Journal of Machine Learning Research 25 (2024) 1-56 Submitted 11/22; Revised 6/24; Published 7/24

Bridging Distributional and Risk-sensitive Reinforcement
Learning with Provable Regret Bounds

Hao Liang HAOLIANG1@LINK.CUHK.EDU.CN
School of Science and Engineering
The Chinese University of Hong Kong, Shenzhen

Zhi-Quan Luo LUOZQ@CUHK.EDU.CN
School of Science and Engineering
The Chinese University of Hong Kong, Shenzhen

Editor: Csaba Szepesvari

Abstract

We study the regret guarantee for risk-sensitive reinforcement learning (RSRL) via distri-
butional reinforcement learning (DRL) methods. In particular, we consider finite episodic
Markov decision processes whose objective is the entropic risk measure (EntRM) of re-
turn. By leveraging a key property of the EntRM, the independence property, we establish
the risk-sensitive distributional dynamic programming framework. We then propose two
novel DRL algorithms that implement optimism through two different schemes, including
a model-free one and a model-based one.

We prove that they both attain O (%Hv SQAK) regret upper bound, where

S, A, K, H,T = KH, and (3 represent the number of states, actions, episodes, time horizon,
number of total time-steps and risk parameter respectively. It matches RSVI2 (Fei et al.,
2021), with novel distributional analysis that focuses on the distributions of returns rather
than the risk values associated with these returns. To the best of our knowledge, this is
the first regret analysis that bridges DRL and RSRL in terms of sample complexity.

To address the computational inefficiencies inherent in the model-free DRL algorithm,
we propose an alternative DRL algorithm with distribution representation. This approach
effectively represents any bounded distribution using a refined distribution class. It signifi-
cantly amplifies computational efficiency while maintaining the established regret bounds.

We also prove a tighter minimax lower bound of (% vV SAT) for the g >0
case, which recovers the tight lower bound Q(H+/SAT) in the risk-neutral setting.

Keywords: distributional reinforcement learning, risk-sensitive reinforcement learning,
regret bounds, episodic MDP, entropic risk measure

1. Introduction

Standard reinforcement learning (RL) seeks to find an optimal policy that maximizes the
expected return (Sutton and Barto, 2018). This approach is often referred to as risk-neutral
RL, as it focuses on the mean functional of the return distribution. However, in high-stakes
applications, such as finance (Davis and Lleo, 2008; Bielecki et al., 2000), medical treatment
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(Ernst et al., 2006), and operations research (Delage and Mannor, 2010), decision-makers
are often risk-sensitive and aim to maximize a risk measure of the return distribution.

Since the pioneering work of Howard and Matheson (1972), risk-sensitive reinforcement
learning (RSRL) based on the exponential risk measure (EntRM) has been applied to a wide
range of domains (Shen et al., 2014; Nass et al., 2019; Hansen and Sargent, 2011). EntRM
offers a trade-off between the expected return and its variance and allows for the adjustment
of risk-sensitivity through a risk parameter. However, existing approaches typically require
complicated algorithmic designs to handle the non-linearity of EntRM.

Distributional reinforcement learning (DRL) has demonstrated superior performance
over traditional methods in some challenging tasks under a risk-neutral setting (Bellemare
et al., 2017; Dabney et al., 2018b,a). Unlike value-based approaches, DRL learns the en-
tire return distribution instead of a real-valued value function. Given the distributional
information, it is natural to leverage it to optimize a risk measure other than expectation
(Dabney et al., 2018a; Singh et al., 2020; Ma et al., 2020). Despite the intrinsic connec-
tion between DRL and RSRL, existing works on RSRL via DRL approaches lack regret
analysis (Dabney et al., 2018a; Ma et al., 2021; Achab and Neu, 2021). Consequently, it
is challenging to evaluate and improve these DRL algorithms in terms of sample efficiency.
Additionally, DRL can be computationally demanding as return distributions are typically
infinite-dimensional objects. This complexity raises a pertinent question:

Is it feasible for DRL to attain near-optimal regret in RSRL while preserving
computational efficiency?

In this work, we answer this question positively by providing computationally efficient DRL
algorithms with regret guarantee. We have developed two types of DRL algorithms, both
designed to be computationally efficient, and equipped with principled exploration strategies
tailored for tabular EntRM-MDP. Notably, these proposed algorithms apply the principle
of optimism in the face of uncertainty (OFU) at a distributional level, effectively balancing
the exploration-exploitation dilemma. By conducting the first regret analysis in the field
of DRL, we bridge the gap between computationally efficient DRL and RSRL, especially
in terms of sample complexity. Our work paves the way for deeper understanding and
improving the efficiency of RSRL through the lens of distributional approaches.

1.1 Related Work

Related work in DRL has rapidly grown since Bellemare et al. (2017), with numerous studies
aiming to improve performance in the risk-neutral setting (see Rowland et al., 2018; Dabney
et al., 2018b,a; Barth-Maron et al., 2018; Yang et al., 2019; Lyle et al., 2019; Zhang et al.,
2021). However, only a few works have considered risk-sensitive behavior, including Dabney
et al. (2018a); Ma et al. (2021); Achab and Neu (2021). None of these works have addressed
sample complexity.

A large body of work has investigated RSRL using the EntRM in various settings
(Borkar, 2001, 2002; Borkar and Meyn, 2002; Borkar, 2010; B&uerle and Rieder, 2014;
Di Masi et al., 2000; Di Masi and Stettner, 2007; Cavazos-Cadena and Hernandez-Hernandez,
2011; Jagkiewicz, 2007; Ma et al., 2020; Mihatsch and Neuneier, 2002; Osogami, 2012; Patek,
2001; Shen et al., 2013, 2014). However, these works either assume known transition and
reward or consider infinite-horizon settings without considering sample complexity.
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Our work is related to two recent studies by Fei et al. (2020) and Fei et al. (2021) in
the same setting. Fei et al. (2020) introduced the first regret-guaranteed algorithms for
risk-sensitive episodic Markov decision processes (MDPs), but their regret upper bounds
contain an unnecessary factor of exp(|3|H?) and their lower bound proof contains errors,
leading to a weaker bound. While Fei et al. (2021) refined their algorithm by introducing
a doubly decaying bonus that effectively removes the exp(|3|H?) factor!, the issue with
the lower bound was not resolved. Achab and Neu (2021) proposed a risk-sensitive deep
deterministic policy gradient framework, but their work is fundamentally different from ours
as they consider the conditional value at risk and focus on discounted MDP with infinite
horizon settings. Moreover, Achab and Neu (2021) assumes that the model is known.

1.2 Contributions

This paper makes the following primary contributions:

1. Formulation of a Risk-Sensitive Distributional Dynamic Programming (RS-DDP) frame-
work. This framework introduces a distributional Bellman optimality equation tailored for
EntRM-MDP, leveraging a key property—the independence property?—of the EntRM.

2. Proposal of computationally efficient DRL algorithms that enforce the OFU principle in

a distributional fashion, along with regret upper bounds of @) (eXp BIH)=1 1\ /S2 AK ) The
DRL algorithms not only outperform existing methods empirlcally but are also supported
by theoretical justifications. Furthermore, this marks the first instance of analyzing a DRL
algorithm within a finite episodic EntRM-MDP setting.

3. Filling of gaps in the lower bound in Fei et al. (2020), resulting in a tight lower bound of
Q (exp(ﬂﬂ'ﬁi% VS AT) for 8 > 0. This lower bound is dependent of S and A and recovers

the tight lower bound in the risk-neutral setting (as 5 — 0).

Algorithm Regret bound Time Space
RSVI 0 (exp(!ﬁ\HQ)%\/HSQAT>
RSVI2 O (TS*A) | O(HSA+T)
RODTNE O (== VHS?AT) ORST) | O™
RODI-MB O (TS?A) | O(HS?A)
lower bound o (=B /SAT) i -

Table 1: Regret bounds and computational complexity comparisons.

2. Preliminaries

We provide the technical background in this section.

1. A detailed comparison with Fei et al. (2021) is given in Section 8.
2. The independence property will be formally introduced in Section 3.
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2.1 Notations

We write [M : N] £ {M,M +1,...,N} and [N] £ [1 : N] for any positive integers M < N.
We adopt the convention that Y% a; £ 0 if n > m and [[[%, a; = 1 if n > m. We use I{-}
to denote the indicator function. For any = € R, we define [2]T £ max{x,0}. We denote by
0. the Dirac measure at c. Similarly, 1. represents the unit step function at ¢, corresponding
to the CDF of é.. We denote by A(S), Z(a,b), Zn and Z the set of distributions supported
on a set S, [a,b], [0, M] and the set of all distributions respectively. We use (x1,z2;p) to
denote a binary r.v. taking values z; and xo with probability 1 —p and p. For a discrete set
x = {x1, -+ ,x,} and a probability vector p = (p1,---,pn), the notation (x,p) represents
the discrete distribution with P(X = z;) = p;. For a discrete distribution n = (z, p), we use
[n| = |z| to denote the number of atoms of the distribution 7. We use O(-) to denote O(:)
omitting logarithmic factors. A table of notation is provided in Appendix A.

2.2 Episodic MDP

An episodic MDP is identified by M £ (S, A, (Py)nen), (ra)nem), H), where S is the state
space, A the action space, Py : § x A — A(S) the probability transition kernel at step h,
rp S x A — [0,1] the collection of reward functions at step h and H the length of one
episode. The agent interacts with the environment for K episodes. At the beginning of
episode k, Nature selects an initial state slf arbitrarily. In step h, the agent takes action afl
and observes deterministic reward r,(s¥, a¥) and reaches the next state sf R Py(-|sk, ak).
The episode terminates at H + 1 with ri41 = 0, then the agent proceeds to next episode.

For each (k,h) € [K] x [H], we denote by Hf £ (3%,(1%,3%,(@,...,S}I,a}{,...,s’fb,ai)
the (random) history up to step h of episode k. We define F, = Hlf_fl as the history up to
episode k — 1. We describe the interaction between the algorithm and MDP in two levels.
In the level of episode, we define an algorithm as a sequence of function &7 £ (%) ke[K]»
each mapping Fj, to a policy <% (F) € II. We denote by 7% £ 7, (F,) the policy at episode
k. In the level of step, a (deterministic) policy 7 is a sequence of functions 7 = (74)ne(m]
with m, : S — A.

2.3 Risk Measure

Consider two random variables X ~ F and Y ~ G. We assert that Y dominates X, and
correspondingly, G dominates F', denoted as Y = X and G > F, if and only if for every real
number z, the inequality F'(z) > G(z) holds true. A risk measure, p, is a function mapping
a set of random variables, denoted as 2", to the real numbers. This mapping adheres to
several crucial properties:

e Monotonicity (M): X <Y = p(X) <p(Y), VX,Y € 2,
e Translation-invariance (TI): p(X +¢) = p(X) +¢, VX € 2, Ve € R,
e Distribution-invariance (DI): Fx, = Fx, = p(X1) = p(X2).

A mapping p : £ — R qualifies as a risk measure if it satisfies both (M) and (TT).
Additionally, a risk measure that also adheres to (DI) is termed a distribution-invariant
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risk measure. Distribution-invariant risk measure allows us to simplify notation by denoting
p(Fx) as p(X).

We direct our attention to a specific distribution-invariant risk measure, EntRM, a
prominent risk measure in domains requiring risk-sensitive decision-making, such as math-
ematical finance (Follmer and Schied, 2016), Markovian decision processes (Bauerle and
Rieder, 2014). For a random variable X ~ F' and a non-zero coefficient 3, the EntRM is

defined as:
Us(X) =S ;log (]EXNF [eﬂX]) = ;log </R eﬂxdF(:x)> .

Given that EntRM satisfies (DI), we can denote Ug(F') as Ug(X) for X ~ F. When 3
possesses a small absolute value, employing Taylor’s expansion yields

Us(X) = E[X] + SVIX] + O(5%). 1)

Therefore, a decision-maker aiming to maximize the EntRM value demonstrates risk-seeking
behavior (preferring higher uncertainty in X) when 8 > 0, and risk-averse behavior (prefer-
ring lower uncertainty in X) when 8 < 0. The absolute value of 3 dictates the sensitivity
to risk, with the measure converging to the mean functional as 8 approaches zero.

2.4 Risk-neutral Distributional Dynamic Programming Revisited

Bellemare et al. (2017); Rowland et al. (2018) have discussed the infinite-horizon distribu-
tional dynamic programming in the risk-neutral setting, which will be referred to as the
classical DDP. Now we adapt their results to the finite horizon setting. We define the return
for a policy 7 starting from the state-action pair (s, a) at step h as follows:

H
Zj(s,a) £ Z T (Swyan) | (Snyan) = (s,a), sp41 ~ Pr(Clswr, an), s = mrg1(Sprge)-
h'=h
We then define Y;"(s) £ ZT(s,mp(s)), noting that both Z7(s,a) and Y;(s) are random
variables. It follows immediately that:

Zj(s,a) = ru(s,a) + Y[ (S), S~ Pu(- | 5,0).

There are two sources of randomness in ZJ (s,a): the transition P] and the next-state
return Y™ ;. Denote by v} (s) and nj(s,a) the cumulative distribution function (CDF)
corresponding to Y;"(s) and ZJ(s,a) respectively. Rewriting the random variable in the
form of CDF, we have the distributional Bellman equation

i (s,a) =Y Pals'ls, a)via (8") (- — ra(s, @), v (s) = nji (s, m(s)),

where v, (s")(- — 74(s,a)) denotes the CDF, v] ,(s'), shifted by the reward r4(s,a). The
distributional Bellman equation outlines the backward recursion of the return distribution
under a fixed policy. Our focus is primarily on risk-neutral control, aiming to maximize the
mean value of the return, as represented by:

7*(s) £ arg  max _E[Z](s)]
(71'17...,71'1.1)61_[
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Here, m = (m1,..., ) signifies that this is a multi-stage maximization problem. An ex-
haustive search approach is impractical due to its exponential computational complexity.
However, the principle of optimality applies, suggesting that the optimal policy for any
tail sub-problem coincides with the tail of the optimal policy, as discussed in (Bertsekas
et al., 2000). This principle enables the reduction of the multi-stage maximization problem
into several single-stage maximization problems. Let Z* = Z™ and Y* = Y™ denote the
optimal return. The risk-neutral Bellman optimality equation can be expressed as follows:

Zr(s,a) = rp(s,a) + Y,TH(S/), S" ~ Ppu(|s,a)
mh(s) = argmax E[Z} (s, a)], Yy (s) = Zj (s, ™, (5))-

For simplicity, we define [Pv](s,a) £, P(s'|s,a)v(s"), where P represents the transition
kernel and v denotes the return distribution. Rewriting the above equation in the form of
distributions, we get:

*

(s, @) = [Puvp il (s, @) (- = ra(s, a))
mh(s) = argmax E[n; (s, a)], v4(s) = (s, 75(s))-

3. Risk-sensitive Distributional Dynamic Programming

In this section, we establish a distributional dynamic programming framework for risk-
sensitive control. For the risk-sensitive purpose, we define the action-value function of a
policy 7 at step h as Q7 (s,a) = Ug(Z7(s,a)), which is the EntRM value of the return
distribution, for each (s,a,h) € S x A x [H]. The value function is defined as V;7(s) £
Q7 (s,mn(s)) = Ug(Y;T(s)). We focus on the control setting, in which the goal is to find an
optimal policy to maximize the value function, that is,
7(s) £ arg  max  VUTH(s).
(71, )EIT

In the risk-sensitive setting, however, the principle of optimality does not always hold for
general risk measures. For example, the optimal policy for CVaR-MDP may be non-
Markovian or history-dependent (Shapiro et al., 2021). The principle of optimality for
EntRM-MDP, in terms of risk values, has been identified in prior works (Kupper and
Schachermayer, 2009; Béuerle and Rieder, 2014). We revisit this principle through a distri-
butional perspective, leveraging the well established independence property.

