ(γi(m))

Φ(γi(m))

[
γi(m) +

φ(γi(m))

Φ(γi(m))

])

=
1

2
log
∣∣ΣA

∣∣+1

2
log

b∏
i=1

(
ΣA
i,i

)−1−

1

2

b∑
i=1

log

(
1− ρ2

j

φ(γi(m))

Φ(γi(m))

[
γi(m) +

φ(γi(m))

Φ(γi(m))

])
,

which after defining the predictive correlation matrix RA (with entries RAi,j = ΣA
i,j/
√

ΣA
i,iΣ

A
j,j) and

noting that

1

2
log
∣∣ΣA

∣∣+
1

2
log

b∏
i=1

(ΣA
i,i)
−1 =

1

2
log

∣∣∣∣∣∣∣∣∣


1√
ΣA1,1

0

. . .
0 1√

ΣAb,b

ΣA


1√
ΣA1,1

0

. . .
0 1√

ΣAb,b


∣∣∣∣∣∣∣∣∣

=
1

2
log
∣∣RA∣∣,
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provides the claimed expression.

3.4 GIBBON: General-purpose Information-Based Bayesian OptimisatioN

We end this section with explicitly demonstrating how IGApprox can be used to approximate the
GMES acquisition function. Recall that GMES can be expressed in terms of IG as

αGMES
n ({zi}Bi=1) = Em∼g∗ [IGn (A,m|Dn)] .

We have already provided an approximation for IG and so all that remains to approximate GMES
is to deal with its outer expectation over g∗. Following the arguments of Wang and Jegelka (2017),
we build a Monte-Carlo approximation of this expectation using a Gumbel-based sampler. Therefore,
given a set of sampled max-values M = {m1, ..,mM} of g∗|Dn and access to the predictive
distributions

{yzi}Bi=1|Dn ∼ N(µy,Σy), {g(xi)}Bi=1|Dn ∼ N(µg,Σg) and Corr(yzi , g(xi)|Dn) = ρi,

we can approximate GMES with

αGIBBON
n ({z}Bi=1) =

1

|M|
∑
m∈M

IGAPPROX({yz1 , .., yzb},m).

This construction is henceforth referred to as the General Information-Based Bayesian OptimisatioN
(GIBBON) acquisition function and is defined as the closed-form expression in Definition 4 and
demonstrated within a BO loop as Algorithm 1.
Definition 4 (The GIBBON acquisition function.) The GIBBON acquisition function is defined
as

αGIBBON
n ({z}Bi=1) =

1

2
log
∣∣R∣∣− 1

2|M|
∑
m∈M

B∑
i=1

log

(
1− ρ2

i

φ(γi(m))

Φ(γi(m))

[
γi(m) +

φ(γi(m))

Φ(γi(m))

])
,

where R is the correlation matrix with elements Ri,j = Σy
i,j/
√

Σy
i,iΣ

y
j,j and γi(m) =

m−µgi√
Σgi,i

.

At first glance, GIBBON’s analytical form looks complex. However, as GIBBON contains only
simple algebraic operations, it can be easily calculated in just a few lines of code, unlike existing
ES-based and PES-based acquisition functions and all existing extensions of MES (as discussed in
depth in Section 5). An important practical consideration for GIBBON is that, for continuous search
spaces, it has accessible gradients that can easily be derived from its analytical expression, allowing
efficient inner-loop optimisation.

We end this section with a visual analysis of the accuracy of the GIBBON approximation. We
consider a standard BO task with exact objective function evaluations (i.e not multi-fidelity or batch
optimisation) as, in this setting, the MES acquisition function provides an exact calculation of the
entropy reductions. In Figure 2 we see that the approximation provided by GIBBON is very close to
the ground truth provided by MES, with GIBBON and MES sharing modes and differing only in
areas of the space that would never be selected by BO, i.e those locations with very low utility.
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Algorithm 1: GIBBON for general-purpose BO tasks.
Input: Resource budget R, Batch size B, Gumbel sample size N

1 Initialise n← 0 and spent resource counter r ← 0
2 Propose initial design I
3 while r ≤ R do
4 Begin new iteration n← n+ 1
5 Fit GP model to collected evaluations Dn

6 Simulate N samples from g∗|Dn

7 Compute αGIBBON
n as given by Definition 4

8 Find B locations {zi}Bi=1 maximising αGIBBON
n ({zi}Bi=1)

c({zi}Bi=1)

9 Evaluate new locations and collect evaluations Dn+1 ← Dn
⋃
{(zi, yzi)}Bi=1

10 Update spent budget r ← r + c({zi}Bi=1)

11 end
Output: Believed maximiser argmaxx∈Dn g(x)

(a) MES acquisition function surface (ground truth). (b) GIBBON acquisition function surface.

Figure 2: Comparison of the MES and GIBBON acquisition functions for a two-dimensional BO
task where MES can calculate entropy reductions exactly. The crosses denote the locations already
queried by the BO routine. GIBBON provides a very close approximation of MES that reliably
captures all its modes.
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4. Relationship Between GIBBON and Heuristics for Batch Bayesian Optimisation

We now provide insights into the batch capabilities of our GIBBON acquisition function by drawing
equivalences between GIBBON and two popular heuristics for batch BO — determinantal point
processes (Section 4.1) and local penalisation (Section 4.2).

Recall that performing an iteration of BO requires the identification of optimal candidate points
across the search space, i.e the maximisation of our acquisition function. For GIBBON, this inner-
loop maximisation task corresponds to allocating a batch of B locations as

{z|Dn|+1, .., z|Dn|+B} = argmax
z∈Z

αGIBBON
n ({zi}Bi=1).

Before introducing the two batch BO heuristics, it is convenient to provide an alternative
expression for the GIBBON acquisition function. From Definition 4, we see that the GIBBON
acquisition function for a candidate batch of B location-fidelity tuples can be decomposed into
a sum of B GIBBON acquisition function evaluated separately for each tuple with an additional
determinant term as

αGIBBON
n ({z}Bi=1) =

1

2
log
∣∣R∣∣+

B∑
i=1

αGIBBON
n (zi), (8)

where R is the predictive correlation matrix of the batch. Note that the first term of this decomposition
encourages diversity within the batch (achieving high values for points with low predictive correlation)
whereas the second term ensures that evaluations are targeted in areas of the search space providing
large amounts of information about g∗.

4.1 Relationship with Determinantal Point Processes

We can now interpret GIBBON in the context of a popular heuristic approach for batch design based
on probabilistic models of repulsion known as Determinantal Point Processes (DPPs) (Kulesza et al.,
2012). This comparison provides previously missing theoretical justification for choices of key DPP
attributes which previously had to be chosen arbitrarily by practitioners.

DPPs provide a probability distribution over sets of points, such that sets of high-quality points
(as measured by a quality function q : X → R) with a diverse spread (as measured by a similarity
kernel s : X × X → R+) occur with high probability. More precisely, a particular set of points
{xi}Bi=1 occurs with probability.

P({xj}Bj=1) ∝ |L({xj}Bj=1)|, (9)

where L({xj}Bj=1) is a b× b matrix with elements Li,j = q(xi)q(xj)s(xi, xj).
Generating diverse but high-quality collections of points is exactly what we seek when allocating

batches in BO problems. Unfortunately, a lack of understanding of how to choose appropriate
quality functions and similarity kernels a-priori have previously limited the performance of DPP
methods in BO, with existing applications requiring users to plug in arbitrary choices. The primary
complication is that the relative scales of q and s trade-off the quality and diversity of batches, and
so, for high-performance BO, these measures must be carefully chosen to complement (rather than
dominate) each other. Consequently, the most common approach for using DPPs for BO is as part
of pure exploration strategies, where the quality function is ignored (q(x) = 1) and a DPP with a
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radial basis function kernel as its similarity measure is sampled to allocate a whole batch (Dodge
et al., 2017), or to allocate the B − 1 elements remaining after choosing an initial point through a
standard sequential BO routine (Kathuria et al., 2016). Related approaches have also been used for
high-dimensional BO (Wang et al., 2017), where DPPs are used to sample a subset of the available
search space dimensions. Note that these existing applications of DPPs to batch BO are limited in
scope, supporting only single-fidelity problems over Euclidean search spaces, i.e those over which a
standard similarity kernel can easily be defined.

We now explicitly show that our GIBBON acquisition function is equivalent to a DPP with
specific choices of quality functions and similarity kernels. First define the exponential of our
GIBBON acquisition function (withB = 1) as a quality function qG(z) = exp

(
αGIBBON(z)

)
and the

predictive correlation (as specified by our GP surrogate model) as a similarity kernel sG(zi, zj) = Ri,j .
Then, after defining LG({zj}Bj=1) as the matrix with elements LG

i,j = qG(zi)qG(zj)sG(zi, zj), simple
algebraic manipulations allow the batch GIBBON acquisition function (8) to be expressed as

αGIBBON
n ({zj}Bj=1) =

1

2
log|LG|,

i.e the maximisation of our acquisition function corresponds to allocating the batch with maximal
|LG|, known as the maximum a posteriori (MAP) problem of DPPs. This is known to be NP -
hard (Ko et al., 1995). However, the submodularity of DPPs ensures reasonable performance of
greedy approximate solutions (as demonstrated by Gillenwater et al., 2012), explaining the observed
effectiveness of a greedy batch-filling strategy when optimising our GIBBON acquisition function
(see Section 6).