The independence property (also known as the independence axiom) is a well known
concept in economics and decision theory (Von Neumann and Morgenstern, 1947; Dentcheva
and Ruszczynski, 2013). For better illustration, we introduce some additional notations.
We write X > (>)Y or F' > (>)G if Ug (X) > (>)Ug (YY) or Ug (F) > (>)Us (G). This is
different from the notion of stochastic dominance X = Y. In fact, (M) of EntRM implies

XrY =Us(X)2Us(Y) <= X >V
Fact 1 (Independence property) Let F\G,H € 9 and 0 € (0,1). The following holds:
F<G=0F+(1—0)H <0G+ (1-0)H.

We say that the EntRM satisfies property (I) (also known as the independence property).
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Proof We only prove the case that 5 > 0. The case that 8 < 0 follows analogously. For
any two distributions F' and G such that Ug(F') > Ug(G), we have

Us(F) = ;log /R exp(B2)dF (z) > ;log /R exp(Br)dG(x) = Us(G),

which implies [ exp(Bx)dF(x) > [; exp(Bx)dG(x). Thus for any distribution H,

Us(OF + (1 — 0)H) = ;log/ exp(Ba)d(OF (z) + (1 — 0)H(x))
R
1
=3 log (Q/Rexp(ﬁa:)dF(x) +(1- 9)/}Rexp(ﬁx)dH(x)>
1
> 3 log <9/Rexp(ﬁx)dG(:E) +(1- 9)/Rexp(ﬁ:n)dH(m)>
=Us(0G+ (1 -0)H).
This finishes the proof. |

Moreover, the property (TI) entails that the EntRM value of the current return Zj (s, a)
equals the sum of the immediate reward rg(s,a) and the value of the future return Y;(s’)

Us(Zj(s,a)) = Us(ra(s, a) + Y7 (s) = ra(s, a) + Us (Y7 (s")) = ru(s, @) + Up([Prvh11] (s, 0).

We will show that (I) and (TI) suggest that the optimal current return, Z;(s,a), is deter-
mined by the optimal future return, Y;*(s’),

Zi(s,a) =rp(s,a) + Y (s).

These observations implies the principle of optimality. For notational simplicity, we write
Thyhy = {Thys Thy+1, "+ > Thy } fOr two positive integers hy < hy < H.

Proposition 1 (Principle of optimality) Let 7* = 7w}, be an optimal policy. Fizing
h € [H], then the truncated optimal policy 7}, is optimal for the sub-problem:

Tp. g =arg max Vi
Th:HEUn. g

Remark 2 While the principle of optimality for EntRM-MDP has been identified in prior
works, we revisit this principle through a distributional perspective. In particular, we de-
rive Proposition 1 through (I). This distributional perspective of dynamic programming will
facilitate the algorithm design and regret analysis in distributional RL.

Proof Suppose that the truncated policy 7., is not optimal for this subproblem, then
there exists an optimal policy 75z such that

35, occurring with positive probability, Vhﬁh:H(éh) > Vhﬂ*“H (5n)-
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There exists a state 5,1 with P,_1(5|5,—1,7;_1(5,—1)) > 0 such that

T Th. - - % ~
Us (Vhﬁ_ll hH(Sh71)> = 1p-1(8n-1, 71 (5n-1)) + Up
> rp—1(8p-1, 71 (8h-1)) + U

=Ug <V;7:§EI:H(§h—1)) ,

[Phql/zhﬂ} (8h—1,Th—1(Sh—1)

( )
([Ph_lV;Z:H} (gh—17”2—1(§h—1)>

where the inequality is due to (I) of Ug. It follows that (7}, 7.) is a strictly better
policy than 7}, ;; for the subproblem from h — 1 to H. Using induction, we deduce that
(7}.1,—1> Th:gr) is a strictly better policy than 7* = 7}, ;. This is contradicted to the assump-
tion that 7* is an optimal policy. |

Furthermore, the principle of optimality induces the distributional Bellman optimality equa-
tion in the risk-sensitive setting.

Proposition 3 (Distributional Bellman optimality equation) The optimal policy *
is given by the following backward recursions:

Virs1(s) = vo, myp(s,a) = [Pavpal(s, a)(- = ra(s, a)),
my(s) = arg max @, (s, a) = Us( (s, a)), v4(s) = mj(s, mh(s)),

(2)

where F(- — c¢) denotes the CDF obtained by shifting F to the right by c. Furthermore, the
sequence (N, ) he(m) and (V,’;)he[m represent the sequence of distributions corresponding to the
optimal returns at each step.

Proof Throughout the proof we omit * for the ease of notation. The proof follows from
induction. Notice that ny,(sp) and V3 (sp,) are the return distribution and value function for
state sy, at step h following policy 7.z respectively. At step H, it is obvious that 7y is the
optimal policy that maximizes the EntRM value at the final step. Fixing h € [H — 1], we
assume that mp,41.7 is the optimal policy for the subproblem

!
Th41:H _ Th41:H
Vil (She1) = max Vil (Sh+1)s VSht1-
Th41:H

In other words, Y7}, , 1.7, VSh1:

Up(vhr1(sn+1)) = Us( 1" (3041)) = U177 (s41)).
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It follows that Vs,
Vi(sn) = Qn(sn, mn(sn)) = Ug(vp"" (sp)) = max Us(n(sh, an))
= maxiry(sh, an) + Up ([Phvns1] (s, an))}

> 7r;‘L+1:}'-Ii| )
> Ir(ll%X {Th(sh, ap) + max Ug ([Phyh—&—l (Sh,an) }

Th41:H

= max {rh(sh, ap) + max Up <|:Ph1/}7:i451:1{} (Sh,ah))}
Th

Th41:H

= max {rh(sh, ap) +Up ({PthiJ{LH] (sn, 772(%)))}

Th:H

= max Up <1/2h+1:H (sh)> .

Th:H

Hence V}, is the optimal value function at step h and mp.y is the optimal policy for the
sub-problem from h to H. The induction is completed. |

For simplicity, we define the distributional Bellman operator T(P,r) : 25 — 2°*4 with
associated model (P,r) = (P(s,a),7(s,a))(sqa)esx.4 a8

(TP, )v)(s,a) 2 [P](s,a)(- — 1(5,0)), ¥(s,a) € S x A
Denote by T, = T (Py,, 1), then we can rewrite Equation 2 in a compact form:

V}k:1+1(8) = o, ?7?:(37@) - [7711/;;+1](87a)7
m(s) = argmax Us(175(s, a)), vj,(s) = (s, 3 ().

3)

Discussion about the independence property Another property closely related to
(T) is the tower (T) property (Kupper and Schachermayer, 2009).

Definition 4 (Tower property) A risk measure p satisfies the tower property if for two
r.v.s X and Y, we have

p(X) = p(p(X]Y)),

where p(-|Y) is taken w.r.t. the conditional distribution.
We can show that the following implications hold
(T) = (I) = Dynamic Programming (DP).

(T) = (I): Suppose (T) holds. Let X; ~ F, Xo ~ H, Y1 ~G,Yoa ~ H. Let I ~ (1,2;1-0)
be a binary r.v. independent of X and Y. Given F < (G, we have

(DI) = Up(X1) = Up(F) < Up(G) = Ug(Y1)
= Ug(X1|I) ~ (Us(X1),Up(X2); 1 — 0) = (Us(Y1),Ug(Y2); 1 — 0) ~ Ug(Y1|1).

Next, Fact 2 implies
Xi~0F+(1—-0)H,Y; ~0G+ (1—-60)H.
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Fact 2 (Mixture distribution) Let X; ~ F; for i € [n]. Let I be a discrete r.v. inde-
pendent of (X;); with P(I =i) =60;. Then X5~ . | 0;F;.
It follows that
Us(X1|I) 2 Up(Yr|I) = Up(Up(X1|1)) < Us(Up(Y1|1))
= U(X1) < Up(Y1)
= Ug(0F + (1 -0)H)) <Ug(6G+ (1 - 0)H),
where the first and second implication is due to (M) and (T of Ug.
(T) = DP: Fix h € [H — 1] and (s,a) € S x A. Using (T) leads to a decomposition of
the risk-sensitive value function as follows:
Q(5:) = Us (Z0(5,) = Us ({5, ) + Yi1(8)) = (s ) + Uy (Vg (5))
= 4(5.0) + Uy (Us (Y1 (S)15)
= T‘h(S, CL) + Ug (Vh+1(5>) .
We call it the risk-sensitive Value Bellman equation, which relates the action-value function
@1, at step h to the next-step value functions V3 11. We can further derive the Value Bellman
optimality equation with (M) and (T). Observe that
Vht1(8) = Viya(s), Vs = Vi1 (9)1S = Vi1 (9)|S
= Us (Var1(9)) = Us (Vi44(9))
= Qn(s,a) = Qp(s,a),

which implies the Value Bellman optimality equation

Qi (s.0) = ra(s.a) + Us (Vi ()
77 (s) = argmax Qj (s, ), Vi (s) = Qj (s, 7(s)-

We make the following summary.

(i) Both (T) and (I) imply the principle of dynamic programming, but (I) is considered a
weaker assumption than (T). This indicates that while both properties support the formu-
lation of DP, (I) does so under less stringent conditions.

(ii) (T) inspires a distributional perspective in EntRM-MDP, leading to the concept of DDP.
This perspective involves running DP in the language of random variables or distributions,
as opposed to traditional scalar values. In contrast, (T) primarily supports the classical
Value Bellman equation. it is important to note that both distributional and classical DP
contribute to the derivation of optimal policies. However, in our work, (I) plays a crucial
and irreplaceable role. DDP, enabled by (I), facilitates the algorithm design and regret
analysis in distributional RL, which is not achievable solely with (T).

Performance metric Finally, the regret of an algorithm .« interacting with an MDP M
for K episodes is defined as

=

Regret(a/, M, K) 2 3 Vi (sh) = Vi (sh).
k=1

Note that the regret is a random variable since 7% is a random quantity. We denote by

E[Regret(«/, M, K)] the expected regret. We will omit </ and M for simplicity.

10
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4. RODI-MF

In this section, we introduce Model-Free Risk-sensitive Optimistic Distribution Iteration
(RODI-MF), as detailed in Algorithm 1.

Algorithm 1 RODI-MF
1: Input: T and §
2: Initialize Np(-,-) < 0; np(+, ), vn(+) <= 01— Vh € [H]
3: fork=1:K do
4: for h=H :1do

5: if Nh(', ) > 0 then

6: () < §oy Lorephot) T (s Whra (570 ¢ = 7a ()
7: end if

8: Ch(',') — 1/#'5;)\/“

9: Mh(+5) < O ymn(- )

10: mh(+) <= arg max, Ug(ny (-, a))
11: n(+) < nn (-, mr(+)

12: end for

13: Receive s¥

14: for h=1:H do

15: ak « mp(s¥) and transit to sﬁﬂ
16: Nh(S'IfL, ai) — Nh(Sﬁ,alg) +1

17 end for

18: end for

We begin by establishing additional notations. For two Cumulative Distribution Func-
tions (CDFs) F and G, the supremum distance between them is defined as |[F — G|loo =
sup, |F(z) — G(x)|. We define the ¢; distance between two Probability Mass Functions
(PMFs) with the same support P and Q as ||P — Ql|; = Y, | P, — Qi|. Furthermore, the set
Boo(F,c) := {G € Z|||G — F||oo < ¢} denotes the supremum norm ball of CDFs centered
at F' with radius c¢. Analogously, By (P, c) represents the ¢; norm ball of PMFs centered at
P with radius c.

In each episode, Algorithm 1 comprises two distinct phases: the planning phase and
the interaction phase. During the planning phase, the algorithm executes an optimistic
variant of the approximate Risk-Sensitive Distributional Dynamic Programming (RS-DDP),
progressing backward from step H + 1 to step 1 within each episode. This process results in
a policy to be employed during the subsequent interaction phase. We offer further details
about the two phases as follows:

Planning phase (Line 4-12). The algorithm undertakes a sample-based distributional
Bellman update in Lines 5-7. To clarify, we append the episode index k to the variables
in Algorithm 1 corresponding to episode k. For instance, n,]j represents n in episode k.
Specifically, for visited state-action pairs, Line 6 essentially performs an approximate DDP.
Let I¥(s,a) £ I{(s¥,af) = (s,a)} and Nf(s,a) £ > reh—1) [h(s,a). For a given tuple
(s,a,k, h) with N,’f(s, a) > 1, , the empirical transition model ]5/;(|s, a) is defined as:

11
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PE(s'|s,a) £ T ( 2 Z I7 (s, a) - I{sj ., = s}
h\Ss T€[k—1]

For any v € 29, the following holds:

[Phy} Z PF(s|s,a)v(s') = Nk(lsa) Z Z I7 (s, a) - I{sh, = s'Iv(s)

s'eS h s'€S re[k—1]
Z I7 (s,a) Z I{sh1 = s v(shar)
Te[k 1] s'eS
Z I (s, a)v(sp 1)
Te[k 1]

Thus, the update formula in Line 6 of Algorithm 1 can be reformulated as:

mh(s,a) = | Pfvk ) (s, @)( = ra(s,0) = [Tk | (s.a).

Conversely, for unvisited state-action pairs, the return distribution remains aligned with the

highest plausible reward H + 1 — h. Subsequently, the algorithm calculates the optimism

constants cf (Line 8) and applies the distributional optimism operator O% (Line 9) to obtain
h

the optimistically plausible return distribution 77,’3. The distributional optimism operator
shifts a specified amount, cZ, of the leftmost probability mass of the input distribution to
the rightmost end, thereby generating a more optimistic distribution. A formal definition
of this operator will be presented in Section 4.2. The optimistic return distribution yields
the optimistic value function, from which the algorithm derives the greedy policy Tr}’f to be
applied during the interaction phase.