Recasting GIBBON as a DPP provides the first theoretical motivation for using DPPs for batch
BO, with the particular choices of quality and similarity function arising from our information-
theoretical derivation leading to significant improvements over existing DPP heuristics (Section 6).
Moreover, we have greatly increased the generality of DPP-based BO, providing a formulation that
supports multi-fidelity and structured search spaces, or any other framework using a surrogate model
where posterior correlation is easily accessible.

4.2 Relationship with Local Penalisation

Another class of popular heuristics for batch BO are those based on local penalisation (LP) (González
et al., 2016a; Alvi et al., 2019). Rather than explicitly balancing the diversity and quality of batches as
two additive contributions, LP methods apply a multiplicative scaling to down-weight an acquisition
function around locations already present in the batch, thus ensuring the selection of a diverse set of
points. We now show that GIBBON can be interpreted as a penalisation strategy and consequently,
we can make an explicit link between DPP- and LP-based BO routines. By recasting GIBBON as
a local penalisation, we are able to derive a novel theoretically-justified penalisation function that
outperforms existing LP methods.

For any choice of acquisition function αn : X → R taking positive values, an LP strategy
greedily chooses the ith element of the n+ 1th batch as

xn+1,i = argmax
x∈X

αn (x)

i−1∏
j=1

ψ(x; xn+1,j),

where ψ(x, x′) : X × X → [0, 1] is a penalisation function. By requiring that ψ(x, x′) is a non-
increasing function of ||x− x′||, we ensure that penalisation is largest when considering x close to
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elements already present in the batch. The most popular penalisation function is the soft penaliser of
González et al. (2016a)

ψsoft(x, x′) =
1

2
erfc(−z) for z =

1√
σ2
n(x′)

(
L||x− x′|| − g∗ + µn(x′)

)
,

where erfc is the complementary error function and g∗ is the current believed optimum. An important
practical consideration of LP routines is that their performance is sensitive to predicting a Lipschitz
constant L (i.e |g(x)−g(x′)| ≤ L||x−x′|| ∀x, x′ ∈ X ), for which point-estimates must be carefully
extracted from previous function evaluations. Note that this Lipschitz constant can only be defined
for Euclidean search spaces.

We now show that allocating batches by performing a greedy maximisation of GIBBON can
be interpreted as an LP routine for specific choices of acquisition and penalisation functions.

Define a re-scaled GIBBON acquisition function αscaledn (x) =
(
eα

gibbon
n (x)

)2
and a penaliser

ψcorr(x; {xj}i−1
j=1) =

∣∣R({xj}i−1
j=1 ∪ {x})

∣∣ as the determinant of the batch’s predictive correlation.
After routine algebraic manipulations, we can see that allocating the ith element of the n+ 1th batch
according to a greedy maximisation of our GIBBON acquisition function is equivalently expressed as

xn+1,i = argmax
x∈X

αGIBBON
n

(
{x} ∪ {xn+1,j}i−1

j=1

)
= argmax

x∈X
αscaledn (x)ψcorr(x; {xn+1,j}i−1

j=1),

i.e. the predictive correlation term in GIBBON can be interpreted as a form of local penalisation.
However, unlike ψsoft and the hard penaliser of Alvi et al. (2019), ψcorr does not require the
estimation of L, instead just using the easily accessible predictive correlation of our GP. In fact the
superior performance of our proposed approach over existing LP methods suggests that complicated
penalisation functions are not needed at all.

5. The Computational Complexity of Information-theoretic Bayesian Optimisation

In this final section before our experimental results, we analyse the computational overhead incurred
by GIBBON and compare with all other existing information-theoretic acquisition functions, many
of which are included in our experimental results of Section 6. We discuss the complexity of the
information-theoretic acquisition functions mentioned in Sections 1 and 2: Entropy Search (Hennig
and Schuler, 2012, ES), Predictive Entropy Search (Hernández-Lobato et al., 2014, PES) and its
extensions PPES (Hernández-Lobato et al., 2017) and MF-PES (Zhang et al., 2017), Max-value
Entropy Search (Wang and Jegelka, 2017, MES) and its extensions MUMBO (Moss et al., 2020d)
and MF-MES (Takeno et al., 2020), as well as the Fast Information-Theoretic BO of Ru et al. (2018,
FITBO). Although MFMES was originally designed for asynchronous batch BO, Takeno et al. (2020)
do discuss (in their Appendix D.4) an alteration that allows the support for synchronous batch BO
problems but with large computational cost. It is this variant of MFMES that we consider in this
section and for our experimental results (Section 6).

The computational complexity of BO routines is hard to measure exactly as we do not know a-
priori how many evaluations are required to maximise the highly multi-modal acquisition function in
each inner loop. However, there are two main contributors to the computational cost of information-
theoretic BO that can be analysed: a one-off initialisation calculation required to ‘prepare’ the
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Method Noise?
Multi-
Fidelity ?

Batch?
Non-
Euclidean ?

Initialisation
costs

Acquisition
query costs

ES X X × X n2e2d + e3d n2ed

PES X × × × n2e2d + (n+ d)3ed n2 + (n+ d)ed

PPES X × X × n2e2d + (n+ d)3ed B2n2 + (B3 + n+ d)ed

MF-PES X X × × n2e2d + (n+ d)3ed n2 + (n+ d)ed

FITBO × × × × 1 n2

MES × × × X n2ed n2

MUMBO X X × X n2ed n2

MF-MES X X X X n2ed B2n2 +B3 +B2

GIBBON X X X X n2ed B2n2 +B3

Table 1: Computational complexity of existing entropy-based acquisition functions. d denotes the
dimensions of the search space, n is the number of observations already collection, and B denotes
batch size. Complexity results are correct to highest order terms only and ignore constant factors.
We also summarise the types of BO problems supported by these acquisition functions (columns
1-4). For example, although standard MES’s calculations strategy assumes exact, single-fidelity and
purely sequential evaluations, MES does support non-Euclidean search space.

acquisition functions for each separate BO step, and the costs of each acquisition function query
required for the inner-loop maximisation. These two complexity contributions are presented in Table
1, alongside a summary of the type of extended BO problems supported by each acquisition function,
i.e whether they permit noisy, multi-fidelity, batch observations or non-Euclidean search spaces. We
now derive the stated complexity results for initialisation and acquisition function query costs.

5.1 Acquisition Function Initialisation Costs

All BO routines incur a computational cost at the start of each individual BO step through the fitting
of the surrogate model. The primary contribution to the cost of fitting a GP surrogate model on n data
points is an n×n matrix inversion, i.e an O(n3) computation. Extracting a single predictive mean or
co-variance from this GP then costs O(n) and O(n2), respectively. As the overhead of fitting the GP
is incurred across all BO routines, we leave out its contribution from our complexity analysis. We
instead focus purely on the initialisation overheads specific to each information-theoretic acquisition
function incurred when collecting sets of samples required for their approximation strategies. This
set is reused for all acquisition function evaluations during a single inner-loop maximisation but
re-sampled for each BO step.

All the samples required for information-theoretic acquisition functions can be separated into
two distinct classes — those approximating single-dimensional quantities and those approximating
quantities with the same dimensions as the search space. To paint a clear picture of computational
cost, we consider BO problems with a search space of fixed dimension d and focus primarily on how
the costs scale with respect to d, the batch size B, and the number of previously queried points n.
Although all sample sizes are user-controllable, the efficiency of the resulting acquisition function
depends sensitively on appropriately large sample sizes (as demonstrated for PES and MES by Wang
and Jegelka (2017)). Therefore, sample sizes used when approximating d-dimensional quantities
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must grow exponentially as O(ed) in order to preserve approximation accuracy. In contrast, the
sample sizes required for effective approximations of single dimensional quantities can be chosen
independently of d and so are denoted as O(1) in our complexity analysis.

As discussed in Section 2, MES-based acquisition functions (including GIBBON), uses a Gumbel
sampler to access samples of the maximum value g∗. This sampler evaluates our GP surrogate model’s
posterior (at O(n2) cost) across O(ed) points to form a discretisation of the d-dimensional search
space. Each of the required O(1) samples of g∗ (a single dimensional quantity) can then be extracted
with O(1) cost, yielding an overall complexity of O(n2ed). As shown in Table 1, GIBBON’s
initialisation costs are substantially lower than those of the acquisition functions based on PES
and ES. Only FITBO has a lower initialisation cost, however it has not seen widespread use as it
supports only noiseless standard BO tasks and employs a complicated construction requiring linear
approximations of non-central χ2 process (operations not supported by GP libraries). For the ES and
PES-based acquisition functions, which require samples from the d-dimensional objective function
maximiser x∗, initialisation costs are substantial.

In ES, each sample of x∗ is the maximum of a sample function drawn from the GP across
an O(ed) discretisation of the search space. Simulating these function draws requires a one-off
O(e3d) computation for the Cholesky factor of the predictive co-variance matrix evaluated across the
discretisation, as accessed with an O(n2) cost for each of its O(e2d) elements. Consequently, the
initialisation of ES incurs a sizeable O(n2e2d + e3d) complexity scaling. PES also requires samples
of x∗ but instead maximises the sample draws from a finite feature approximation of the GP surrogate
model (Rahimi and Recht, 2008), requiring just anO(n2) cost for each of the requiredO(ed) samples.
However, unlike ES, PES incurs the additional cost of pre-computing an n+ d-dimensional matrix
inversion for each sample. Therefore, PES has a total initialisation cost of O(n2ed + (n+ d)3ed)).
Note that the finite feature approximation employed by PES and its variants is only rigorously defined
for GPs with stationary kernels and Euclidean search spaces.

5.2 Acquisition Function Query Costs

We now discuss the computational complexity of each individual acquisition function query. As
highlighted in Table 1, not only does the GIBBON acquisition function match the lowest query costs
attained by any information-theoretic acquisition functions, but it is suitable for standard, stochastic,
multi-fidelity and batch optimisation.

To calculate GIBBON and the other MES-based acquisition functions, we require the joint predic-
tive distribution across B proposed batch locations. Accessing these B2 predictive co-variance terms
from a GP surrogate model and then taking its determinant cost O(B2n2) and O(B3), respectively.
Finally, GIBBON calculates an analytical expression for each of the O(1) samples from g∗ and
across each of the batch elements, yielding an overall complexity of O(B2n2 +B3). MF-MES has a
similar construction to GIBBON, but requires the additional calculation of a B-dimensional integral,
for which a naive numerical approximation would require an O(eB) cost. Following Takeno et al.
(2020), this integral can also be evaluated using a sophisticated recursive strategy for calculating
multi-variate Gaussian cumulative density functions withO(B2) cost, however, we found this routine
to incur a large constant overhead that dominated our acquisition function calculations. Similarly, we
stress that although all MES-based acquisition functions have O(n2) cost (in the non-batch setting),
FITBO, MUMBO and MF-MES all require additional numerical integrations (over GIBBON) that
incur a significant constant cost factor that does not show in our highest order complexity analy-
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sis. Consequently, the experiments of Section 6 show that GIBBON is substantially cheaper than
MUMBO and MF-MES in practice.

The ES and PES-based acquisition functions incur a substantially larger query cost than GIBBON.
Their primary computational bottleneck is the requirement of separate calculations for each of their
O(ed) samples of x∗. In ES, each evaluation requires an n2 prediction from the GP for each location
across a small O(1)-sized collection of points for each sampled x∗. In contrast, PES requires only
a single prediction from the GP but additional O(n + d) manipulations for each of its O(ed) pre-
computed kernel matrices. For batch BO, PPES requires B2 GP predictions and a B3 calculation to
access the determinant of the batch’s posterior co-variance, as well as an additional B3 determinant
calculations for each pre-computed kernel matrix.

6. Experiments

We now finish this manuscript with a comprehensive empirical evaluation of our GIBBON acquisition
function. In particular, we consider batch (Section 6.1) and multi-fidelity (Section 6.3) synthetic
benchmarks, as-well as well as a molecular design loop over a non-Euclidean and highly-structured
search space (Section 6.5). Finally, we examine the performance of GIBBON when inserted into
a challenging real-world BO framework that requires both batch and multi-task decision making.
Implementations of GIBBON are available in three popular Python libraries for BO: Emukit (Paleyes
et al., 2019), BoTorch (Balandat et al., 2020) and Trieste (Berkeley et al., 2021) .

For clarity, all of our experiments follow a similar format. We run each of the considered BO
methods across 50 random seeds, plotting mean performance and a single standard error. For batch
algorithms, we count the evaluation of a batch as a single BO iteration. Suboptimality of the current
believed optimum x̂ is measured by the regret g(x∗) − g(x̂), where x∗ is the true maximiser. For
some experiments we also measure the time taken to choose the next query points (referred to as the
optimisation overhead). This computational cost of performing BO includes fitting the GP surrogate
model as well as initialising and maximising the acquisition function. All experiments reporting
optimisation overheads were performed on a quad core Intel Xeon 2.30GHz processor.

Across all our experiments, we see the same general behaviour: GIBBON at least matches, and
often exceeds, the performance of existing high-performance acquisition functions whilst incurring
an order of magnitudes lower computational overhead. Moreover, the breadth of our experiments
showcases that GIBBON is truly a general-purpose acquisition function, forming a computationally
light-weight acquisition function suitable for standard BO extensions, batch high-cost string design
problems and sophisticated synchronous batch multi-task BO frameworks.

Overall, the purpose of our experiments is to demonstrate how GIBBON performs relative
to other BO acquisition functions, with a primary focus on existing MES-based approaches. For
completeness, we also compare against a range of additional methods, chosen to reflect their
popularity, code availability and suitability for the particular experiment. To this end, we compare
GIBBON with all the acquisition functions supported by BoTorch and Emukit, as-well as our own
implementations of the batch heuristics discussed in Section 4. We will introduce these competitors
alongside the relevant empirical results. Unfortunately, the PES-based methods discussed in Section
5 do not have implementations in BoTorch or Emukit. Moreover, we could not find any other
comparable maintained software implementations, likely due to demonstrably worse performance of
PES than MES (as shown by Wang and Jegelka, 2017) and PES’s difficult-to-implement subroutines
(Section 5).
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6.1 Standard and Batch Optimisation

For our first set of experiments, we consider a set of synthetic functions provided with the BoTorch
package. In particular, we recreate two of the experiments of Balandat et al. (2020) by maximising
the Hartmann (d = 6) and Ackley functions (d = 4), each with observations perturbed by centred
Gaussian noise with a variance of 0.25. In addition, we also consider the Shekel function (d = 4)
under exact observations. For details of these synthetic functions, we refer readers to Appendix C.1.
Following the setup of Balandat et al. (2020), we initialise all routines by evaluating 2d+ 2 random
locations, refit our GP’s kernel parameters after each BO step, and choose the current believed
optimum x∗ by maximising the posterior mean of the GP surrogate model. For each experiment, we
separately consider purely sequential BO (B = 1) and batch BO (B = 5), recording the evaluation
of the whole batch as a single optimisation step.

For all our experiments, we report the performance of GIBBON and Expected Improvement (EI),
as well as standard MES (applied to noisy problems by assuming exact observations). In addition,
we also ran the acquisition functions already supported in BoTorch, i.e Knowledge Gradient (KG),
Noisy Expected Improvement (NEI) (Picheny et al., 2010), and MFMES (the multi-fidelity MES
extension of Takeno et al. (2020), used here to support noisy observations). We stress that MFMES
was designed to provide computationally light-weight asynchronous batch BO and we will see that its
adaptation to synchronous problems (as implemented by BoTorch and discussed earlier in Sections 2
and 5) incurs a substantial computational overhead. For our batch problems, we also implemented
BoTorch versions of Local Penalisation (LPEI) and the DPP heuristic (DPPEI) of Kathuria et al.
(2016), both using EI as their base acquisition function (as considered by González et al. (2016a) and
Kathuria et al. (2016)). In addition, we also provide local penalisation with an MES base acquisition
function (LPMES), a combination not tested by González et al. (2016a) but found to be particularly
effective in our experimentation. All MES-based acquisition functions (including GIBBON) use 5
max-values sampled from a Gumbel distribution fit to surrogate model predictions at 10, 000 ∗ d
random locations and are re-sampled for each BO step. All other implementation parameters follow
the BoTorch defaults.

For acquisition function maximisation we use BoTorch’s gradient-based maximiser. However,
as this inner-loop maximisation can be challenging since it corresponds to a highly multi-modal
maximisation across a B × d-dimensional space. Therefore most batch BO routines build batches
greedily by breaking batch design into B separate d-dimensional maximisations. Consequently, for
all approaches (including our GIBBON acquisition function) except KG , batches are constructed in
this greedy manner with a maximisation budget of 10 ∗ d random restarts for each element of the
batch. Although KG is able to jointly allocate batches, its large computational cost restricted us to 20
restarts (the amount recommended by the BoTorch authors).

Across the three synthetic experiments (Figure 3) we see that GIBBON provides efficient high-
precision optimisation, yielding small regret in competitively few iterations for both sequential and
batch BO. Note that in the noiseless and purely sequential case (Figure 3a), although MFMES can be
shown to collapse exactly to the acquisition function of MES, the performance of these two methods
differ as BOTorch’s implementation of MFMES still relies on numerical approximations (albeit
with a a very small observation noise term). Moreover, MFMES’s reliance on rough numerical
approximations means that its acquisition function struggles to provide high-precision optimisation
once the acquisition function values are sufficiently small (i.e towards the end of the optimisation).
Consequently, although sometimes achieving fast initial optimisation, MFMES fails to achieve as
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(a) Noiseless Shekel (d = 4, B = 1) (b) Noiseless Shekel (d = 4, B = 5)

(c) Noisy Ackley (d = 4, B = 1) (d) Noisy Ackley (d = 4, B = 5)

(e) Noisy Hartmann (d = 6, B = 1) (f) Noisy Hartmann (d = 6, B = 5)

Figure 3: Optimisation of synthetic benchmark functions. GIBBON provides efficient and high-
precision optimisation, matching or exceeding the performance of existing approaches.
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(a) B=1 (b) B=5

Figure 4: The computational overheads incurred while optimising the Hartmann function. GIBBON’s
costs remains low throughout the optimisation, whereas the other high-performing batch acquisition
functions costs increase dramatically as the optimisation progresses.

small final regret as GIBBON. Surprisingly, GIBBON is able to outperform even standard MES
in the noiseless optimisation task of Figure 3a, the scenario for which standard MES is exact. As
GIBBON approximates MES, we expected it to perform strictly worse for this example. We delve
deeper into this phenomenon in Appendix E.