Interaction phase (Line 14-17). In Lines 15-16, the agent interacts with the environment
under policy 7% and refreshes the counts N, }]f based on newly gathered observations.

4.1 Connection to Exponential Utility

Our analysis explores the relationship between EntRM and Exponential Utility (EU). The
EU is defined as follows:

Eg(F) = PUs(F) — / ePTAF (),
R
where it serves as an exponential transformation of the EntRM. Notably, this transformation
preserves the order in the sense that for any non-zero 3, V3 # 0,
Up(F) = Up(G) <= sign(B)Ep(F') = sign(8)Ep(G).

Leveraging this property, we derive the distributional Bellman optimality equation in terms
of EU as follows:

Vir+1(s) = Yo, Mi(s,a) = [Pavpia](s,a)(- = ra(s, a)),

i (s) = arg max sign(8) B (1 (5, ), vi(5) = i (5, (5)). W

12
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Proposition 5 (Equivalence between EntRM and EU) The policy ©*, generated by
Equation 4, is optimal for both the EntRM and EU. Moreover, the return distribution gen-
erated aligns with the optimal return distribution for EntRM.

Proof The proof employs induction. The only difference between Equation 4 and Equa-
tion 2 lies in the policy generation step. For clarity, denote the quantities generated by the
respective equations as (+)* and ()* The base case with 1}, = 775, is evident. It follows that
73 (s) = 75 (s) for each s, due to the preserved order under the exponential transformation.
Subsequently, it holds that v; = 7f;. Assuming vy, = 7, for h+1 € [2: H], we establish
that n; =71y, m; = 7, and v, = v;. This completes the induction process. |

We further present two important properties of EU, instrumental in formulating the re-
gret upper bounds: Lipschitz continuity and linearity. Denote by Lj; the Lipschitz constant
of Eg : Zy — R with respect to the infinity norm |||, which satisfies:

Eﬂ(F) — EB(G) < Ly ||F— GHOO,VF,G € Dy

Lemma 6 establishes a tight Lipschitz constant for EU, linking the distance between distri-
butions to the difference in their EU values.

Lemma 6 (Lipschitz property of EU) Ej3 is Lipschitz continuous with respect to the
supremum norm over Py with Ly = |exp(BM) — 1|, Moreover, Ly is tight with respect to
both B and M.

The proof is deferred to Appendix B. It is worth noting that as 8 approaches zero, Ljs
tends to zero, aligning with the observation that limg_,o £/ = 1. Another key property of
EU is the linearity:

Eﬁ(QF + (1 — H)G) = QEB(F) + (1 - Q)EB(G).

This property significantly refines the regret bounds. In contrast, the non-linearity of En-
tRM may result in an exponential factor of exp(|8|H) in error propagation across time
steps, potentially leading to a compounded factor of exp(|3|H?) in the regret bound.

4.2 Distributional Optimism over the Return Distribution

For the purpose of clarity, we will focus on the scenario where 8 > 0 in the subsequent
discussion. The case for 8 < 0 can be approached using analogous reasoning. We commence
by formally defining optimism at the distributional level.

Definition 7 Given two CDFs F and G, we say that F' is more optimistic than G if F > G.

This definition aligns with the intuitive notion that a more optimistic distribution should
possess a larger EntRM value. Given that the exponential transformation preserves order,
F' is more optimistic than G if and only if Eg(F') > Eg(G). Following the methodology of
Keramati et al. (2020), we introduce the distributional optimism operator O : Z(a, b) —
P(a,b) for alevel c € (0,1) as

(OZF)(x) £ [F(2) — cljgp)(2)] "

13
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This operator shifts the distribution F' down by a maximum of ¢ over [a,b), ensuring that
the resulting function O2°F remains a valid CDF in Z(a, b) and optimistically dominates all
other CDFs within the confidence ball By (F, c)?. In particular, OXF represents maximum
permissible downward adjustment under the constraints of the infinity ball, ensuring that
for any distribution G € By (F, ¢)

(O°F)(x) < G(x),Yx € R.

Lemma 8 Let p be a functional (not necessarily a risk measure) satisfying (M). For any
G € PY(a,b), it holds that if G € Boo(F, ¢), then G <X OXF. Moreover, it holds that

OXF e Q).
¢ argGEBm{%iicﬂ@(a,b)p (@)

Proof Consider any G € Z([a,b]) N Boo(F,c). By the definition of B (F,c), we have
SUPge(ap [F'(2) —G(x)| < c. Therefore, for any x € [a, b], we have G(z) > max(F(z)—c,0) =
(O°F)(z). Since OXF dominates any G in Z([a,b]) N Boo(F, ¢) and considering (M) of p,
we arrive at the conclusion. |
We define the EU value produced by the algorithm as W/ (s ) £ Ez(vi(s)) and JF(s,a) £
Eg(nf(s,a)) for all (s,a,k,h). Similarly, we define W (s) £ Eg(v;(s)) and J;(s,a) £
Es(nj(s,a)) for all (s,a,h). We define ¢ = log(SAT/) for any ¢ € (0,1) and introduce the
good event as follows:

28

s {\\p5<-|s,a> =Pl ), < o T v

L,V(s,a,k,h) €S x Ax[K] x [H]},

This event encapsulates the scenario where the empirical distributions concentrates around
the true distributions with respect to the ¢; norm. Leveraging Lemma 12, (M) of EU, and
inductive reasoning, we arrive at Proposition 9, which asserts that the sequence Wlk(slf) ke[K]

is consistently optimistic compared to the optimal value sequence Wl*(s’f) ke[K]-

Proposition 9 (Optimism) Conditioned on event Gs, the sequence {W{(st)}rex) pro-
duced by Algorithm 1 are all greater than or equal to Wl*(slf), i.e.,

W (st) = EB(Vl (s) > Eﬁ(V1(51)) Wi (sh), vk € [K].

We first present a series of lemmas, specifically Lemma 10 through Lemma 12, which is
used in the proof of Proposition 9.

Lemma 10 (High probability good event) For anyd € (0,1), the event Gs is true with
probability at least 1 — 9.

We will verify the distributional optimism conditioned on Gs.

Lemma 11 For any F; € 2 and any 0,0’ € A,, with any n > 2, it holds that

zn: 0,F; — Z 0. F;
=1

3. For a more comprehensive explanation, please refer to Liang and Luo (2023).

<|lo-el,-

o0

14
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Proof

n

= sup 2(0 —0)F,

z€R |21

< Z 10; — 6;| = H@ - 9/H1'
i=1

< SupZ|9 — 0| Fi(x

acER

n n
> 6:F =) 6iF,
i=1 i=1 0o

Lemma 12 (Bound on the optimistic constant) For any bounded distributions {F;}c[n)
and any 6,0" € A, it holds that if ¢ > ||0 — ¢'||1, then

zn: 0;F, < O (zn: 9;3) .
=1 =1

Proof Without loss of generality assume F' € ;. By Lemma 11, for any x

n

> (0 - 0)F,

i=1

< o' oll, -

For any z € [0, M + 1),
n n + n n
O (Z ‘%Fz) () = [Z 0;F;(x) — C] = [Z 0:F,(x) + Y (0 — 6:) Fi(x) —
i=1 i=1 i=1 i=1

n + n + n
< [Z@Fi(aj)—l— 16" —0]|, —c] Y 0:F(x)| =D 0,F(x)
=1 =1 =1

+

Now we give the proof of Proposition 9.
Proof The proof proceeds by induction. We fix k& € [K] and consider each stage h in
reverse order. Consider the base case: for any (s,a) such that N¥(s,a) > 0

Ty (s,a) = Bg(nffy(s,)) = Ep(0,y(s.0) = exp(Bra(s, a)) = Ji (s, a).

This equality holds because the reward received at stage H is deterministic and hence the
EU is simply the exponential of the scaled reward. For unvisited state-action pairs (s, a)
with N¥(s,a) = 0, the EU is given by:

Jii(s,a) = Eg(f (s,a)) = Es(81) = exp(B) > Jp (s, ).

Here, the EU value defaults to exp(3), which is greater than or equal to the optimal EU
value for any (s,a). Given these calculations, for any state s, the EU value at stage H
satisfies WF(s) = max, J5(s,a) > max, J(s,a) = Wj(s), establishing the base case.
Assuming that for stage b+ 1, WE 11(8) > Wy, (s) holds for all states s, we now consider
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stage h. For any visited state-action pair (s,a) with N¥(s,a) > 0, we apply Lemma 12 with
0 = Py(s,a),0 = PF(s,a), F = u,’iﬂ to obtain

[Prvjya](s,a) < OSE(S,a)([Pf]fVE+1](Sv a)),
given that Cﬁ(s,a) = \/% > th(“s’a) — P}’;(.|57G)HI for h € [H — 1]. We have

(- = rn(s,0))))

where the first inequality is due to (M), and the second inequality follows from the induction
assumption. For unvisited state-action pairs (s, a) at stage h, the EU is calculated based
on the maximum possible reward, ensuring that:

JE(s,) = Bg(0n41-n) = exp(B(H + 1 — B)) > Ji(s, a).
Finally, aggregating these values for any state s at stage h, we obtain:
WE(s) = max Jf(s,a) > max J} (s,a) = W (s),

completing the induction step and thereby the proof. |

4.3 Regret Upper Bound of RODI-MF

Theorem 13 (Regret upper bound of RODI-MF) For any § € (0,1), with probability
1— 6, the regret of Algorithm 1 is bounded as

Regret(RODI-MF, K) < O (LH(Ug)HVSQAKL> =0 <e’q’(‘5‘|§)_11{\/52141{> :

where Ly (Ug) = % is the Lipschitz constant of EntRM over 2(0,H).

Remark 14 The regret bounds achieved by RODI-MF match the best-known results in Fei

et al. (2021). In particular, RODI-MF attains exponentially improved regret bounds compared
to RSVI and RSQ in Fei et al. (2020) with a factor of exp(|5|H?).

Remark 15 For values of B that are close to zero, an expansion using Taylor’s series
reveals that the EntRM, Ug(Z™), can be approximated by the sum of the expected cumula-
tive reward and a term proportional to the variance of the cumulative reward, with higher-
order terms contributing insignificantly. Considering that the reward ry, lies in the interval
[0, 1], both the expected cumulative reward and its variance are bounded by terms linear and
quadratic in H, respectively. To balance the expected reward and the risk (as quantified by
the variance), it is prudent to choose f = O(1/H).

16
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Remark 16 By choosing |5| = O(1/H), we can eliminate the exponential dependency on
H and achieve polynomial regret bound akin to the risk-neutral setting. Therefore, DRL can

achieve O (H\/ HSQAT) regret bound for RSRL with reasonable risk-sensitivity.

Proof We first prove the case 8 > 0. Define AF £ WF — ng = Es(vf) — Eg (y,’{k> € Dy

Dy 2 [1— exp(B(H + 1 — ), exp(8(H + 1 b)) 1]

and 6F £ Ak (sF). For any (s, h) and any w, we let Pf(-|s) £ Py(-|s, m(s)). The regret can
be bounded as

K
Regret(K) = Z ; log (Wl*(slf)) - ;log (Wfk(slf))
k=1
- i og (Wi(sh)) — 5 log (V(sh)) + = tog (Wh(sh)) — & log (Vi7" (s}))
Py B P ’
51 ko k 1 ok
< Z 5 log (Wl (51)> ~ 3 log <W1 (51))
k=1
1S ok b NN B
< 5 2 WA = Wi ) = 5 > a,
k=1 k=1

where the last inequality follows from Lemma 32 and that both Wf(sk) and W7 k(s’f) are
larger than 1. We can decompose 52 as follows

o = B (vh(sh)) — Es (v (s1)
= B3 (0 ([P ]| 53¢ =) = Bs ([P vk ] (sh)C = b))
= exp(Br) (Bs (O ([ k| (1)) = Bs ([P viila] D))
= exp(Brf) (Es (Oug ([P0 vhi] (s))) = 85 (|27 vk | (1))

(d)
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Using the Lipschitz property of EU, we have

(@) < exp(8rf) - L | OFF ([ v ] s0) = [P vhia] )|
< exp(ﬂrﬁ) . LH,hch
< exp(B)(exp(B(H — h)) — 1)cf

25
(N v

o

< (exp(B(H +1—h)) —1)

We can bound (b) as

) = explor) (85 ([ vk ] (50) - B ([P vk] (1))
<exp(B)Lu—n H [Pﬁrkﬁfu} (sh) = [P’?ky’?“} (Sz)Hoo
< exp(B)(exp(B(H — 1)) = 1)|| P (s5) = P (s

28

< (exp(B(H +1—h))—1) W%

where the second inequality is due to Lemma 11. Observe that
k k
(e) = exp(Brf) [P (Vs — Vitt)| (k) = exo(8r) [P k4 | () = exp(Bri) (el + 3h.),

where e £ [PF AfH_l] (sF)— Afl_H (3h+1) is a martingale difference sequence with e} € 2Dy, 4
a.s. for all (k,h) € [K] x [H], and e} Pl (k) — P’r (sk H Since (a)+ (b) < 2Ly 41-nek,

we can bound 5,’? recursively as

Sy < 2Lpi1-ncf; + exp(Bry) (ef + 524—1)-

Repeating the procedure, we get

T

H-1 h

h—1 H-1
2 Lyiin H exp(Bri)ck + Z Hexp Briyer + H exp(BrF)ot;
i=1 i=1

h=1 i=1

>,
e
IN

T

LH

H-1

(exp(B(H + 1 —h)) — 1) exp(5( Jeh + Y L exp(Bri)el; + exp(B(H — 1))}
h=1 i=1

IN
[N}
T
|
=

H-1

h
(exp(BH) —1)cf + Hexp 5ek 4+ exp(B(H — 1))0%.
h=1 i=1

IN
[\)
>
Il
—

Thus

K K h
2(51 < 2(exp(pfH) — 1) Z cfl—i—z Hexp Brk eh+Zexp H—1))d%.

k=1 k=1 h=1 k=1 h=1 i=1 k=1

H-1 H-1

18



BRIDGING DISTRIBUTIONAL AND RISK-SENSITIVE REINFORCEMENT LEARNING

Now we bound each term separably. The first term can be bounded as

K H-1 -1 K
2(exp(ﬂ(H+1))—1)Z cf = 2(exp(B(H + 1)) ZM Nk\/l
k=1 h=1 k=1

<4(exp(B(H +1))—1) \/252AKL

T

mﬁ
,_.»—I

i
L

=4(exp(B(H + 1)) — 1)(H — 1)V2S?2AK..