Of particular note is the order of magnitude smaller overhead incurred by GIBBON over the
other high-performing acquisition functions (NEI, KG and MFMES) as summarised in Table 2a
(for B = 1) and Table 2b (for B = 5). In particular, batch KG incurs at least a 10 times larger
overhead than GIBBON. Moreover, Figure 4 shows that, while the computational overhead of batch
KG, MFMES and NEI increase substantially as the optimisation progresses, GIBBON’s overhead
settles to fixed cost. We hypothesise that the initial (small) rise in the computational overhead of
GIBBON is caused due to early acquisition functions having wider modes that require more local
optimisation steps, a property also likely shared by other acquisition functions but disguised by their
growing acquisition function cost. Although MFMES and GIBBON share the same order complexity
with respect to the number of BO steps (see Table 1), we see that the large cost of numerical
integration renders MFMES significantly more expensive than GIBBON in practice. Moreover, the
BoTorch implementation of synchronous batch MFMES employs multiple model fits within each
batch allocation to ensure approximation accuracy and so its cost scales poorly with the number of
optimisation steps.

Figure 5 confirms our earlier claim that GIBBON is indeed a high-performance yet computation-
ally light-weight acquisition function, showing that GIBBON performs better than all competing
acquisition functions while incurring a computational overhead only slightly worse than the simple
but low-performance approaches.

6.2 Ablation Study

Before assessing GIBBON across a wider range of BO tasks, we now perform a brief ablation study
into GIBBON’s user-controllable parameters and how they affect performance on the noisy Hartmann
function introduced above. In particular, we focus on batch size (B) and sensitivity to the quality of
max-value samples used to calculate GIBBON.
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Computational Overhead (seconds 1 d.p.)
Shekel (d=4) Ackley (d=4) Hartmann (d=6)

EI 0.2 (±0.0) 0.2 (±0.1) 0.8 (±0.1)
MES 0.5 (±0.1) 0.5 (±0.0) 1.0 (±0.1)
NEI 3.5 (±0.3) 3.0 (±0.2) 8.9 (±0.7)
MFMES 3.0 (±0.4) 0.7 (±0.1) 4.5 (±0.2)
KG 13.0 (±0.8) 22 (±1.0) 66.6 (±4.6)
GIBBON 0.6 (±0.1) 0.8 (±0.1) 1.5 (±0.1)

(a) Computational overheads for sequential BO (B = 1).

Computational Overhead (seconds 1 d.p.)
Shekel (d=4) Ackley (d=4) Hartmann (d=6)

DPPEI 0.8 (±0.1) 0.8 (±0.0) 1.2 (±0.0)
LPEI 1.4 (±0.2) 2.3 (±0.1) 2.9 (±0.1)
LPMES 2.9 (±0.1) 3.3 (± 0.1) 3.5 (± 0.1)
NEI 21.3 (±1.8) 23.4 (±0.6) 43.0 (±2.6)
MFMES 24.4 (±2.3) 26.7 (±0.6) 38.6 (±1.9)
KG 58.1 (±4.4) 53.0 (±3.1) 103.4 (±6.2)
GIBBON 5.0 (±0.5) 5.8 (±0.7) 13.3 (±1.3)

(b) Computational overheads for batch BO (B = 5)

Table 2: Computational overheads for the synthetic benchmarks of Figure 3 averaged over the
whole optimisation run. The two algorithms achieving lowest regret for each task are highlighted,
demonstrating that GIBBON at least matches the overhead of other high-performing sequential
acquisition functions and incurs a significantly lower overhead than other batch high-performing
acquisition functions.

(a) B=1 (b) B=5

Figure 5: Comparison of the final regret achieved by each BO method with their computational
overheads. Scores are standardised to sit within [0, 1] and averaged across the three synthetic
benchmark tasks. Lower scores on the x and y axis represent a smaller computational overheads and
more effective optimisation, respectively.
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(a) GIBBON (b) LPEI

Figure 6: Optimisation of the noisy Hartmann function over 20 iterations across a range of batch
sizes. GIBBON is able to provide effective batch optimisation for small to moderate batch size
(B < 25), however, fails to effectively control large batches. Although LPEI is able to leverage
larger parallel resources than GIBBON, it still fails to match the performance of GIBBON (B=10)
even when controlling much larger batches (B=50).

6.2.1 GIBBON FOR LARGE BATCH OPTIMISATION

GIBBON is a promising candidate for optimising under a large degree of parallelism as its batches
can be constructed greedily without requiring B posterior updates. Unfortunately, GIBBON fails
to realise this promise in practice. Figure 6 shows that GIBBON fails to effectively leverage large
parallel resources and even displays a significant drop in performance once considering batches of
size 25. In contrast, LPEI is able to continually improve regret by considering larger and larger
batches. We stress that LPEI, even when controlling batches of 50 elements (i.e. 1, 000 total
evaluations), still achieves lower regret than GIBBON with batches of size 10 (i.e 200 evaluations).

As demonstrated in Appendix D, GIBBON can be easily modified to support optimisation under
large batches by a simple down-weighting of its repulsion term. Therefore, we posit that poor
performance of GIBBON in this large batch setting is due to a degradation of the approximation
accuracy in our analytical lower bound as we increase batch size. To see this, consider GIBBON’s
diversity-quality decomposition first introduced in Section 4 (i.e. Equation (8)). Considering large
batches ensures that at least some candidate elements must be close together and so have high
correlation. Consequently, GIBBON is dominated by its repulsion term (the determinant of the
batch’s predictive correlation matrix) and the maximisation of GIBBON leads to repeated query
points around the edge of the search space, resulting in a substantial degradation in the stability of
our GP surrogate model and poor exploration in more important areas of the space. Therefore, in this
large batch setting, GIBBON effectively collapses to an almost pure exploration DPP-based method
similar to the poorly performing DPPEI examined in our synthetic experiments.

6.2.2 GIBBON WITH THOMPSON-SAMPLED MAXIMUM VALUES

Our proposed calculation strategy for GIBBON requires access to M samples from the objective
function’s currently unknown maximum value g∗. We now investigate the sensitivity of GIBBON
with respect to the quality of these random samples. For all the other experiments in this work we
used the low-cost but approximate Gumbel sampler, as proposed by Wang and Jegelka (2017). By
approximating the empirical CDF of g∗ with an analytical Gumbel distribution, Gumbel sampling
is able to return M approximate max-value samples over a grid of N candidate locations with
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(a) Regret (B=1) (b) Computational Overhead (B=1)

(c) Regret (B=5) (d) Computational Overhead (B=5)

Figure 7: Regret performance (left) and computational overhead (right) of GIBBON when optimising
the noisy Hartmann function using batches of size 1 (top row) or 5 (bottom row) across different
max-value sampling strategies. Although exact sampling provides a small boost in GIBBON’s
performance for the batch experiment, Gumbel sampling seems adequate for sequential optimisation.
Moreover, the resulting computational overhead of GIBBON with exact sampling is five and three
times the cost of GIBBON with Gumbel sampling, when controlling batches of size B = 1 and
B = 5, respectively.

cost O(M + N). Of course, we can access exact samples of g∗ by maximising sample functions
drawn from our GP (i.e a Thompson-sampling style approach). However, extracting M such exact
samples incurs an O(MN + N3) cost and so, if used as part of GIBBON’s calculation strategy,
would add significantly to GIBBON’s optimisation overhead. However, as using exact max-value
samples removes the only source of approximation in GIBBON aside from our information-theoretic
lower bound, this alternative Thompson sampling strategy may lead to improved optimisation — a
hypothesis we now investigate.

In Figure 7, we present the performance of GIBBON when using 1, 5 and 10 approximate
(Gumbel) or exact (Thompson) sampled maximum values. Due to the significant cost of the exact
Thompson sampler, we can sample over only 1, 000 ∗ d random candidate locations, as opposed
to the 10, 000 ∗ d used for our Gumbel sampler. We see that, in exchange for a large increase in
computational overhead, the exact sampler can sometimes lead to a small increase in performance
over our standard Gumbel-based batch GIBBON implementation. We stress that changing sampler
had no effect on the performance of purely sequential (B = 1) BO. This small and inconsistent
performance improvement is not enough to justify the additional overhead of exact sampling and
so, in order to remain loyal to our motivation of GIBBON as a computationally light acquisition
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Overhead for Multi-fidelity Optimisation (Seconds 1 d.p.)
Curin (d=4) Hartmann (d=3) Hartmann (d=6) Borehole (d=8)

ES 16.6 (±0.7) 59.7 (±4.2) 229.8 (±15.3) -
MUMBO 13.7 (±0.6) 18.6 (±1.0) 79.9 (±6.2) 51.5 (±7.5)
GIBBON 4.0 (±0.2) 9.9 (±0.7) 50.2 (±4.0) 46.1 (±7.5)

Table 3: Computational overheads of the multi-fidelity synthetic benchmarks of Figure 8. GIBBON
enjoys the lowest overheads for all the tasks (as highlighted in bold), often less than half those of
MUMBO.

function, we continue using the Gumbel sampler for all our remaining experiments. Investigating
alternative sampling strategies to use within GIBBON is an important area of future work.