Observe that

h
Hexp(ﬁrf)elﬁb € exp(Bh)Dy, = exp(Sh)[1 —exp(B(H + 1 — h)),exp(B(H +1—h)) —1]
i=1

C [1 —exp(B(H + 1)), exp(B(H + 1)) — 1],

thus we can bound the second term by Azuma-Hoeffding inequality: with probability at
least 1 — ¢, the following holds

H-1

h
Hexp BriVer < (exp(B(H + 1)) — 1)\/2K H log(1/").
1

K
k=1 h=171

The third term can be bounded as

M=
g

exp(B(H — 1))8% = exp(8 Wh(sh) — WE (%)
k=1 k=1
K
= exp(B(H — 1)) Y_I{N}, = 0} exp(8) + I{N}; > 0} exp(Bra(shy)) — exp(Bra(sly))
k=1

K
< exp(B(H — 1))(exp(B8) — 1) Y [ T{Nf; = 0}
< (exp(BH) —1)SA < (exp(B(H +1)) —1)SA

Using a union bound and let § = §' = g, we have that with probability at least 1 — 6,

exp(B(H +1)) —1
p

_6 <eXp(5§T) - 1@) 7

Regret(K)

IN

(4(H —1)V282AK. + V2K Hi + SA)

where ¢ £ log(2SAT/S).
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Now we consider the case 5 < 0. Using similar arguments, we arrive at

Regret(K) < log (Wf(s'f)) 1 log (I/VfrlC (s]f))

N
™| =

8
= i 15 (tog (W (s5)) —tog (Wi (sh)) )
k=1
< T S (o)~ WG

k=1

where the last inequality is due to that both W7 * (s¥) and W§(s¥) is larger than or equal
to exp(SH). We can finally get

Regret(K) < O (m\/HSQAT> =0 (e}q)(w";)_l\/HSQAT> .

4.4 Computational inefficiency of RODI-MF

While RODI-MF enjoys near-optimal regret guarantee, it suffers from computational ineffi-
ciency, especially in contexts with a large number of states or a long horizon. For better
illustration, let’s consider a Markov Reward Process with S states at each step. In this
setup, the transition kernel is uniform (Py(s’|s) = 1/5) for any (h,s’) € [H — 1] x S, and
the reward function is bounded between 0 and 1 (r4(s) € [0,1]). Starting from the final
step H, the return distribution nz(s) is a Dirac delta function centered at rg(s). Applying
the distributional Bellman equation at step at step H — 1, we get

NH-1 (S) = ZPH—l (S/’3)5TH(S’)+?"H—1(S)'

Recall that |n| represents the number of atoms (distinct elements) in a discrete distribution
7, indicating the memory required to store this distribution. Since [nm(s)| = |0, (5| = 1
for each s € S, and ny_1(s) is a uniform mixture of all g (s) shifted by rr_1(s), we find

mar1(5)] = ] (@ ) g) | =o6)

s'eS

Continuing this process backwards through the time steps:

Inm—2(s)| = O(5?)

m(s)] = O(s"7H).

This analysis shows that the number of atoms in the return distribution exponentially in-
creases with the horizon H, scaled by the number of states S at each application of the
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distributional Bellman operator. As a result, the memory and computational requirements
to implement an ezact distributional RL algorithm like RODI-MF become prohibitive, par-
ticularly for problems with many states or a long horizon. This exponential growth in
complexity highlights the computational challenges associated with RODI-MF and under-
scores the need for approximations for practical implementations.

5. DRL with Distribution Representation

To address the computational challenges in implementing the distributional Bellman equa-
tion, we introduce two versions of RODI-MF in the revised paper that utilize distribution
representation. A widely used method of distribution representation is the categorical rep-
resentation, as discussed in recent literature (Bellemare et al., 2023). This approach pa-
rameterizes the probability distribution at fixed locations. Specifically, we consider the
simplest form of categorical representation that uses only two atoms. We refer to this as
the Bernoulli representation. It represents the set of all discrete distributions with two
distinct atoms, denoted as 6 = (01,602). We refer to 6 and 62 as the left and right atom.
The Bernoulli representation is formally defined as:

ﬁB(G) = {(1 *p)501 +poe, 1 p € [07 1]} :

With the Bernoulli representation in mind, let’s consider distributional Bellman operator

(s, 0) = [Tavni)(s,a) = Y Pu(s'ls, a)vnsa(s) (- = rals, a)).

This operator essentially performs two basic operations: shifting and mixing. Specifically, it
shifts each next-step return distribution by the reward r,(s,a) and then takes a mixture of
these shifted distributions with the mixture coefficients Py (s, a). However, these operations
might change and expand the support of the distributions, leading to:

(s, a)| = O(S) Va1l
To improve computational efficiency, we introduce the Bernoulli representation for 7j. Let
Upt1(5) = (Ln41(8), Rh1(5); an1(s)) € Fp(Lnta(s), Rava(s))

be a Bernoulli representation of the true return distribution vj,11(s), where Ly y1(s) and
Rj,+1(s) are the left and right atoms, and g+1(s) is the probability at Rp4+1(s). Applying
Th t0 Dpy1, we obtain

[77L]7h+1](8’ a) = (Th(‘S) (L) + Lh-i—l(sl)v ’f’h(S, a’) + Rh+1(5/);ph(8/|5’ a)q}l—l—l(‘s/))s/es Q IB.

The result is no longer a Bernoulli distribution but a categorical distribution with 2.5 atoms.
This demonstrates that the Bernoulli representation is not closed under 7y,

VE?B#EVEQB.

To overcome this issue, we introduce the Bernoulli projection operator. This operator serves
as a mapping from the space of probability distributions to %3, and we denote it as II :
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PZ(R) — Fp. Algorithmically, we add a projection step immediately after the application
of T, resulting in a projected distributional Bellman operator II7T. This projection ensures
that each iteration of 0, = II7,vp,41 is representable using a limited amount of memory.

Note that the projection operator is not unique. Previous works (Bellemare et al.,
2023) have developed projection operators aiming to find the best approximation to a
given probability distribution, as measured by a specific probability metric. Our approach
introduces a novel type of Bernoulli projection that preserves the ERM wvalue, an essential
aspect in risk-sensitive settings. Starting from a Dirac measure 6., we define the value-
equivalent Bernoulli projection operator as:

6. 2 (1 — q(c;0))d, + q(c;0)da, = (61,025 4(c;0)),
where the probability is defined as

eﬁc — 61891

q(c; 0) = eB02 _ opo:

€ [0,1]. (5)

It is easy to verify that Ug(Ilé.) = Ug(d.) = ¢, Ve € [01,02]. Now we extend the definition
to the categorical distributions as:

I (Czapz i€ln] — Z i, ¢ £ Zpinécz sz cza 0))501 + Q(Ci; 0)692)

i€[n)

— (Zpi(l —q(Ci, > 591 (sz Cza ) '692
= (91,92;ZPiQ(Ci;9)> :

Given that EU (d.,) = EU (IId,, ) , Vi € [n], the linearity of EU implies

EU (Z piacZ) Z piEU (c,) Z piEU (118,,) = EU (Z piH(SCZ) =EU (H > pi(sci> :

This verifies the value equivalence of II.

To ensure the preservation of the value, the only requirement is that the interval [0, 6]
covers the support of the input distribution, i.e., #; < min¢; < max¢; < #5. The projection
preserves the risk value of the original distribution, making it a powerful tool for efficient
and accurate representation in DRL for RSRL.

Without the knowledge of MDP, RODI-MF deviates from the DDP in two crucial updates:

M Ththst

M 4= Ocih.
In RODI-MF, the approzimate distributional Bellman operator T is applied first, which relies
on the empirical transition P rather than the true transition P. Then, the distributional
optimism operator O, is used to generate an optimistic return distribution. Drawing from

these observations, we propose two DRL algorithms with Bernoulli representation, differing
in the order of projection and optimism operator. We term the two algorithms as RODI-Rep.
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5.1 DRL with Bernoulli Representation
Given that n, € Dyiq1-p, we set the uniform and predefined location parameters as
L,b20, R,2H+1—h,
which is independent of (s,a). We represent each iterate by a Bernoulli distribution
h(s,a) = (1 q5(s,0))8 h(s, )8R, v (s) = (1 — qi(s))d h(5)8
Th(S, a qpls,a Lh+Qh S,A)0R, s Vp\S qp(s Lh+q17,s Rp»

where we overload the notation for qﬁ(s, a) and q,’f(s). Applying the approximate 7Ty to the
Bernoulli represented Vf; 41 € I yields

nh(s,a) = [Tvgal(s,a) = Y Br(s']s,a)vh o () (- = (s, a))
s'eS

= > PR(1s,a) (1= ah(s))0r,0s + a(s)0R, ) (- = Tals, a))
s'eS

= (1 - [p/fqlkz-i-l] (87 a)) ’ 67’h(s,a)+Lh+1 + [Pf]zgqi];:—&-l](‘s? CL) : 5Th(8,(l)+Rh+1
= (Th(87 a') + Lh—i—la Th(S, a) + Rh-‘rl; [p}]fq;§+1](8, a)) .
With slight abuse of notation, we let

Li(s,a) 2 rp(s,a) + Liy1, Rp(s,a) 2 (s, a) + Ryy1.

nr(s,a) = (Lh(s,a),Rh(s,a); [Pf]fqﬁﬂ](s,a)) is a Bernoulli distribution with support not
corresponding to Ly and R;. Now, we propose two different algorithms differing in the
order of projection and optimism operator.

Optimism-Then-Projection. RODI-0TP applies the optimism operator first, followed
by the projection operator:

nk « O Thvf ..

Note that n,’i — ﬁuﬁﬂ € Ip(rn(s,a) + Lpy1,mh(8,a) + Rpy1). For Bernoulli distribution,
the optimism operator admits a simple form

Oc (a,b;p) = (a,b;min(p + ¢, 1)) .

Applying optimism operator to n,’f yields

Ot ey (75(5,0)) = Ot gy (En(s. @), Rils, s [Pl )(s, )
— (Ln(s,a), Ru(s,a)min ([Pfaf](s,0) + ch(s,a),1) ).
We can simplify the update in a parametric form
@t (s,a) « [PFqF +1)(s,a) parametric Bellman update
k
h\S

q¥(s,a) « min(qF(s,a) + cf(s,a),1) optimism operator.
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Finally, we apply the projection rule (cf. Equation 5) to obtain
qi(s,a) < (1= qi(s,a))q(Ln(s, a); Ln, Rp) + qfi (s, a)q(Ru(s,a); Ly, Rp)
= (1 - qﬁ(sv a’))‘]i%(‘g? a) + qﬁ(sa a)q,}f(s, a)7
where

B(rp(s,a)+H—h) _ 1
R N . _ ¢
ap (s,a) = q(Ln(s,a); Ln, Rp) = eBH+1-h) _ 1

Bra(s,a) _ 1
(&
an (s,@) = a(Rn(s,a); L, Rn) =~y —

Remark 17 ¢?(s,a) and g (s,a) are fixed (independent of k) and known. Therefore we

can compute their values for all (h, s, a) in advance.

Projection-Then-Optimism. RODI-PTO applies the projection operator first, followed
by the optimism operator:

n}’f — Ocl'[ﬁu,]fﬂ.
The update can be represented in a parametric form

q
q
q

(s,a) + [P;’fqﬁﬂ](s, a) parametric Bellman update

(5,a) + (1 —q¥(s,a))qt (s,a) + ¢ (s,a)qf(s,a) projection operator

IS

(s,a) min(qﬁ(s, a) + cﬁ(s, a),1) optimism operator.

After applying optimism operator and projection operator, both RODI-OTP and RODI-PTO
update the value functions and policies accordingly

1 —
Qf(s,a) + 3 log (1 —qf(s,a) + ¢} (s, a)eHH1 h))

mh(s) + argmax Qi (s, ), V¥ (s) < Qi(s, mi(s))
a(s) < ah(s, 5 (s))-

Computational complexity. The time complexity of RODI-0TP and RODI-PTO is given as
follows: i) computation of ¢ and ¢®: O(HSA); ii) parametric Bellman update: KHSA -
O(9); iii) projection: KHSA-O(1); iv) optimism operator: KHSA-O(1); v) computation
of Q-function: KHSA - O(1); vi) greedy policy: KHS - O(Alog A). Therefore, the total
time complexity is given by

O(KHSA(S +1og A),

which is the same as that of RSVI2. The space complexity of both algorithm is given as
follows: 1) ¢© and ¢'': O(HSA); ii) Ny(s,a): O(HSA); iii) trajectory (s¥,al),n: O(T); iv)
probabilities gy, (s,a): O(HSA); v) action-value function: O(HSA). Therefore, their total
space complexity is O(HSA+T).
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5.2 Optimism of DRL with Representation

While RODI-OTP and RODI-PTO adapts RODI-MF by Bernoulli representation, they maintain
the optimism mainly due to the value-equivalence property of the projection operator. The
optimism ensures that RODI-0TP and RODI-PTO enjoy the same regret bound as RODI-MF.
By establishing the optimism of the value functions V}* < Vlk, we have:

Regret = Y (V= V) < Y (VF—v).
ke[K] ke(K]

Thus, the regret of an algorithm can be bounded by the cumulative difference between the
optimistic value function V¥ and Vfrk. It is intuitive that a smaller V* or less optimism leads
to reduced regret. Furthermore, in Section 8.2, we provide a detailed analysis to theoretically
demonstrate that RODI-0TP and RODI-PTO have smaller value functions compared to the
non-distributional RL algorithm RSVI2, resulting in less regret than RSVI2.

Optimism of RODI-0TP. For simplicity, we rewrite the update formula of RODI-0TP as

Define

(s, a) = [Tavnsa](s, a) = [Pavia] [s, a] (- = (s, a)),
which is the Bellman target that replaces b, by the true model P},. Note that v, € Fp
is the distribution generated by the algorithm, which is Bernoulli represented, rather than
the optimal distribution vy ;. Since

i) [5.al( = ma(s,@)) = [Paviaa] [s,al(- = (s, )|

o0

(s, @) = (s, @) = |
|

|
| Puvn] [s,al = [P [s.al]|

we have

ﬁh(57 CL) = Och(s,a)ﬁh(s)a) = ﬁh(s7 a)-
We can prove the argument by induction. Fix h+ 1 € [2 : H 4+ 1]. Suppose V11 =
Us (h41) = Up (0j41) = Vi for any s. It follows that

Qu(s,a) = Us (i (5,@)) = Us (Tin(s, @) = Us (iin(s, @) = Us (O, (s.0yn(s, @)
> Up (in(s. @) = Us (Tavnen)
> Us (Tavir) = Qi(s, a),

which implies Vj,(s) > V;*(s) for any s. The induction is completed.
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Optimism of RODI-PTO0. We rewrite the update of g(s,a) in RODI-PTO as:

Gn(s,a) < [Pagni1)(s,a), (s, a) = (Ln(s, a), Ru(s, a); 4u(s, a))
an(s,a) < (1 — dn(s,a))qr(s,a) + dn(s, a)qf (s, a),Mn(s, a) = (Ln, Ru; Gn(s, a))
qn(s,a) < min(g (s, a) + cp(s,a), 1), nu(s,a) = (Lp, Rp; qn(s,a)) .