6.3 Multi-fidelity Optimisation

We now turn to multi-fidelity optimisation, where the current state-of-the-art acquisition functions
are the effectively equivalent MUMBO (Moss et al., 2020d) and MFMES (Takeno et al., 2020)
acquisition functions. Moss et al. (2020d) demonstrates comprehensively that MUMBO outperforms
a wide range of existing multi-fidelity acquisition functions, including the entropy search-based
approach of Swersky et al. (2013), the upper-confidence bound variants of Kandasamy et al. (2016)
and Kandasamy et al. (2017), as well as extensions of EI (Huang et al., 2006) and KG (Wu and
Frazier, 2016). Therefore, to test GIBBON’s multi-fidelity optimisation capabilities, it is sufficient
to compare with MUMBO. To this end, we provide an implementation of GIBBON for the Emukit
Python library and recreate exactly the synthetic experiments from Figure 2 of Moss et al. (2020d).
These experiments consider popular synthetic multi-fidelity benchmarks with discrete fidelity spaces
consisting of between 2 and 4 fidelity levels (each with differing query costs) and search space
dimensions ranging from 2 to 8 dimensions (see Appendix C.2 for the analytical forms of these
synthetic benchmarks). In these experiments, we use the linear multi-fidelity GP model of Kennedy
and O’Hagan (2000) as our surrogate model, initialise the GP with a random sample of 2 ∗ d points
queried across all fidelity levels, and fit the GP’s kernel parameters to maximise model marginal
likelihood after each BO step.

Figure 8 shows that GIBBON provides at least as effective optimisation as MUMBO and Table 3
shows that GIBBON has a significantly lighter computational overhead. To provide context for the
high performance and low overhead of GIBBON we also present the performance of EI and MES
when restricted to just querying the true objective function (i.e no access to low-fidelity observations)
and the performance of the ES acquisition function, used to perform multi-fidelity optimisation
by Swersky et al. (2013). Although the difference in overhead between MUMBO and GIBBON
decreases as we consider higher-dimensional search spaces (primarily due to the growing cost of the
Gumbel sampler used by both approaches), the difference in achieved regret increases in GIBBON’s
favour.

6.4 Batch Molecular Search

BO has recently been applied to high-cost string design problems by Moss et al. (2020b), who
consider, among other problems, the task of optimising over molecules. Such tasks are well-suited
for BO, due to the high cost of evaluating candidate molecules via wet-lab experiments. Moss
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(a) Maximisation of the 2D Currin function (2 fidelity levels
with evaluation costs 10 and 1).

(b) Minimisation of 3D Hartmann function (3 fidelity levels
with evaluations costs 100, 10 and 1).

(c) Minimisation of 6D Hartmann function (4 fidelity lev-
els).

(d) Maximisation of the 8D Borehole function (2 fidelity
levels with evaluation costs 10 and 1).

Figure 8: GIBBON provides high-precision multi-fidelity optimisation with low computational
overheads across a range of synthetic multi-fidelity benchmarks. Due to the high-cost of ES, we
were not able to run it on the higher-dimensional Borehole task. As is standard in multi-fidelity
optimisation, the x-axis for these results measures the resources spent on function evaluations (rather
than raw BO steps).
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et al. (2020b) propose a BO framework that fits a GP surrogate model to a popular string-based
representation of molecules known as SMILES strings (Anderson et al., 1987) through a string kernel
GP (Beck et al., 2015). Standard EI arguments are then applied, yielding a highly effective strategy
for searching large candidate set of molecules. One practical limitation of this framework, however,
is the large computational cost of string kernels, as incurred for each prediction from the surrogate
model GP. Consequently, the framework of Moss et al. (2020b) is limited to acquisition functions that
require a small number sof surrogate model predictions. Aside from GIBBON, our other considered
high-performing batch acquisition functions (MFMES, NEI and KG) require many kernel evaluations
for each acquisition function query and the low-cost approaches of DPPEI and LPEI are limited to
only Euclidean search spaces. In contrast, GIBBON requires only B surrogate model predictions to
measure the utility of a candidate batch and makes no assumptions on the properties of the search
space. Therefore, GIBBON can be used to extend the framework of Moss et al. (2020b) to batch
designs, a property particularly attractive for molecular search applications where it is common
practice to synthesis collections of candidate molecules in parallel.

We now recreate the Zinc example (also considered by Kusner et al. (2017) and Griffiths and
Hernández-Lobato (2020)), where we seek to explore a large collection of 250,000 molecules. The
task is then to quickly find molecules that score highly according to a chemically-inspired metric, i.e.
forming a proxy molecular design loop with this metric forming our objective function. As string
kernel GPs, which are used to model our moelcules’ SMILE strings, have a very large evaluation
cost, we cannot evaluate our acquisition function across all the candidate molecules. Therefore, we
randomly sample 1, 000 molecules for each BO step from which we (greedily) choose to evaluate
the B molecules that maximise our GIBBON acquisition function.

We fit our Gumbel sampler on this same sample, re-sampling both the max-values required for
GIBBON and the considered 1, 000 molecules at the start of each BO step. We evaluate 20 randomly
chosen molecules to initialise our GP and then allow BO to choose 100 further molecules, either
one by one or as 20 batches of 5 molecules or 10 batches of 10 molecules. Figure 9 shows that
even in the purely sequential case, GIBBON provides a modest boost in performance over EI (the
acquisition function previously used by Moss et al. (2020b)). More importantly, Figure 9 also shows
that GIBBON is able to provide effective batch optimisation over batches of size 5 and 10, therefore
providing an extension of Moss et al. (2020b)’s framework where parallel synthesising resources can
be used to speed up the molecular search.

6.5 Bayesian Optimisation by Sampling Hierarchically

For our final set of examples, we demonstrate the efficacy of GIBBON as part of a real-world
optimisation framework. In particular, we turn to a challenging batch multi-fidelity BO problem
inspired by the Knowledge Gradient for Common Random Numbers (KG-CRN) framework of
Pearce et al. (2019). We now provide a brief very overview of the KG-CRN framework and we refer
the reader to Pearce et al. (2019) for further details. Our implementation is built upon the Emukit
Python package (Paleyes et al., 2019) and was first reported in a workshop paper (Moss et al., 2020c).

KG-CRN considers BO under highly stochastic evaluations, a scenario where it is commonplace
to disregard the original objective function entirely and instead optimise the average of a collection
of K specific function realisations, e.g. K-fold cross validation (CV) (Kohavi, 1995) or sample
average approximations (Kleywegt et al., 2002). However, as demonstrated for hyper-parameter
tuning (Moss et al., 2018), model selection (Moss et al., 2019) and simulation optimisation (Kim
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Figure 9: Exploring the Zinc database of molecules with GIBBON. In the purely sequential case,
GIBBON finds higher-scoring molecules than EI. The batched GIBBON approaches reach roughly
the same final regret after the same total number of 100 synthesised molecules even when GIBBON
must choose these evaluations in batches of size 1, 5 or 10. Consequently, GIBBON is able to
effectively leverage parallel synthesis resources, reaching the best solutions in fewer BO steps than
non-batch alternatives. For context, we also report the performance of Random Search (RS).

et al., 2015), optimisation efficiency depends subtly on the choice of K. If K is set too low we
cannot optimise to high precision, however, setting K too large wastes computation on unnecessarily
expensive evaluations. To avoid having to choose K a-priori, KG-CRN instead maintains a pool of
randomly sampled realisations (e.g. train-test splits or initial environmental conditions) that grows
as the optimisation progresses. This construction yields a multi-task BO framework where each
individual realisation of the objective function is modelled separately as a perturbation of the true
objective function through a Hierarchical Gaussian Process (HGP) (Hensman et al., 2013) (see
Appendix F.1 for details). Consequently, KG-CRN not only chooses where to evaluate the objective
function but also chooses which test problem in which to make the evaluations — either choosing a
member of the previously considered pool of realisations or by generating an entirely new realisation
(to be absorbed into the candidate pool for subsequent optimisation steps).

Unfortunately, KG-CRN’s acquisition function, a variant of the knowledge gradient of Frazier
et al. (2008), incurs a computational overhead that grows exponentially with the dimensions of
the search space and does not support batch optimisation. By replacing this unwieldy acquisition
function with GIBBON, we provide our own version of this framework, which we name Bayesian
Optimisation Sampled Hierarchically (BOSH). Courtesy of GIBBON, BOSH enjoys small com-
putational overheads and naturally supports batch decision making. We now demonstrate that the
GIBBON-based BOSH framework can can provide more efficient and higher-precision optimisation
than standard BO across reinforcement learning and hyper-parameter tuning tasks. Full experimental
details are provided in Appendix F.