Define
Gn(s,a) = [Phgnra] [s,al,  iin(s,a) = (Ln(s, a), Ru(s, a); dn(s, a)),
then we have
Wi (s,a) = (Ln, Ru; (1 — du(s, ))ay (s, @) + dn(s, a)gy' (s, a)) .

Mn(s,a) and 7, (s, a) are both Bernoulli distributions with the same support, thus

(5, @) = (5. ) |, = Idn (5. @)= (s,@)] = |[(P = Pi)aus] (s,0)] < || (P = Pa)(s0) -
We have

[T (s,0) = i (5, ), =
(1= (s, )af (5. 0) + dn(s. @)af(s. @) = (1 = Gu(s.))af (5, @) = (s, )aff (5,0)
= |(@n(s, @) = (s, @) af (s @) — af (5, )]
= |[(Ph = Po)ans(s. @) (afi (5,0) = af (5. 0))

= (af(s. @) — aF (5. )) [i1n(s,0) = (5, ).

< (afi(s.0) = af (5,0)) | Puls,0) = Pats, )| < (afi (5, @) = af (5, @))en(s, 0) < ens, ).

Suppose Vi41 = Ug (nh41) > Up (m)11) = Vi for any s. Since np,(s,a) = O, (5,0) (s, a) =
17, (s, a), we have

Qh(sa a) = U,B (nh(sa a)) = U,B (Och(s,a)ﬁh(‘S?a)) = Uﬁ (Och(s,a)Hhﬁh(37Q)) > UB (Hhﬁh(sa a))
= Us (in(s, a)) = Us ([Tavn41] (s,0))) = Up ([Tavia] (5,0))) = Q4 (s, a).

which implies Vj,(s) > V;*(s) for any s. The induction is completed.

6. RODI-MB

We introduce the Model-Based Risk-sensitive Optimistic Distribution Iteration algorithm
(RODI-MB, cf. Algorithm 2). Unlike its model-free counterpart, RODI-MB explicitly maintains
and updates an empirical transition model within each episode, making it a model-based
approach. However, RODI-MB also encounters issues with computational inefficiency. Re-
markably, RODI-MB is equivalent to a non-distributional RL algorithm (Algorithm 3). This
equivalence results in computational efficiency, as it operates on one-dimensional values
rather than full distributions.
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Planning phase (Line 5-14) Mirroring the structure of Algorithm 1, RODI-MB also em-
ploys approximate DDP in conjunction with the OFU principle. Initially, it applies the
distributional optimism operator to the empirical transition model ]5}’: , resulting in an op-
timistic transition model P,’f The algorithm then utilizes this optimistic model for the
Bellman update, generating optimistic return distributions 772. The subsequent steps re-
main consistent with those outlined in Algorithm 1.

Algorithm 2 RODI-MB

1: Input: T and §

2: N}(-,) = 0; PL(-,-) + +1 Vh € [H]

3: fork=1:K do

4 Vi ()« o
5: for h=H :1do
6:
7

if Nf(-,-) >0 then
P}lf(a) <_Ol ) (P}lf('v')aV}Ierl)

cﬁ(-,~
5 mhC ) [T (Bhora) v ] ()
9: else
10: mE(, ) < SHg1-h
11: end if
12: 7 (:) « argmax, Us(nf (-, a))
13: VE() < (o mr ()
14: end for
15: Receive s¥
16: for h=1:H do
17: ak « mF(s¥) and transit to sﬁﬂ
18: Compute N;f“(-, -) and P}’fﬂ(.’ )
19: end for
20: end for

Interaction phase (Line 16-19) During the interaction phase, the agent engages with the
environment using the policy 7% and updates the counts N, ;f“ and the empirical transition
model P,’f“ based on newly acquired observations.

6.1 Distributional Optimism over the Model

In the RODI-MB algorithm, we introduce a nuanced approach to generating an optimistic
transition model, P}’f(s, a), from the empirical transition model, ﬁ;f(s, a). This approach is
based on the concept of distributional optimism over the space of PMFs rather than CDFs.
Specifically, the goal is to compute a return distribution, nﬁ, from 15/5(8, a) and the future
return V,’j 41, such that n,’j > n; with high probability.

The distributional optimism operator, Ol, is defined for PMFs over the space 2(S)
with a level ¢, and it operates differently from O2° by also considering the future return
distribution v:

o} (]3(3,@), 1/) Zarg max  Ug([Pv]).

PeBi(P(s,a),c)
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This operator selects a model from within the ¢; norm ball, Bl(ﬁ(s, a),c), that yields the
largest EntRM value, Ug([Pv]). This approach ensures that O! generates a model with
optimistically biased estimates of the future returns, and it leverages an efficient method to
achieve this (as detailed in Appendix C).

Given that Lemma 10 assures the high-probability event Gs, the analysis primarily
focuses on scenarios conditioned on Gs. Additionally, due to the equivalence between EntRM
and EU, the verification of optimism is conducted in terms of EU for g > 0.

Lemma 18 (Optimistic model) For any (s,a,k,h) and P € Bl(lﬁ}’f(s,a),c’;(s,a)), we
have

By ([Biv] (5.0)) = Bs ([Pri] (5.0))
Proof Use the definition of O} and the equivalence between EntRM and EU. [

Lemma 19 (Optimism) Conditioned on event Gs, the sequence {W{“(s’f)}ke[[{] produced
by Algorithm 2 are all greater than or equal to Wl*(s’f), i.e.,

Wi (st) = Es(vi (s1)) > Ea(vi(s1)) = Wi (s}), Vk € [K].

The proof uses induction, paralleling the methodology in RODI-MF, and leverages Lemma
18 to ensure that the return distributions are optimistically biased.

Proof The induction begins with the terminal stage, H, and progresses backwards. For
the visited (s, a), we have

Jii(s,a) = Eg(f (s, a)) = exp(Bra (s, a) = Ji (s, ).

For the unvisited (s,a), it holds that J§(s,a) = exp(8) > Jj(s,a). Thus Wi(s) =
max, J}(s,a) > maxg Jj(s,a) = W(s) for any s. Assuming WF _ (s) > Wy (s),Vs
for h € [H — 1]. Tt follows that for the (s, a) with NF(s,a) > 0

TR (s, @) = exp(Bri(s.a) By ([Bivk ] (s.0)) > exp(Bra(s, ) s ([Puvki] (5. )
> exp(Bry(s,a))Ep ([Phl/;‘zﬂ] (s, a)) = Jy(s,a).

The first inequality is due to Lemma 18. The second inequality follows from the induction
assumption. For the unvisited (s,a), we have JF(s,a) = exp(3(H+1—h)) > J;(s,a). Since
Wk(s) = max, JF(s,a) > max, J;(s,a) = W;(s) for any s, the induction is completed. W

6.2 Equivalence to ROVI

The Risk-sensitive Optimistic Value Iteration (ROVI) algorithm, as outlined in Algorithm
3, is a non-distributional approach that processes value functions directly, as opposed to
handling return distributions. The RODI-MB algorithm, however, can be demonstrated to
be equivalent to ROVI. This equivalence signifies that both algorithms generate the same
policy sequence, implying that their resulting trajectories, denoted as Fg 1, follow the
same distribution. This relationship is grounded in the connection between the EntRM and
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EU, coupled with the linearity property of EU. To formalize this concept of algorithmic
equivalence, we define:

Algorithm 3 ROVI
1: Input: T and §
2: N}(-,) = 0; PL(-,) « +1 Vh € [H]
3: fork=1:K do

4 WEL ()1

5: for h=H :1do

6: if Nf(-,-) >0 then

7 () = Ok (PG, W)
8: TE(, ) = ePrnts) [p}llcw}lfﬂ} (")
9: else

10: JE(.,-) < exp(B(H +1—h))

11: end if

12: WE(:) < max, JF(-, a)

13: end for

14: Receive s}

15: for h=1:H do

16: ay < arg max, sign(B)Jy: (sf, a) and transit to s
17: Compute N/f“(-, -) and P,f“(‘, )
18: end for

19: end for

Definition 20 Recall that for an algorithm <, :Qf(]:k) € II denotes the policy to be de-
ployed in episode k. For two algorithms o/ and <f , we say that <7 is equivalent to <7 (vice

versa) if for any k € [K]|, any Fy, it holds that o7 (Fy,) = o/ (F)-

Under this definition, if two algorithms are equivalent, the trajectories or histories generated
by their interactions with any MDP instance will follow the same distribution throughout
the episodes. Consequently, these algorithms will enjoy the same regret.

Proposition 21 Algorithm 2 is equivalent to Algorithm 5.

Proof We focus on the case where 5 > 0, noting that the case for § < 0 can be argued in
a similar manner. Fix an arbitrary k € [K] and Fj, = {s},al, -+, s 1, a];{l}. Let <7 (and
w,’f) represent Algorithm 3 (and its corresponding policy sequence), while <7 (and ﬁ,’i) denote
Algorithm 2 (and its respective policy sequence). To establish equivalence, we need to show
that 7% aligns with 7" for the given history Fj. By the definition of the two algorithms

7k (s) = argmax Qf (s,a) = Us(nk(s,a)), 7k(s) = argmax J} (s, a).

If JF(s,a) = Eg(nf(s,a)) = exp(BQF(s,a)) for any (s,a), then 7F = 7% due to the mono-
tonicity of the exponential function. We will prove that JF(s,a) = Eg(nf(s,a)) for any
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(s,a) by the induction. The base case is evident as J&(s,a) = Es(n(s,a)). Assuming
Jk(s,a) = Eg(nf(s,a)) for all (s,a) for some h € [H], we have 7§ = 7} and

Wis(s) = max Jy(s,a) = J; (s,m;(s)) = Es (s (s, m(5)) = Es(ny; (s, 75 ())) = Es(vy(s)).

Given the same history Fi, both algorithms share the empirical transition model P/f_l, the
count N ,’f_l, and the optimism constants c’fl_l. Therefore, they also share the optimistic
transition model ]5,’:71. According to the update formula of Algorithm 3, for any (s,a) with
NF(s,a) > 0, we have

Ih1(s,0) = exp(Bra(s,)) [ PR Wi | (s.0) = exp(Bri(s,a)) By (| Pk (s.0))

= By (B r-0f] (5,0)) = Bs (nf1(s,0)) -

This equality also holds for the unvisited state-action pairs, thereby completing the proof
of equivalence between Algorithm 2 and Algorithm 3. [ |

6.3 Regret Upper Bound of RODI-MB/ROVI

Theorem 22 (Regret upper bound of RODI-MB/ROVI) For any § € (0,1), with proba-
bility 1 — &, the regret of Algorithm 1 or Algorithm 3 is bounded as

Regret(RODI-MF, K) = Regret(ROVI, K) < O(LyH+\/S?AK log(4SAT/5))

(2t

I
G

Proof The regret can be bounded as

Regret(K) <
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We can decompose 6% as follows

5h = Eﬁ(’/h(sh)) Eg(vi, (Sﬁ))

= exp(Brh) By ([Pivi | (1)) — exp(8ri) By ([P via] (sh))

= exp(8rh) Eg ([Bivi| (1)) — exp(8r) Bs ([P vk (5h)
(a)

+exp(Bri)Es ([P vk | (5h)) — exo(arh) Bs ([PE v ] (D)
(0)

= exp(Br) | PEWEL | () — exp(Brf) | P WL | (s5)

(@
+exp(Brk) | P Wik | () = exp(8rf) | PE Wi | (sh)

(0)

Using the Lipschitz property of EU
~ k
(@) < Lirsaon || Bivk] ()¢ = k) = [P v ] ) = b
~ K
= Ligsrn || [Bivia | (0 = [PEvEG ] (D]

~k‘ k
< Ly || B - P

oo

. < Lyi1-nc),
= (exp(B(H +1 — h)) = 1)cj,,
where the second inequality is due to Lemma 11. Term (b) is bounded as
ﬂ_k
(b) = exp(Brf) [P (Wi = Wit (sh) = exo(8rk) | P Ak | ()
xp(Br};) (€ + O 41);

where ef £ [PTr AR (sE) - AQ_H (s 1) is a martingale difference sequence with €} € 2Dj 44
a.s. for all (k, h) € [K] x [H]. In summary, we can bound 6 recursively as

8y < Lyi1-ncf + exp(Bry) (ef + 5Z+1)~

Repeating the procedure, we can get

H-1 h
k< ZLH+1 hHexp Brivey + > [ exp(Bri)ek + H exp(BrE) sk,
h= h=1 =1
H—ll ' H—-1 h
<) (exp(B(H +1—h)) = 1) exp(B(h — 1)) + > [ [ exp(Bri)ef; + exp(B(H — 1))6%
h=1 h=1 i=1
H-1 H—-1 h
< (exp(BH) — 1) C + HeXp €h + exp(ﬁ(H - 1))5];{'
h=1 h=1 i=1

31



HAo LIANG AND ZHI-QUAN Luo

It follows that

K K K
Zéf_ (exp(BH) — 1) Z cﬁ%—z
k=1

k=1 h=1 k=1

H-1

T

-1

h K
[[exp(Bri)er + ) exp(B(H —1))dj;.

11:=1 k=1

ﬁ“

The following follows analogously: with probability at least 1 — 4,

Regret(K) < SRBUH+1) — 1 (2(H — 1)V2S2AK. + V2K H: + SA)

B
-0 (GXP(BH)_lH,/HszAT> ’
GH
where ¢ £ log(25AT/6). [ |

Remark 23 Compared to the traditional/non-distributional analysis dealing with scalars,
our analysis is distribution-centered, and we call it the distributional analysis. The distribu-
tional analysis deals with the distributions of the return rather than the risk measure values
of the return. In particular, it involves the operations of the distributions, the optimism
between different distributions, the error caused by estimation of distribution, etc. These
distributional aspects fundamentally differ from the traditional analysis that deals with the
scalars (value functions).

7. Regret Lower Bound

The section establishes a regret lower bound for EntRM-MDP, serving to understand the
fundamental limitations of any learning algorithm in such settings. While previous works,
like Fei et al. (2020), have approached this problem by drawing parallels to simpler models
like the two-armed bandit, leading to lower bounds that are independent of S, A, and H,
this approach does not capture the full complexity of MDPs.

In contrast, the approach motivated by Domingues et al. (2021) aims to derive a more
comprehensive and tight minimax lower bound that incorporates these factors. For risk-
neutral MDPs, the tight minimax lower bound has been established as HvSAT, but ex-
tending this to the risk-sensitive domain is challenging due to the non-linearity of EntRM. In
risk-neutral scenarios, the linearity of expectation allows for the interchange of the risk mea-
sure (expectation) and summation, simplifying the analysis. However, in the risk-sensitive
setting, the non-linear nature of EntRM precludes such straightforward manipulations, ne-
cessitating novel proof techniques.

Assumption 1 Assume S > 6, A > 2, and there exists an integer d such that S =
We further assume that H > 3d and H £ % > 1.

Theorem 24 (Tighter lower bound) Assume Assumption 1 holds and B > 0. Let L =
(1-— %)(S —3) + %. Then for any algorithm <f , there exists an MDP M, such that for
K >2exp(B(H — H — d))HLA we have

1 exp(BH/6)—1

SAT.
724/6 BH

E[Regret(</ , M o7, K)] >
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Remark 25 As 8 — 0, it recovers the tight lower bound for risk-neutral episodic MDP
Q(HVSAT) (see Domingues et al., 2021).

Remark 26 The two conditions in Assumption 1 are used in the our paper and Domingues
et al. (2021) to simply the proof. Technically, we can relax these conditions to any MDP
with S > 11, A > 4 and H > 6, which is modestly large. In particular, condition (i) allows
us to consider a full A-ary tree with S — 3 nodes, which implies that all the leaves are at the
same level d—1 in the tree. The proof can be generalized to any S > 6 by arranging the states
in a balanced, but not necessarily full, A-ary tree. We can also technically relax condition

(i) to the case H < 3d. In this case, the resulting bounds will replace S by {A%_Q}.
Before presenting the proof of Theorem 24, we first fix the lower bound in Fei et al. (2020).

7.1 Fixing Lower Bound
Fei et al. (2020) presents the following lower bound.

Proposition 27 (Theorem 3, Fei et al. (2020)) For sufficiently large K and H, the
regret of any algorithm obeys

CIBIH/2 _ 4

] TlogT.

However, a critical reassessment of the proof reveals inaccuracies that necessitate a revision
of the lower bound. The main issue lies in the derivation of the second inequality in the
proof provided by Fei et al. (2020), specifically:

E[Regret(K)| 2

E[Regret(K)] > eXp(m;/?)_l K log(K) >, eXp(Bhg?)_l\/KH log(KH).

The authors establish the second inequality based on the following fact

Fact 3 (Fact 5, Fei et al. (2020)) For any a > 0, the function f, = em;*l,:z > 0 is
increasing and satisfies limy,_o fo = a.

In fact, we can only use Fact 3 to derive EXPW;# 2 H, which combined with the first
inequality yields

E[Regret(K)] 2 Hy/KH log(KH),

which, notably, does not capture the dependency on [ and H as the original lower bound
suggested. Consequently, the corrected version of the lower bound is more conservative and
does not reflect the exponential influence of the risk factor and the horizon on the regret.
This corrected proposition reads:

Proposition 28 (Correction of Theorem 3, Fei et al. (2020)) For sufficiently large
K and H, the regret of any algorithm obeys
elBIH/2 _ q

E[Regret(K)| 2 ]

vV KlogK.
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7.2 Proof of Theorem 24

We define kl(p, ¢) = plog% + (1 —p)log % as the KL divergence between two Bernoulli
distributions with parameters p and ¢. We define the probability measure induced by an
algorithm &/ and an MDP instance M as

K
Poym(FEH) & T Poprmym (Zhsh),
k=1

where P is the probability measure induced by a policy # and M, which is defined as

H

Prp(Zals1) £ H Wh(ah|8h)P}{M(8h+1\Sh,ah)-
h=1

The probability measure for the truncated history ”Hfl can be obtained by marginalization

Pomt(HE) = Py st (F)P o 7 0 (TH).-

We denote by P, a¢ and E./ ¢ the probability measure and expectation induced by &7 and
M. We omit &/ and M if it is clear in the context.

Proof Fix an arbitrary algorithm <. We introduce three types of special states for the
hard MDP class: a waiting state s,, where the agent starts and may stay until stage H,
after that it has to leave; a good state s, which is absorbing and is the only rewarding state;
a bad state s; that is absorbing and provides no reward. The rest S — 3 states are part of
a A-ary tree of depth d — 1. The agent can only arrive s,, from the root node s,,,¢ and can
only reach s; and s; from the leaves of the tree.

Let H € [H — d] be the first parameter of the MDP class. We define H & H +d + 1
and H' 2 H 4+ 1 — H. We denote by £ £ {51, 5o, ..., s;} the set of L leaves of the tree. For
each u* £ (h*,0*,a*) € [d+1: H +d] x L x A, we define an MDP M, as follows. The
transitions in the tree are deterministic, hence taking action a in state s results in the a-th
child of node s. The transitions from s,, are defined as

Ph(sw|sw,a)é1[{a:aw,h§ﬁ} and  Pj, (Sroot | Sw,a) =1 — Py, (8w | sw,a).
The transitions from any leaf s; € L are specified as
Py, (sg | si,a) LD+ Ay (h,si,a) and Py (sp | si,0a) 21 —p— Ay (h,si,a),

where Ay« (h, s;,a) = el{(h,s;,a) = (h*,sp,a*)} for some constants p € [0,1] and € €
[0, min(1 — p, p)] to be determined later. p and e are the second and third parameters of the
MDP class. Observe that s, and s, are absorbing, therefore we have Va, P, (s, | 84,a) £
Py, (sp | sp,a) = 1. The reward is a deterministic function of the state

ri(s,a) 2 1{s = sy, h > H}.

Finally we define a reference MDP M, which differs from the previous MDP instances only
in that Ag(h, s;,a) 2 0 for all (h, s;,a). For each ¢,p and H, we define the MDP class

A
CH,p,e =MoU {MU* }u*E[d—i—l:H—i—d}XLX.A'
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The total expected ERM value of & is given by

K H
£ [0 (Lonich bt )
Lk=1 h=1

(K H
=Euy M, 3 logE . [exp (ﬁ Z p(sk, aZ)) ] ]

K H
1
=Ey m,. Z 3 logE k aq,. [exp | B Z I{s) = s,4}

1
=Eu M, Z 3 log Bk ag,,. [exp(ﬁH/H{SIZ} = Sg})}]
=1

K
1
=Ey m,. Z 3 log(exp(BH’)IP’Trk,Mu* (s’;} =5g) + Pk pq,. (s% = sb))] ,

where the second equality follows from the fact that the reward is non-zero only after step
H, the third equality is due to that the agent gets into absorbing state when h > H. Define
z¥ £ (sF,ak) for each (k,h) and 2* £ (sp+,a*), then it is not hard to obtain that

H+d
Pk gy [s% = sg} = Z PPk (sﬁ € .C) +1I{h= h*}IPﬂk7u*(a:]fL =a%)e
h=1+d
=p+ ePrk (zf. = a*).

For an MDP M-, the optimal policy m*Mu* starts to traverse the tree at step h* — d then
chooses to reach the leaf s;« and performs action a*. The corresponding optimal value in any
of the MDPs is V**Mu* = L log(exp(BH')(p+¢€) +1—p—e). Define pf. = P - (2. = z%),
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then the expected regret of &/ in My~ can be bounded below as

Eo ., [Regret(e, My, K)]
[ K

H
= EEQ@MU* Z V*’M“* — Uﬁ (Z Th(l‘zﬂﬂ'k)]
h=1

i L1og exp(BH')(p+e)+1—p—c¢
=BT exp(BH)(p + eph) +1—p — ek

K e(1 — pi-)(exp(BH') — 1)
=Eo/ M [ D 508 (1 " exp(BH) (p+ €ph.) + 1 —p €p5*>

K !
> By | ; log (1 L —pﬁ*)(lejcrpl(BH ) — 1))]

=Eu My

2 Eo My

B exp(BH') — 16

45 P
H)-1 1
= eXp(iﬁ)Ke 1-— K]EVQ{,MM* [NK(U*)]> .

The first inequality holds by setting p + € < exp(—SH'). The second inequality holds by
letting € < 2exp(—BH’) since log(1 + z) > § for x € [0,1]. The last equality follows from
the fact that

B/ Moo [Pr] = Bar o [Pt e (e = 7)) = Py (2 = 0%) = By [{ (2 = 27)}]

and the definition of Ng (u*) £ S0 T{zk, = 2*}.
The maximum of the regret can be bounded below by the mean over all instances as

1
max Regret(o/, My, K) > —— Regret(o/, M+, K)
urEldHLH+d]xLx A HLA u*E[dJrl:%J:rd]xch
exp(H’) — 1 | *
> SV ) TR |1 - —— E,[N
z 13 € TAKH Z [Nk (u")]

u*€[d+1:H+d]x Lx.A

Observe that it can be further bounded if we can obtain an upper bound on
Zu*e[d+1:H+d]><£><A Ey+ [Nk (u*)], which can be done by relating each expectation to the
expectation under the reference MDP M.

By applying Fact 5 with Z = w € [0, 1], we have

K1 (B0 [Vi(0")] oo [Nk ()] ) < KL (Bo, Pu).
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By Pinsker’s inequality, it implies that

%Eu* [N (u*)] < %EO [Nic(u?)] + %KL (Py, Py ).

Since My and M, only differs at stage h* when (s,a) = z*, it follows from Fact 6 that
KL (Po, Pu+) = Eo [Nk (u*)] kl(p, p + €).

By Lemma 33, we have kl(p,p+ ¢€) < % for e >0 and p+ € € [0, %] Consequently,

1 *
= Y EelNc@))
u*€[d+1:H+d]xLxX A
1 €
< = * *
< Eo Z Ni(u™) | + NT Z VEo [Ng (u*)]
u*€[d+1:H+d]x LxA u*€[d+1:H+d]xLx A
€ — —
<1+ VLAKH,
V2p

where the second inequality is due to the Cauchy-Schwartz inequality and the fact that

Dureldit:A+dxcxa N (u') = K.
It follows that

=
exp(BH') — 1 1 NG LAKH
ma Regret( My« K) > ————Ke | 1 — —— — S
u*e[d—&—l:H—i{d]xLxA gret( “ ) 45 ¢ LAH LAH
Choosing € = \/> (1-— ﬁ) L’;‘(H maximizes the lower bound
Regret(/, Mye, K) > Y2 exp(BH7) — 1 <1 ! )2 LAKH
max egre , - .
u*€[d+1:H+d]x Lx A & v 8v/2 B LAH
Since S > 6 and A > 2, WehaveE:(l—i)(S—3)+l>§and1—m>l—§:%.
Choose H = and use the assumption that d < H to obtain that H' = H—d—H > % Now
we choose p = 1 exp(—BH') and € = /2(1 — ﬁ) L’;‘(H < 2\[ exp(—BH'/2) LAH <

%exp(—ﬂH’) if K > 2exp(BH')LAH. Such choice of p and ¢ guarantees the assumptlon
of Lemma 33 and that p + € < exp(—BH’), e < 2exp(—BH’). Finally we use the fact that

VLAK > \/ SAKH to obtain

max Regret(o/, My~, K) > L exp(BH/6) - 1\/SAKH.
wreld+1:H+d]x Lx A 726 B

Theorem 24 recovers the tight lower bound for standard episodic MDP, implying that the
exponential dependence on |3| and H in the upper bounds is indispensable. Yet, it is not
clear whether a similar lower bound holds for 5 < 0, which is left as a future direction.
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8. Discussion

In this section, we provide a comprehensive comparison of DRL algorithms (RODI-MB,
RODI-MF), DRL with distribution representation (RODI-O0TP, RODI-PTO), RSVI2 (Fei et al.,
2021), RSVI (Fei et al., 2020), and UCBVI (Azar et al., 2017) in terms of regret guarantees
and computational complexity. The comparison is also succinctly encapsulated in Table 1.

8.1 Numerical Results

To validate the empirical performance of our algorithms, we conducted numerical experi-
ments comparing RODI-MB, RODI-MF, and RODI-Rep with the risk-neutral algorithm UCBVI
(Azar et al., 2017), RSVI in Fei et al. (2020), and RSVI2 in Fei et al. (2021).

The experimental setup involved an MDP with S = 5 states, A = 5 actions, and a
horizon H = 5, mirroring the setup in Du et al. (2022). The MDP consists of a fixed initial
state denoted as state 0, and S additional states. The agent started in state 0 and could
take actions from the set [A], transitioning to one of the states in [S] in the next step. The
transition probabilities and reward functions were defined as follows for 2 < h < H:

Va € [A—1]: Py(s'|s,a) = 05 Vs €12:8 —1],Py(1s,a) = 0.5,

52
.001
Pu(s']s, A) = %,vs' €S — 1], Py (s, A) = 0.999

Va € [A] :rp(1,a) = 1,r(S,a) =04, m(s,a) =0 Vs € [2: 5 —1].

This MDP was designed to be highly risky, with the risk-neutral optimal policy leading
to a mean reward of 0.5 but with a chance of receiving no reward. A risk-sensitive policy
might prefer the last action A, which offers slightly less mean reward but a more consistent
return, indicating lower risk.

We set 6 = 0.005 and 5 = —1.1. The results, as illustrated in Figure 1, demonstrates
the regret ranking of these algorithms :

RODI-MB < RODI-MF < RODI-OTP < RODI-PTO < RSVI2 < RSVI < UCBVI.
RODI RODI-Rep

Figure 1 includes the following key observations:

(i) Advantage of distributional over non-Distributional algorithms: DRL algorithms (RODI
and RODI-Rep) outperforms non-distributional algorithms, demonstrating the effectiveness
of distributional optimism over bonus-based optimism.

(ii) Performance of RODI vs. RODI-Rep: While RODI shows better performance than RODI-Rep,
the latter offers a balance between statistical and computational efficiency.

(iii) Comparison of RODI-Rep with RSVI2: RODI-Rep demonstrates advantages over RSVI2
in terms of sample efficiency, while also maintaining computational efficiency.

8.2 Theoretical Comparisons
8.2.1 RODI vs. RSVI2

We first provide theoretical justifications regarding the regret ranking of RSVI (Fei et al.,
2020), RSVI2 (Fei et al., 2021), RODI-MF, and RODI-MB, which demonstrates the advantage
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Figure 1: Comparison of regret for different algorithms.

of distributional optimism over bonus-based optimism used in RSVI and RSVI2. A Kkey
observation regarding the ranking of their value functions V¥ is that:

value functions : RSVI > RSVI2 > RODI-MF > RODI-MB > V*.

This ordering will be formally presented in Equation 6. The last part of this inequality
sequence indicates that all these value functions are indeed optimistic. Given that the level
of optimism is mirrored in the value functions, we can deduce:

optimism level : RSVI > RSVI2 > RODI-MF > RODI-MB.

Considering the relationship between regret and the optimistic value function V¥

Regret = Y Vi — V™ < > v -y,
ke[K] kE[K)

it is intuitive that a smaller V¥ or less optimism induces reduced regret. Consequently,
their regret can be ranked as:

regret : RSVI > RSVI2 > RODI-MF > RODI-MB,

which explains Figure 1. The regret bounds of RODI should at least match those of RSVI2,
explaining the ranking of their regret bounds reported in Table 1:

regret bound : RSVI > RSVI2 = RODI-MF = RODI-MB.