We report performance across a range of parallel computing resources (B = 1, 5, 10), comparing
BOSH allocating batches of B points with standard BO routines using the EI and MES acquisition
functions to optimise the average of B fixed realisations of the objective function. For these
experiments, we measure regret as sub-optimality with respect to the best found solution across
all methods and replicates. Unfortunately, Pearce et al. (2019) have yet to provide code for their
KG-CRN approach, so we have been unable to provide direct comparisons. However, for the B = 1
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(a) B=1

(b) B=5 (c) B=10

Figure 10: Optimising 7 parameters of a Lunar Lander controller. We present the regret achieved by
each algorithm (top panel) alongside a running count of the number of realisations considered by
BOSH (bottom panel). Courtesy of our GIBBON acquisition function, BOSH is able to adaptive
consider up to 15 random conditions to quickly find the optimal controller configuration.

case, we are able to consider FASTCV (Swersky et al., 2013), an EI-based framework that speeds up
optimisation by allowing the evaluation of the individual splits making up K-fold CV (for a specific
choice of K). Unlike our previous examples, we now include the evaluations spent on random
initialisation in our plots as the required size of this initialisation is different for each framework (see
Appendix F.2). BOSH, for example, is initialised with evaluations at d+ 5 random locations for
each of two initial seeds.

6.5.1 REINFORCEMENT LEARNING

For our first experiment, we consider a challenging seven-dimensional stochastic optimisation test-
case. We wish to fine-tune a controller for a well-studied reinforcement learning problem, where
we must guide a lunar lander across a randomly initialised space to its landing zone with minimal
thruster usage (as provided in the OpenAI Gym). Our controller is parameterised by seven unknown
constants and a particular configuration can be tested by running a single (or B) randomly generated
scenarios. We seek to minimise the extra fuel required to land the lander over OpenAI’s hard-coded
controller (as measured according to a ‘true’ performance measured over a set of 100 fixed initial
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(a) B=1

(b) B=5 (c) B=10

Figure 11: Tuning SVM hyper-parameters for IMDB movie review classification with BOSH. BOSH
achieves higher-precision optimisation than all other techniques. When batch computing resources
are available, the batch capabilities of GIBBON allow BOSH to substantially improve optimisation
efficiency over standard BO based on B-fold CV.

conditions). In this task, each objective function realisation corresponds to an initial environmental
condition. As there is substantial variation across different initial conditions, optimising the controller
over a small and fixed collection of initialisation fails to provide good ‘true’ performance according
to the initial 100 condition test set (Figure 10). Note that FASTCV’s need to initialise and then
update the large between-realisation correlation matrix severely hampers its optimisation efficiency,
as seen by the late start of the corresponding curves in Figure 10.

6.5.2 HYPER-PARAMETER TUNING

We now test the performance of BOSH on a simple ML hyper-parameter tuning task: using a
support vector machine (SVM) to classify the sentiment in IMDB movie reviews (Maas et al., 2011).
Here, we seek hyper-parameter values that provide the highest model performance. True model
performance is calculated on a large held-out test set. We stress that these high-cost estimates are only
performed retrospectively, after stopping the optimisation, and during the actual tuning our individual
performance estimates are generated using a pool of randomly generated train-test splits for BOSH or
single train-test splits and K-fold CV as fixed evaluation strategies for standard BO. We also consider
the multi-fidelity hyper-parameter tuning framework of FABOLAS (Klein et al., 2017a) (following
the code provided in Klein et al. (2017b)). As FABOLAS is able to query models using only small
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proportions of the available data, it is able to find reasonably well performing hyper-parameter
configurations in a fraction of the computation used by standard BO and BOSH. However, even if
allowed a significantly longer run-time, FABOLAS fails to improve upon this chosen configuration
(which we plot as a horizontal line). Figure 11a shows that BOSH adaptively considers a pool of
up to four train-test splits as the optimisation progresses, providing higher-precision tuning than
standard BO based on single train-test splits and substantially faster tuning than standard BO under
5-fold and 10-fold cross-validation (Figures 11b and 11c).

7. Discussion

We have presented GIBBON, a general-purpose acquisition function that extends max-value entropy
search to provide computationally light-weight yet high performing optimisation for a wide range of
BO problems. The efficiency of GIBBON relies on a novel information-theoretical approximation.
Moreover, the derivation of this approximation allowed the exploration of the first explicit connection
between information-theoretic search, determinantal point process and local penalisation, tying
together large sections of the BO literature previously developed and analysed independently.

Not only does GIBBON provide competitive optimisation for common BO extensions like batch
and multi-fidelity optimisation, but it forms high-performance batch acquisition function suitable
for applying BO across highly-structured search spaces, as we demonstrated within a molecular
design loop. BO for structured optimisation tasks is a fast growing frontier of the BO literature,
with recent work tackling BO for strings (Moss et al., 2020b; Swersky et al., 2020), combinatorial
spaces (Deshwal et al., 2020) and spaces of neural network architectures (Kandasamy et al., 2018b).
Therefore, we believe that GIBBON (and our flexible software implementation) will have substantial
utility for the machine learning community.

7.1 Limitations and Future Work

GIBBON, in its current form, has the two primary practical limitations investigated in our ablation
study of Section 6.2. Firstly, GIBBON performs poorly for large batch sizes. Improving the large
batch capabilities, perhaps though artificially manipulating GIBBON’s diversity-quality trade-off,
is an important avenue of future work, particularly as the low-cost construction of GIBBON is
especially well-suited to large batch scenarios which are currently dominated by simple sampling-
based approaches like Thompson sampling (Vakili et al., 2020). Secondly, the performance of
GIBBON is sensitive to the quality of the max-value samples used within its calculation strategy.
Although using a Gumbel sampler to calculate GIBBON provides a truly light-weight acquisition
function, we have shown that the performance of the acquisition function can be improved by
considering exact max-value samples. In future work, we will investigate alternative sampling
strategies that are more accurate than Gumbel samplers but cheaper than exact Thompson sampling.
A promising approach is to follow Hernández-Lobato et al. (2016) or Takeno et al. (2020) and employ
approximate Thompson sampling methods though kernel decompositions.

Although shown to be empirically successful, GIBBON has no theoretical guarantees, primarily
due to the lack of analysis around our information-theoretical lower bound. Analysing the tightness
of this bound could help disentangle which aspects of GIBBON’s behaviour are caused by approxi-
mation error and which are due to limitations of information-theoretic search strategies in general.
In particular, a stronger understanding of approximation quality should explain why GIBBON’s
performance degrades when building large batches or show exactly when our lower bound is a
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better approximation of the mutual information than the sampling-based approximations of existing
MES extensions. A bound on the approximation error of this bound would also pave the way for
convergence guarantees for GIBBON through extensions of the regret bounds of Wang and Jegelka
(2017). To the author’s knowledge, no such bound exists for noisy, batch or multi-fidelity MES-based
acquisition functions.

As a final comment, we would like to point out that, although we have already shown GIBBON to
have wide applicability, GIBBON can be readily applied to an even wider collection of BO problems.
For example, GIBBON can be combined with MESMO (Belakaria et al., 2019), an extension of
MES for multi-objective optimisation, to provide computationally light-weight acquisition function
for batch multi-objective BO. Similarly, GIBBON can also provide a computationally light-weight
approach for batch constrained optimisation by extending the MES-based approach of Belakaria et al.
(2020). Finally, GIBBON can be used to improve the performance and reduce the computational
cost of any framework relying on batch BO heuristics, for example in non-myopic BO (González
et al., 2016b; Jiang et al., 2020).
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Appendix A. Extracting The Required Predictive Quantities from a Gaussian
Process Surrogate Model

We now demonstrate how the distributional quantities required to calculate GIBBON can easily be
extracted from a GP surrogate model. For observationsDn, let yn be the already observed evaluations
y , and define the kernel matrix Kn = [k(zi, zj)]zi,zj∈Dn and kernel vectors kn(z) = [k(zi, z)]zi∈Dn
for any valid kernel defined over the combined search space Z = X ×F . Finally, denote the location
in the fidelity space corresponding to the true objective function as s0 (i.e fs0(x) = g(x)). Here, as is
standard in multi-fidelity optimisation, we have assumed the ability to query (at least noisily) the
true objective function. Then, following Rasmussen (2004) our GP surrogate model provides the
following:

µCi =kn((xi, s0))T (Kn + diag(σn))−1yn
µAi =kn(zi)T (Kn + diag(σn))−1yn

ΣC
i,j =k((xi, s0), (xj , s0))− kn((xi, s0))T (Kn + diag(σn))−1kn((xj , s0))

ΣA
i,j =k(zi, zj)− kn(zi)T (Kn + diag(σn))−1kn(zj)

ρi =
k(zi, (xi, s0))− kn(zi)T (Kn + diag(σn))−1kn((xi, s0)))√

Σg
i,iΣ

y
i,i

,

where diag(σn) is the |Dn| × |Dn| diagonal matrix of observation noises in the evaluations Dn.

Appendix B. Proof of Theorem 2

Theorem 2 (Distribution of A given C∗ < m) Consider two B-dimensional multivariate Gaus-
sian random variables A and C where C ∼ N(µC ,ΣC) and each individual component of A is
distributed asAj ∼ N(µAj ,Σ

A
j,j). Suppose further that each each pair {Aj , Cj} are jointly Gaussian

with correlation ρj , and that each Aj is conditionally independent of {Ci}i 6=j given Cj . Define
C∗ = max C. Then the conditional density of A given that C∗ < m is given by

1

P(C∗ < m)
φX1(a)ΦX2(m),

where m = (m, ..,m) ∈ RB and φX1 and ΦX2 are the probability density and cumulative density
functions for the multivariate Gaussian random variables

X1 ∼ N
(
µA, S +DΣCD

)
and X2 ∼ N

(
µC + Σ−1DS−1(a− µA),Σ−1

)
,

where ΣA = DΣCD + S for D and S, diagonal matrices with elements Dj,j = ρj

√
ΣAj,j
ΣCj,j

and

Sj,j = (1− ρ2
j )Σ

A
j,j , and Σ =

((
ΣC
)−1

+DS−1D
)

.