Despite sharing same regret bounds with RSVI2, RODI outperforms RSVI2 both theoretically
and empirically. Formally speaking, let V', V" V denote the value functions generated by
RSVI, RSVI2, and RODI-MB respectively. Let i denote the distribution generated by RODI-MF.
We omit k for simplicity.
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Proposition 29 Fix (s,a,k,h). The comparison of their values is as follows:

RSVI élog ({pheﬁv’;“] + b%) (; = log <[Pheﬁ‘/}i/+1} + b;l)
(
(>) Us (i) RODI-F 6)

(i) ;log ({Pheﬁ"hﬂ]) RODI-MB

2 Lo ([mei]),

The proof is detailed in Appendix B. Both RSVI and RSVI2 use exploration bonuses, defined
as by = |’ — 1je, and b) = [ePHFI=R) _ 1|¢;, respectively, where ¢;,(s,a) represents the

log [Pheﬁ"fi'ﬂ} +b;{) RSVI2

model estimation error

. S
HPh(s,a) — Ph(s,a)Hl < cp(s,a) = WSL&).
Both b} and b are formulated as a multiplier times c,. Notably, b;, referred to as the the

doubly decaymg bonus (Fei et al., 2021), decreases its multiplier exponentlally across stages
h, contrasting with b} in RSVI. In comparison, RODI directly incorporates optimism into the
return distribution using an optimism constant c¢,. Our distributional analysis establishes
a connection between ¢ and the bonus via the Lipschitz constant of EU:

= L(Eﬁ,H — h)Ch < L(EB,H)C}L = b;v

where L(Eg, M) denotes the Lipschitz constant of EU over the distributions supported in
[0, M]. This distributional perspective posits that RSVI and RSVI2 design bonuses to offset
the error in value estimates, which is bounded by the product of the Lipschitz constant of
EU and the error in the return distribution:

Vi = Vi < L(Eg, H = 1) |k = m| < L(Eg, H = 1) | PE = Py < L(Bs, 1 = )
Under the distributional perspective, the multiplier in the bonus b is interpreted as the
Lipschitz constant that links the return estimation error ¢, to the value estimation error
b,. The Lipschitz constant decreases exponentially in & as the range [0, H — k] of the return
distribution narrows. Furthermore, b} used in RSVI2 is not improvable in the sense that its
corresponding Lipschitz constant is proven to be tight, as shown in Lemma 6.

In conclusion, bonus-based optimism requires an exponentially decaying multiplier or
Lipschitz constant, whereas distributional optimism functions directly at the distributional
level, obviating the need for a multiplier. Next, we theoretically justify the regret ranking
of RODI-0TP and RODI-PTO, which interpolates between RODI and RSVI2.

8.2.2 RODI-REP VS. RSVI2

We delve into the analysis by first explaining why RODI-PTO achieves marginally lower regret
compared to RSVI2, and subsequently, we justify the advantage of RODI-0TP over RODI-PTO.
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Near-equivalence between RSVI2 and RODI-PTO. We can show the near-equivalence
between RSVI2 and RODI-PTO using induction. Let V and V' denote the value functions
generated by RODI-PTO and RSVI2 respectively. We start with the base case that h = H.
By the construction of RODI-PTO, we have

qu(s,a) = q(rg(s,a);0,1) =
log (1= g (s,0))e” + an(s,0)e” ) = ria(s,0) = Qly(s,0) =
Vir(s) = maxQp(s,a) = max Q}I(s, a) = Vﬁ(s),

verifying the equivalence at step H. Now fix h € [H — 1]. Suppose the following holds

1
Vita(s) = B log (1 — qnt1(s) + Qh+1(3)€B(H_h)) < Vig(s),Vs € S =

1= gnra(s) + grya (s)e” M < Vi) ws e S,

Recall the recursion of ¢ (s,a) in RODI-PTO

dn(s,a) < [Puan1](s, a)
(jh(S, a) A (1 - Qh(s’a))QI%(Sv a’) + dh(sv a)Ql]z%(Sv CL)
qn(s,a) < min(gy(s,a) + cx(s,a),1).

It follows that

Qn(s,a) = }jlog ((1 — an(s,a))e’ + an(s, a)eB(HH—h))
_1 B(H+1-h) _
=3 log (1 + qn (s, a)(ePUHTT 1))
= ;bg (1 + gn(s, a)(PHFITN 1) 4 ¢y (s, a) (PHFITN) 1)) :

where the last inequality becomes equality if gy (s,a) + cp(s,a) < 1. By the definition of
projection, we obtain
1+ Ga(s,a) ("M — 1) = 1 — g (s, 0) + gu(s, @) TP
= (1= Gn(s,a)e’>D 4 g (s, a)ePrnisa)+H=h)
— [Ph(l — g 1)] (s, a)eﬁrh(s,a) + [phqhﬂ](& a)eﬁ(rh(s,aHHfh)
= > Puls'15.0) (1= s ()70 4 g () (111
S/

= DN P (s']s,0) (1= g () + quia ()" )

— Bra(s,a) Z Ph<3/‘8, a)e,BVh+1(S')

S/

<IN " Py(s']s, a)e Vi (),

E)

41



HAo LIANG AND ZHI-QUAN Luo

which implies

Qh(37 (L) <

| =

!

log (ews"” S Buls']s, a)e?in ) 4y (s, a) (PHIT) _ 1>> = Qh(s,a).

S

Then we have V,(s) = max, Qn(s,a) < max, Q},(s,a) = V}(s). The induction is completed.
Moreover, it holds that V}, = V), for every h € [H] if g,(s,a) +cp(s,a) < 1 for every (h, s, a).
This condition is likely to be met for large values of k, considering that

k1= Nf |=cf < 1/4/N} | .

Advantage of RODI-0TP over RSVI2 Let V and V' denote the value functions generated
by RODI-OTP and RSVI2 respectively. The recursion of gp(s,a) in RODI-0TP writes

dn(s,a) < [Puan+1](s, a)
qn(s,a) + min(gn(s,a) + cp(s,a),1)

qn(s,a) < (1= Gn(s,a))gi (s, a) + Gn(s, a)qs (s, a).
Fix (h,s,a) € [H — 1] x § x A. Note that
Vit(s) = élog (1 — qnt1(s) + Qh+1(5)66(H7h)> Vs €S,
= [PueVi1](s,0) = (1= Gn(s,a)) + Ga(s, )’ M, V(s, a),

then we have

1

Qn(s,a) = 3 log (1 — qn(s,a) + qn(s, a)eB(Hﬂ—h))
- ;1Og ((1 (s, a))ePED) 4 G (s, a)eﬁ(rh(s,a)Jerh))
< élog ((1 — qn(s, a))eﬁrh(sv“) + Gn(s, a)eﬁ(rh(svaHH—h) + en(s, a)(eﬁ(rh(s,aHH—h) _ eﬁrh(s,a)))
= ;log (eﬂrh(s,a) [pheﬁvf%rl](s’ a) + Ch(s,a)eﬁrh(s,a)(eﬂ(H—h) _ 1))
< ;log <eﬁrh(s,a) [pheﬂV;{+1](87 a) + Ch(87a)66rh(s,a)(eﬁ(H7h) _ 1))
< ;bg (eﬁrh(s,a)[pheﬁvfiﬂ](s’a) + cn(s, a)(ePHFI=R) _ 1)) — Q) (s, ).

Remark 30 This explains why RODI-OTP achieves an order of magnitude improvement in
regret compared with RSVI2 as well as RODI-PTO, as the ”optimism level ratio” of RODI-OTP
to RSVIZ2 at step h is quantifiable by

eﬁ(’%(s,a)—&—H—h) _ eﬂrh(s,a)
65(H+1_h) —1

<1.
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Remark 31 The difference in the optimism level between the two algorithms stems from
originates from their respective approaches to bounding the estimation error:

S (s, a) A5V ()

s

Specifically, RSVIZ treats e?"n&DtVii1) a5 g variable within the range (1, PHAI=R)] - How-
ever, since eP™(59) is deterministic and known, the bonus can be refined by acknowledging

Zph<3/‘87a)eﬁ(rh(sva)JrV;{H(S’)) = P[P, efVit1](s, a),

where Vi1 € [1, BH=R)],

Why OTP is better than PTO. The superiority of OTP over PTO can be substantiated
through an insightful observation about the optimization problem:

min U (L, R;q)
q

st. U (L,R;q) > Us (n) (7)
n =l <c
n = D(Supp(7))

Let (L, R; ¢) be the optimal solution to this problem. It turns out that the optimal solution is
given by (L, R; ) = I10.7, aligning with the OTP principle. Fixing (h, s, a), we interpret 7 =
[Thvhs1](s, a) as the empirical Bellman operator applied to vj,41. Suppose v, is optimistic
relative to the true distribution v}, i.e., Ug(vpy1) > v, . Define 7 2 [Thvniil(s,a),
which is the exact Bellman operator applied to v;11. Given that

9= lloc = (72 = ToJvnsal(s. @) | < enls.a),

the optimal solution satisfies

Us (L, B3 @) > Us (1) = Us ([Tavis)(s,@)) > Us ([Thvin)(s.0)) = Us (i (s, @) = Qi(s. ).

Hence, the optimal solution (L, R;q) is optimistic over 7} (s,a). The nature of the opti-
mization problem compels (L, R;G) to be the Bernoulli distribution with support (L, R},)
that necessitates minimal optimism over 7; (s, a). Notably, the PTO solution O,II7 is also a
feasible solution. Consequently, OTP induces less optimism than PTO:

Us (ITO¢n) < Ug (OII7) .

This analysis elucidates the inherent advantage of the OTP approach over PTO. By inverting
the order of the projection and optimism operators, OTP not only ensures an optimism
over the true distribution but also guarantees that the induced optimism is minimal and
necessary.
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8.3 Distributional Perspective

The distributional perspective is crucial in both the algorithm design and the regret analysis
of RODI, offering advantages and novel approaches.

8.3.1 ALGORITHM DESIGN

Rewvisiting RSVI2: RSVI2 effectively operates as a model-based algorithm, implicitly main-
taining an empirical model through visiting counts. We rewrite the key step in RSVI2
as:

1 A 1"
Q;{ = min {H +1—h,r,+ Elog ([Pheﬂvhﬂ} + b%)} .

Here, b} is chosen to ensure optimism:
[Pheﬁv}::rl} +0h > [Pheﬁv};;l] = [Pheﬁv}rﬂ} =bj> [(Ph - Ph)eﬁvfﬂl}

Distributional perspective: In contrast, the distributional perspective leads to a fundamen-
tally different algorithm design. The primary distinction of RODI is its implementation of
return distribution iterations based on approximate distributional Bellman equation. When
B — 0, RODI transitions to a risk-neutral algorithm, unlike RSVI2, where the log term be-
comes constant. RODI also introduces distributional optimism, yielding optimistic return
distributions without needing a multiplier, unlike bonus-based optimism. This approach
not only contrasts sharply with bonus-based methods but also demonstrates improved the-
oretical and empirical performance.

8.3.2 REGRET ANALYSIS

Our regret analysis, which we term distributional analysis, stands apart from traditional
scalar-focused approaches. This analysis is centered around the distributions of returns
rather than the risk values of these returns. It involves various distributional operations,
including understanding the optimism between different distributions and the errors caused
by distribution estimation. These elements fundamentally differ from classical analysis
methods that focus on scalars (value functions). Let’s highlight some novel aspects of our
distributional analysis compared to traditional approaches (Fei et al., 2020, 2021).

(i) Distributional optimism. Traditional analysis typically employs OFU to construct
a series of optimistic value functions. In contrast, our distributional approach implements
optimism directly at the distribution level, leading to a sequence of optimistic return dis-
tributions. This involves defining a high probability event under which the true return
distribution is close to the estimated one within a certain confidence radius, followed by the
application of a distributional optimism operator.

(ii) Lipschitz continuity and linearity in EU. We leverage key properties of EU, such
as Lipschitz continuity and linearity, that are crucial in establishing regret upper bounds.
The Lipschitz continuity of EU relates the distance between distributions to their EU values’
difference. In contrast, EntRM is non-linear w.r.t. the distribution, potentially introducing
a factor of exp(|#|H) in error propagation across time steps, leading to a compounded factor
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of exp(|3|H?) in the regret bound.
(iii) Better interpretability. Both RODI and RSVI2 share a same regret bound of

~ (exp(|8|H) — 1
O (W HVS?AK) .

From the distributional perspective, the exponential term w is interpreted as the

Lipschitz constant of EntRM, highlighting the impact of EntRM’s nonlinearity on sample
complexity. A larger Lipschitz constant implies a greater estimation error in values, thus
leading to a more unfavorable regret bound.

8.3.3 APPLICABILITY OF GENERAL RISK MEASURES

Our decision to focus on EntRM is primarily driven by its computational tractability and its
effectiveness in representing risk preferences within decision-making frameworks. A recent
study (Marthe et al., 2023), which postdates our work, establishes (MP) as a necessary
condition for DDP. They further ascertain that EntRM is the only continuous risk measure
that facilitates DDP, making it the optimal choice in terms of computational feasibility.

Furthermore, EntRM’s ability to balance the mean and variance of returns provides a
nuanced approach to risk that is especially relevant in environments where understanding
the trade-offs between violation and return is critical. In addition, it aligns well with the
exponential utility functions used in economic theory, providing a foundation in established
risk-sensitive models.

We note a recent study (Chen et al., 2024) on applying DRL for general Lipschitz risk
measures, which proposes DRL algorithms with sublinear regret bounds. While inspired by
our distributional perspective, these algorithms still face challenges regarding computational
tractability. In future work, we aim to explore how to design computationally efficient and
statistically optimal DRL algorithms for general risk measures.

9. Closing Remarks

In this paper, we present a distributional dynamic programming framework for RSRL. We
then introduce two types of computationally efficient DRL algorithms, which implement
the OFU principle at the distributional level to strike a balance between exploration and
exploitation under the risk-sensitive setting. We provide theoretical justification and nu-
merical results demonstrating that these algorithms outperforms existing methods while
maintaining computational efficiency compared. Furthermore, we prove that DRL can at-
tain near-optimal regret upper bounds compared with our improved lower bound.

Looking forward, there are several promising avenues for future research. Our current
regret upper bound has an additional factor of vHS compared to the lower bound, and
it may be possible to eliminate this factor through further algorithmic improvements or
refined analysis techniques. Additionally, extending the DRL algorithm from tabular MDP
to function approximation settings would be an interesting and valuable direction for future
investigation. Lastly, it would be worthwhile to explore how to design computationally
efficient and statistically optimal DRL algorithms for general risk measures.

45



HAo LIANG AND ZHI-QUAN Luo

Appendix A. Table of Notation

Symbol  Explanation

9 The space of all CDFs

P(a,b) The space of all CDFs supported on [a, b]
Du The space of all CDF's supported on [0, M]
By (F,c) The [-||, norm ball centered at F' with radius ¢
O the step function with parameter ¢

Ly The Lipschitz constant of EntRM w.r.t. 0o-o, over Zs
o The optimism operator w.r.t. |||, with coefficient ¢
M MDP instance

S finite state space

A finite action space

rh deterministic function at step h

S number of states

A number of actions

H Number of time-steps per episode

K Number of episodes

Z5'(s,a)  return of (s,a) at step h with policy 7

Y, (s) return of s at step h with policy =

Zj(s,a)  optimal return of (s,a) at step h

Y, (s) optimal return of s at step h

np(s,a)  distribution of Z] (s, a)

vi(s) distribution of Y} (s)

n(s,a) distribution of Z} (s, a)

vr(s) distribution of Y;*(s)

Q7 (s,a)  EntRM value of Z] (s, a)

Vir(s) EntRM value of Y;"(s)

Q7 (s,a)  EntRM value of Z}(s,a)

Vi (s) EntRM value of Y;*(s)

Ji(s,a)  EU value of Z] (s, a)

W7 (s) EU value of Y7 (s)

Jy(s,a)  EU value of Z}(s,a)

Wi(s) EU value of Y;*(s)

/HZ history up to step h of episode k

Fi history up to episode k — 1

o RL algorithm

s policy

Nk visiting count

Pk empirical transition function in episode k
T distributional Bellman operator

II projection operator

(x1,22;p) a distribution taking values x1, zo with probability 1 — p and p
(x;p) a discrete distribution with P(X = z;) = p;.
In| the number of atoms of the distribution 7
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Appendix B. Missing Proofs
B.1 Missing Proofs in Section 4

Proof of Lemma 6

Proof We first provide the proof for the case 8 > 0. For any F,G € %), without loss of
generality we assume fOM G(x)dexp(Bx) — fOM F(x)dexp(Bx) > 0, otherwise we switch the
order.

M M
|Es(F) — Ey(G)| = / exp(Bz)dF (x) — / exp(B)dG(z)

M M
exp(,Bx)F(m)\éw—/O F(m)dexp(ﬁx)—exp(ﬂ:c)G(:E)|éw+/0 G(z)dexp(px)

M

M
— / (G(z) — F(x))dexp(fz) < / G(z) — F(z)| dexp(Ba)
0 0

M
<|F ¢, /0 ldexp(Ba) = (exp(BM) — 1) | F - G|,

For the case 8 < 0, we assume fOM G(z)dexp(Bx) — fOM F(z)dexp(Bzx) > 0.
M M
|Es(F) — E3(G)| = /0 (G(z) - F(x))dexp(Bz) = /0 (G(z) — F(x))B exp(Ba)dz
M
< [ 16@) - Pla)| Bl exp(Bo)ds
0

M
<|F-Gl., /O ~ldexp(Bz) = (1 — exp(BM)) | F - G|,
— lexp(BM) — 1] | F Gl

Thus Ly = |exp(8M) — 1| for EU. To show the tightness of the constant, consider two
scaled Bernoulli distributions F' = (1 — p1)v + p1¢ar and G = (1 — pg)bo + potbas, where
w1, 2 € (0,1) are some constants. It holds that

|Es(F) — Es(G)| = |1 exp(BM) + 1 — p1 — (p2 exp(BM) + 1 — o)
= |1 — pol lexp(BM) = 1| = ||F = G|, L,
where the last equality holds since ||F' — G| = |F(0) — G(0)| = |1 — p2| (independent of
M). More formally, we have

: |Es(F) — Ep(G))]
inf sup = lexp(BM) — 1| = Lyy.
M>08>0 paeg,,  I1F = Glleo lexp(83) -1

Proof of Lemma 10

Fact 4 (/; concentration bound, Weissman et al. (2093)) Let P be a probability dis-
tribution over a finite discrete measurable space (X,%). Let P, be the empirical distribution
of P estimated from n samples. Then with probability at least 1 — 9,

202, 1

o, = e,
1 n 1)
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Lemma 10 does not directly follow from a union bound together with Fact 4 since the case
NF(s,a) = 0 need to be checked.

Proof Fix some (s,a,k,h) € S x Ax [K] x [H|. If Nf(s,a) = 0, then we have PF(-|s,a) =
%1. A simple calculation yields that for any Py(-|s, a)

<2< ,/251og(1/9).

1

H;l ~ Pu(ls,a)

It follows that

P (HP/:<~|s,a> - Pullsa)| < \/ N/f(QS)Vl log(1/3)

The event is true for the unseen state-action pairs. Now we consider the case that NV ,’f (s,a) >
0. By Fact 4 , we have that for any integer n > 1

Nﬂ&@:0>=1>1—&

P <H]5/f(.|s,a) - ph(.\s,a)Hl < \/N;(‘j@ log(1/8)| NF(s,a) = n> >1-4.

Thus,

P( oh (s, )~ Palils,a)]| < W)

- Sk (s a) — Pr (s a 2Slog(1/0) s a)=n sa)=n
_no,l,...P<HP;§(’ )= Ao, < G V| Vs o) = )P(N!:f(, )=n)
> (1-9) P(NF(s,a) =n) =1—6.

n=0,1,

Applying a union bound over all (s,a,k,h) € S x A x [K] x [H] and rescaling ¢ leads to
the result. u

Lemma 32 Let 0 <m < a < b, it holds that log(b) — log(a) < L(b— a).

B.2 Missing Proofs in Section 6
B.3 Missing Proofs in Section 7

Proof of Lemma 33
Proof Fix ¢ € [0,1], let h(p) :=kl(p, q). It is immediate that

P l—p

h'(p) = log = — log )

() . -
n"(p) = > 0.

~ p(l—p)
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Therefore h(p) is strictly convex, increasing in (¢, 1) and decreasing in (0,¢q). By Taylor’s
expansion, we have that

_ 1)2
h(p) = h(q) + W' (9)(p — q) + %h”(r)(p —q)? = m

for some r € [p,q] (p < q) or r € [q,p] (p > q). In particular, for any € > 0 such that
g=p+e< % it follows that

(p _ q)Q 62 62 62

—~ -7 | — < < —
2r(1 —7) la=p+e 2r(l—r) = 2p(l—p) = p’

kl(p,p +¢€) =

where the first inequality follows from the fact that r — r(1 —r) is increasing in [p,p+ €] C

[0, 1] and the second inequality is due to that 1 —p > 3. [ |

‘ m

Lemma 33 Ife>0,p>0 and p+ € € |0, %], then kl(p,p + €) < 2p(6127p) <<

—~ B

F) equipped

Fact 5 (Lemma 1, Garivier et al. (2019)) Consider a measurable space (€2,
[0,1], we have

with two distributions Py and Ps. For any F-measurable function Z : Q — [0,
KL (P1,P2) > k1 (E,[Z], E2[Z]),
where E1 and Eq are the expectations under Py and Py respectively.

Fact 6 (Lemma 5, Domingues et al. (2021)) Let M and M’ be two MDPs that are
identical except for their transition probabilities, denoted by Py, and Py, respectively. Assume
that we have ¥(s,a), Py(- | s,a) < Pj(- | s,a). Then, for any stopping time T with respect
to (I),>, that satisfies Ppq[T < o00] =1

KL(]P)M>]P)M’): Z Enm [N;{(S,CL)]KL (Ph( |S7a)’P}IL(' ‘ Saa))'
(s,a,h)ESX AX[H—1]

B.4 Missing Proofs in Section 8

Proof of Proposition 29
Proof Recall that
EU (z,P) = Z ePrip = [P o eﬁx]
i€[n]
We can prove the above inequalities by induction. We only show the proof for 5§ > 0.
Assume that
Vi1 = Viloy 2 Ug (Uh41) = Vi1 = Vi1
(a) <= induction V., > V;" |
(b) = b = |[PHFIZN) _q|c), < |BH — 1|y, = b,
(¢) <= Up (Dny1(s)) < V;' i (s) for all s € S is equivalent to EU (7p41(s)) < Vi (®),
Given the linearity of EU, we have

EU ([phﬂh—i-l]) — [pheﬂvéﬁrl} = |:phEU (ﬂh+1):| — [pheﬂv}ﬁl} <0.
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On the other hand,

20 (0, ([Ae])) -5 (A5

[e.9]

< L(EU, H — h) ’ O, ([Phﬂh+1]) . [Phﬂhﬂ} H
< L(EU,H — h)cp, < b}..
Therefore,

EU (och ([PhﬁhHD) <EU ([PhﬁhHD T < [Pheﬂ%l} Y

= Up (7n) < ;log <[]5heﬁVé’+1} + b%)

(d) < Since H [Phﬂh+1i| — [Phﬁh“} HOO < th — Phul < ¢p, we have O, ([Phl)hHD =
|:phﬂh+1i|. U (7h21(8)) > Vip1(s) for all s € S implies EU (#,41(s)) > e/Vh+1(5).
EU (i) = EU (Och ([PhﬁhHD) > EU ([PhﬂhHD
> [Ph oEU (ljh+1):| > [Ph o e*BVh“}
— EU (VhH, Ph) .
(c+d) <=
[(Ba = ) it ] = BU (Vi Ba) — BU (Vi )
< LEUH =) ||Vt ) = (Viteao Ba) |
< L(EU,H — h) Hﬁh - PhHI
< | PHHI=R) e,
(e) =
[Ph@BV}”Ll} > {Pheﬁvh“} > [Pheﬁv"*“}
Observe that
Q), = min {H +1—h,r+ ;log ([Pheﬂvfiﬂ} + bﬁl)}
> min {H +1—hry+ ;log ({Pheﬂvéll} + bﬁl’)} =Qh
> Ug (7n)
> min {H +1—h,r,+ élog ([Pheﬁ‘/hﬂ})} = Qh,

which implies that
Vi = max Q},(-,a) > max Qy(-,a) = Vi > max U (iln(+,a)) = Up (7)) > max Qp(-, a) = Vj.
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Appendix C. Additional Property of EntRM

We state some lemmas about the monotonicity-preserving property and their proofs here.
The results hold for general risk measures satisfying the monotonicity-preserving property.

Lemma 34 Let p be a risk measure satisfying (I). For any F and G such that p(F) < p(G)
and 0 <0 <0<1,
p(OF + (1 — 0)G) < p(0'F + (1 — 6")G).

Proof Let § = e,fﬁ €[0,0] and § = 6 — ¢ € (0,1]. It holds that

OF +(1—60)G =0F + (1 —0)(0F + (1 - 0)G)
OF +(1—60)G=0G+(1—-0)(0F + (1 -0)G).

The result follows from (I)

p(OF + (1 —0)(0F + (1 - 0)G)) < p(6G + (1 — 0)(AF + (1 — 0)G)).

Lemma 35 Let p be a risk measure satisfying (I) and n > 2 be an arbitrary integer. If
p(Fi) = p(G;),Yi € [n] (and p(Fj) # p(G;) for some j € [n]) then p (3 7L, 0:Fi) > (>
P> 0:Gy) for any 0 € A, (and 0; #0).

Proof The proof follows from induction. Note that 7" ; 6;F; = 01 F1+(1—61) > 7" 5 1 ’91 F;
and ) 7 o 1= 9 F; € 2, therefore by Lemma 34 we have p(}_", 6,F;) > p(01G1+> 1, 0;F}).
)

Suppose that for some k € [n—1] it holds that p(3>_" | 6,F;) > p(Zle 0:Gi+> i i1 OiF).
Since

ZGG + Z 6F-9k+1Fk+1+ZHG + Z 0, F;

i=k+1 i=k+2
:0k Frp 1+ 1—9k 7ZG+ — F,
+1L5k+ ( +1) ; 1_ 0k+1 i ';2 1— 9k+1 7

and 14— [ S5, 0,Gi + X1y, 0F] € 7, it follows that

(ZHF) >p<29G + Z 9F> >p<’§9G + Z 0F>

i=k+1 i=k+2

The induction is completed. If in addition p(F}) > p(G;) for some j € [n], the proof follows
analogously by replacing the inequality to the strict inequality and the fact that 6; > 0. B
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Lemma 36 (Monotonicity-preserving under pairwise transport) Let p be a risk mea-
sure satisfying the monotonicity-preserving property. Suppose n > 2 and (F;);c|n) satisfies
p(F1) < p(F3)... < p(E,). For any 0,0 € A,, and any 1 <1i < j <n such that

It holds that p(3 7, 0:F;) < p(>oi, OF;).

Proof Observe that

n
> 0pF=0;F; + 0;F; + Y 0,F, = 0;F; + 0jF; + Y 0, Fy

k=1 kg [y
= (0iF; + 03F;) + (1= 6; — 0;) > O F.
[y
By Lemma 34, it suffices to prove p(ei%ej(QgFi + 0. F))) > p(#ej(ﬁiFi +0;Fj)). The result
follows from the definition and the fact that p(F;) < p(Fj) and 0, < 6;. ]

Lemma 37 (Monotonicity-preserving under block-wise transport) Suppose n > 2
and (Fy)icp) satisfies p(F1) < p(Fa)... < p(Fp). It holds that p(371L, 0:F;) < p(3_i, 0;F})
for any 0,0" € A, satisfying 3k € [n],0, < 6, if i <k and 0, > 0; otherwise.

Proof Fix k € [n]. We rewrite the assumption imposed to 6’ as ¢, = 6; — §; for i < k and
0; = 0; + 0; for ¢ > k, where each §; > 0. It will be shown that there exists a sequence
{0} 1cpx) satisfying 0° = 6 and 6% = ¢’ such that p(6') < p('*1), then the proof shall be
completed.

sequence is constructed as follows: at the [-th iteration, we transport probability mass
d; of 0; to the probability mass of k41, ..., n. Specifically, we start from moving to the least
number 4; > 4;_1 that satisfy 951_1 < 921 and sequentially move to the next one if there is
remaining mass. The iteration stops until all the mass J; are transported. Repeating the
procedure for k times we obtain 0¥ = @'. The inequality p(6') < p(6"+1) for each iteration
follows from Lemma 36. |

Recall that the distributional optimism operator O} : 2(S) — 2(S) over space of PMFs
with level ¢ and future return v € 2° as

0! (ﬁ, u) £arg max Ug([PV]).
PeB;(P.c)

By Lemma 37, O} (]3, 1/) can be computed as follows
e sort v in the ascending order such that Ug(v!') < Ug(v?) - -+ < Us(v°)

e permute P in the order of v
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e move probability mass § of the first S — 1 states sequentially to the S-th state
The computational complexity of the three steps are O(Slog(.S)), O(S), and O(S). There-
fore the computational complexity of applying O in Line 6 of Algorithm 2 is only O(S log(.5)).
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