Proof
As detailed in the main body of this report, we have that

C ∼ N(µC ,ΣC) and Aj ∼ N1

(
µAj ,Σ

A
j

)
,
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for some known mean vectors µC ,µA ∈ RB , a variance vector ΣA ∈ RB and a co-variance matrix
ΣC ∈ RB×B , as well as a vector ρ ∈ RB of the correlation between each pair {Aj , Cj}. In this
section we use fX to denote the probability density function for the random variable X and fX,Y to
denote the joint probability density function for the random variables X and Y.

Now, consider the probability distribution function of random variable of interest:

fA|C∗≤m(a) =
1

P(C∗ ≤ m)

∫
m

fA,C(a,b) db

=
1

P(C∗ ≤ m)

∫
m

fA|C=b(a)fC(b) db

=
1

P(C∗ ≤ m)

∫
m

B∏
i=1

[
fAi|Ci=bi(ai)

]
fC(b) db, (10)

where b ∈ RB and m = (m, ..,m) ∈ RB . The factorisation of fA|C=b is due to the conditional
independence of Aj |Cj from {Ci}i 6=j .

A well-known result for the conditional distribution from a bi-variate Gaussian gives us that for
each i ∈ {1, .., B}

Ai = ai|Ci = bi ∼ N1

(
µAi + ρi

√
ΣA
i

ΣC
i,i

(bi − µCi ), (1− ρ2
i )Σ

A
i

)
,

i.e. we have that

A|C = b ∼ N
(
µA +D(b− µC), S

)
, (11)

for diagonal matrices D,S ∈ RB with elements Di,i = ρi

√
ΣAi
ΣCi,i

and Si,i = (1− ρ2
i )Σ

A
i .

Using (11), the integrand of (10) can now be regarded as the product of two b-dimensional
Gaussian densities[

b∏
i=1

fAi|Ci=bi(ai)

]
fC(b) = N

(
a;µA +D(b− µC), S

)
∗N(b;µC ,ΣC)

= |D|N
(
b;µC +D−1(a− µA), D−1SD−1

)
∗N(b;µC ,ΣC),

which, using the following standard formula for the product of Gaussians densities

N(x; m1,Σ1) ∗N(x; m2,Σ2) =N(m1; m2,Σ1 + Σ2)

∗N(x;
(
Σ−1

1 + Σ−1
2

)−1 (
σ−1

1 m1 + Σ−1
2 m2

)
,
(
Σ−1

1 + Σ−1
2

)−1
),
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can be re-expressed as[
b∏
i=1

fAi|Ci=bi(ai)

]
fC(b) = |D|N

(
µC ;µC +D−1(a− µA), D−1SD−1 + ΣC

)
∗N

(
b;µC + Σ−1DS−1(a− µA),Σ−1

)
= N

(
a;µA, S +DΣCD

)
∗N

(
b;µC + Σ−1DS−1(a− µA),Σ−1

)
where Σ =

((
ΣC
)−1

+DS−1D
)

.
Therefore, we have rewritten the integrand of (10) as a product of two Gaussian densities, where

only one depend on b. Consequently, the first Gaussian term can be taken outside the integral,
yielding the claimed expression

fA|C∗<m(a) =
1

P(C∗ < m)
φX1(a)ΦX2(m), (12)

where φX1 and ΦX2 are the probability density and cumulative density functions for the multivariate
Gaussian variables

X1 ∼ Nb

(
µA, S +DΣCD

)
and X2 ∼ Nb

(
µC + Σ−1DS−1(a− µA),Σ−1

)
.

Appendix C. Experimental Details for Synthetic Benchmarks.

We now provide detailed information about each of our synthetic benchmarks.

C.1 Standard BO benchmarks

Shekel function. A four-dimensional function with ten local and one global minima defined on
X ∈ [0, 10]4:

f(x) = −
10∑
i=1

 4∑
j=1

(xj −Aj,i)2 + βi

−1

,

where

β =



1
2
2
4
4
6
3
7
5
5


and A =


4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3.6
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3.6

 .
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Ackley function. A four-dimensional function with many local minima and a nearly flat outer
region surrounding a single global minima defined on X ∈ [−32.768, 32.768]4:

f(x) = −20 exp

−0.2 ∗

√√√√1

4

d∑
i=1

x2
i

− exp

(
1

4

4∑
i=1

cos(2πxi)

)
+ 20 + exp(1).

Hartmann 6 function. A six-dimensional function with six local minima and a single global
minima defined on X ∈ [0, 1]6:

f(x) = −
4∑
i=1

αi exp

− 6∑
j=1

Ai,j(xj − Pi,j)2

 ,

where

A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , α =


1

1.2
3

3.2

 ,

P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 .

C.2 Multi-fidelity benchmarks

Currin exponential function (discrete fidelity space). A two-dimensional function defined on
X = [0, 1]2 with two fidelities queried with costs 10 and 1:

f(x1, x2, 0) =

(
1− exp(− 1

2x2
)

)
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

f(x1, x2, 1) =
1

4
f(x1 + 0.05, x2 + 0.05, 0)

+
1

4
f(x1 + 0.05,max(0, x2 − 0.05), 0)

+
1

4
f(x1 − 0.05, x2 + 0.05, 0)

+
1

4
f(x1 − 0.05,max(0, x2 − 0.05), 0).

Hartmann 3 function. A three-dimensional function with 4 local extrema defined onX = [0, 1]3

with three fidelities (m = 0, 1, 2) queried at costs 100, 10 and 1:

f(x1, x2,x3,m) = −
4∑
i=1

αi,m+1 exp

− 3∑
j=1

Ai,j(xj − Pi,j)2

 ,
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where

A =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

 , α =


1 1.01 1.02

1.2 1.19 1.18
3 2.9 2.8

3.2 3.3 3.4

 , P =


3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 .

Hartmann 6 function. A six-dimensional function defined on X = [0, 1]6 with four fidelities
(m = 0, 1, 2, 3) queried at costs 1000, 100, 10 and 1:

f(x1, x2, x3, x4, x5, x6,m) = −
4∑
i=1

αi,m+1 exp

− 6∑
j=1

Ai,j(xj − Pi,j)2

 ,

where

A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , α =


1 1.01 1.02 1.03

1.2 1.19 1.18 1.17
3 2.9 2.8 2.7

3.2 3.3 3.4 3.5

 ,

P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 .

Borehole function. An eight-dimensional function defined on

X = [0.05, 0.15; 100, 50, 000; 63070, 115600; 990,

1110; 63.1, 116; 700, 820; 1120, 1680; 9855, 12055]

with two fidelities queried with costs 10 and 1:

f(x, 0) =
2πx3(x4 − x6)

log(x2/x1)
(

1 + 2x7x3
log(x2/x1)x21x8

+ x3
x5

) ,
f(x, 1) =

5x3(x4 − x6)

log(x2/x1)
(

1.5 + 2x7x3
log(x2/x1)x21x8

+ x3
x5

) .
Appendix D. A modified GIBBON for BO with large batches

In Section 6.2, we demonstrated that GIBBON fails to effectively control large batches (B >> 10)
and hypothesised that this was due to a dominance of GIBBON’s diversity term over its quality term
(8) in these large batch regimes. To support this hypothesis and to propose a variant of GIBBON
suitable for large batches, we now investigate a simple modification to GIBBON. In particular, we
down-weight GIBBON’s diversity term by a factor of B2, with this scaling chosen to reflect the B2
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(a) Standard GIBBON (b) Modified

Figure 12: Optimisation of the noisy Hartmann function over 20 iterations across a range of batch
sizes. Modified GIBBON (left) is able to effectively allocate even the largest batches (B = 50),
achieving faster convergence for each increase in batch size. In contrast, standard GIBBON (right)
fails to control batches of size B > 10.

elements present in the the predictive co-variance of a candidate batch of size B. Therefore, we have
the modified GIBBON acquisition function

αn({z}Bi=1) =
1

2B2
log
∣∣R∣∣+

B∑
i=1

αGIBBON
n (zi)

with performance demonstrated in Figure 12, which repeats the experiment of Section 6.2. We see
that this simple re scaling is all that is required to allow GIBBON to effectively control large parallel
resources.

Appendix E. Comparing GIBBON with MES

In our synthetic experiments of Section 6, we were surprised to see that GIBBON was able to
outperform MES even in the noiseless standard BO case for which MES provides an exact calculation
of entropy reductions. As GIBBON approximates MES, we actually expected GIBBON to perform
strictly worse than MES in this particular setting. However, we stress that although GIBBON is
designed to approximate MES, they are still distinct acquisition functions with differing analytical
expressions (see Definition 4 and Equation 2). Consequently, MES and GIBBON induce (poten-
tially slightly) different exploration-exploitation trade-offs, with the behaviour of GIBBON being
particularly well-suited to the Shekel and Ackley, but not Hartmann functions (see Figure 3).

In the specific case (not used in practice) where where we base our MES and GIBBON calcula-
tions on a single max-value sample, we can show that GIBBON and MES always choose the same
query points (see Section E.1 ). However this equivalence does not hold for practical implementations
of GIBBON and MES (where we typically use 5 or 10 samples of g∗)

E.1 Equivalence of the degenerate forms of MES and GIBBON

To gain further intuition about the relationship between MES and GIBBON, we analyse the so-called
degenerate forms their acquisition functions. In the degenerate setting, the acquisition functions are
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Figure 13: Degenerate GIBBON and MES as functions of u (the standardised difference between the
GP posterior at a candidate point and the current estimated maximum value). The two acquisition
functions are monotonically decreasing, taking the same maximiser across a given range of u values.

built using only a single max-value sample. By defining the function u(x) = m∗−µgn(x)√
Σg(x)

, degenerate

GIBBON and MES can be expressed as

αGIBBON
n (x) = − log

(
1− φ(u(x))

Φ(u(x))

(
u(x) +

φ(u(x))

Φ(u(x))

))
αMES
n (x) =

u(x)φ(u(x))

2Φ(u(x))
− log Φ(u(x)).

Although taking very different analytical forms, these two acquisition functions are strictly decreasing
in u (as shown in Figure 13), with GIBBON a strict lower bound on MES. So, in this degenerate
and noiseless setting, GIBBON and MES would choose exactly the same points under given exact
inner-loop maximisation.

Note that in this degenerate setting, Wang and Jegelka (2017) provide a bound on the simple
regret of degenerate MES. As degenerate GIBBON and degenerate MES choose the same query
points, the regret bound of degenerate MES is also inherited by degenerate GIBBON. Although this
result does not hold for practical implementations of GIBBON based on multiple samples of g∗, or
when we perform batch or multi-fidelity BO, the existence of this theoretical guarantee provides
reassuring evidence for the validity of our approach.

Appendix F. Experimental Details for BOSH

We now provide additional details about our implementation of BOSH and the exact set-ups of our
experiments.

F.1 Hierarchical Gaussian Process

A natural framework for modelling function realisations as perturbations of a true objective function
is a Hierarchical Gaussian Process (HGP) (Hensman et al., 2013), where the true objective function
is modelled as a GP with an ‘upper’ kernel kg, and the deviations to all the individual realisations fs
modelled by another GP with a ‘lower’ kernel kf . As is common in BO, we use Matérn 5/2 kernels
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(Matérn, 1960). The HGP structure is equivalently understood as each fs being a conditionally
independent GPs with shared mean function g, i.e.

yi = fsi(xi) + εi for fs ∼ GP(g, kf ) where g ∼ GP(0, kg),

for εi
i.i.d∼ N (0, σ2). This induces a prior covariance structure of

Cov(fs(x), fs′(x′))) = kg(x, x′) + Is=s′kf (x, x′) and Cov(fs(x), g(x′)) = kg(x, x′),

where I is an indicator function.

F.1.1 PREDICTIVE DISTRIBUTION OF AN HGP

Crucially, given observations Dn = {(xi, si, yi)}ni=1, the HGP provides a bi-variate Gaussian joint
distribution for (ys(x), g(x)) |Dn, the quantities required to evaluate GIBBON. We will now provide
closed form expressions for this joint predictive distributions of g(x) and ys(x) given a set of collected
evaluations Dn = {(xi, si, yi)}ni=1 (location-realisation-evaluations tuples), where yi = fsi(xi) + ε
under Gaussian noise ε ∼ N (0, σ2).

Defining a compound kernel k̃ (defined overX×S) as k̃((x, s), (x′, s′)) = kg(x, x′)+Is=s′kf (x, x′)
and following Rasmussen (2004) and Hensman et al. (2013), our joint posterior distribution can be
written as

(
g(x)
ys(x)

) ∣∣∣∣Dn ∼ N
[(

µgn(x)
µn(x, s)

)
,

(
σg2n (x) Σn(x, s)

Σn(x, s) σ2
n(x, s) + σ2

)]
,

where

µn(x, s) =k̃n((x, s))T
(
K̃n + σ2In

)−1 yn
µgn(x) =kgn((x, s))T

(
K̃n + σ2In

)−1 yn
σ2
n(x, s) =k̃ ((x, s), (x, s))− k̃n((x, s))T

(
K̃n + σ2In

)−1 k̃n((x, s))

σg2n (x) =kg (x, x)− kgn(x)T
(
K̃n + σ2In

)−1 kgn(x)

Σn(x, s) =kg ((x, s), (x, s))− k̃n((x, s))T
(
K̃n + σ2In

)−1 kgn(x),

for K̃n =
[
k̃((xi, si), (xj , sj))

]
i,j=1,..,n

, k̃n((x, s)) =
[
k̃((xi, si), (x, s))

]
i=1,..,n

,kgn(x) = [kg(xi, x)]i=1,..n

and y = [yi]i=1,..,n.
Note that predicting from our HGP requires the inversion of the n× n matrix K̃n + σ2In and so

has comparable cost to predictions from standard GPs.

F.1.2 BOSH’S KERNEL STRUCTURE

Our implementation of BOSH uses the following structure for the upper and lower kernels of the
HGP:

kg(x, x′) = kαg ,β(x, x′)
kf (x, x′) = kαf ,β(x, x′) + σ2

f ,
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where kα,β denotes the Matérn 5/2 (Matérn, 1960) kernel with variance α ∈ R term and length scales
β ∈ Rd hyper-parameters, i.e

kα,β(x, x′) = α(1 +
√

5dβ(x, x′) +
5

3
dβ(x, x′)2)e−

√
5dβ(x,x′),

for a weighted distance measure dβ(x, x′) = (x− x′)Tdiag(β)(x− x′).
As the length-scales are shared between the lower and upper kernels, the total number of kernel

parameters for BOSH (including the scale of observation noise σ2in our Gaussian likelihood) is
d+ 4, only two more than a standard GP with a Matérn 5/2 kernel.

F.2 Initialisation Costs

Before beginning any BO routine, we must collect an initialisation of points to fit the surrogate
model. To allow stable maximisation of the marginal likelihood, it is common to initialise with at
least as many evaluations as unknown kernel parameters (to guarantee identifiability). For standard
BO, this corresponds to d+ 3 evaluations of the chosen evaluation strategy (i.e requiring B ∗ (d+ 3)
individual function evaluations). For BOSH, rather than using separate lower and upper kernels for
our HGP, we found that tying length-scales between each kernel greatly improved the stability of
the HGP. Therefore, our HGP has d + 4 kernel parameters. we allowed BOSH d + 5 evaluations
for each of the seeds in an initial seed pool with two elements. In contrast, reliable initialisation
of FASTCV’s B × B correlation matrix (of which its performance was very sensitive) required
at least d + 3 evaluations for each of its B considered seeds. We found that using fewer initial
points severely limited the initial performance of all these methods. Therefore, as well as providing
improved efficiency and precision once optimisation begins, BOSH’s ability to model only as many
individual seeds as required allows significantly lower initialisation costs.

F.3 Reinforcement Learning: Lunar Lander

The Lunar Lander problem is a well-known reinforcement learning task, where we must control
three engines (left, main and right) to successfully land a rocket. The learning environment and a
hard-coded PID controller is provided in the OpenAI gym 1. We seek to optimize the 7 thresholds
present in the description of the controller to provide the largest average reward over 100 random
initial conditions. Our RL environment is exactly as provided by OpenAI, with the small modification
of randomly initializing the initial lander location (as-well as random initial velocities and terrain) to
make a more challenging stochastic optimization problem. We lose 0.3 points per second of fuel use
and 100 if we crash. We gain 10 points each time a leg makes contact with the ground, 100 points for
any successful landing, and 200 points for a successful landing in the specified landing zone· Each
individual run of the environment allows the testing of a controller on a specific random seed.

F.4 Hyper-parameter Tuning: IMDB SVM

We tested the performance of BOSH on a real ML problem: tuning a sentiment classification model
on the collection of 25, 000 positive and 25, 000 negative IMDB movie reviews used by Maas et al.
(2011), seeking the hyper-parameter values that provide the model with the highest accuracy. We
tune the flexibility of the decision boundary (C) and the RBF kernel coefficient (gamma) for an SVM

1. https://gym.openai.com/
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(Cortes and Vapnik, 1995), a standard model for binary text classification. As is common in the
natural language processing literature, we train our classifier on a bag-of-words representation of
the data (Jurafsky and Martin, 2014), using tf-idf weightings (Salton and Buckley, 1988). In order
to measure the true performance of tuned hyper-parameters, we must use the available data in an
unconventional way. By restricting our model fitting and tuning to a randomly sub-sampled 1, 000
review subset to act as our training set for all our experiments, we provide a large held-out collection
of 49, 000 movie reviews, upon which we can calculate the ‘true’ performance of the hyper-parameter
configurations chosen by our tuning algorithms. We then randomly draw our train-test splits from this
fixed training set, with test sets of 10%. As already argued, the model scores based on a particular
evaluation strategy do not necessarily correspond to the true performance and so, although we
acknowledge that this contrived use of the data is not standard, this set-up is necessary to measure
the improved efficiency and reliability provided by BOSH.
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Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch Bayesian optimization
via local penalization. In Artificial intelligence and statistics, 2016a.

44

https://github.com/secondmind-labs/trieste
https://github.com/secondmind-labs/trieste


GIBBON
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