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Abstract

An important feature of kernel mean embeddings (KME) is that the rate of convergence
of the empirical KME to the true distribution KME can be bounded independently of
the dimension of the space, properties of the distribution and smoothness features of the
kernel. We show how to speed-up convergence by leveraging variance information in the
reproducing kernel Hilbert space. Furthermore, we show that even when such information
is a priori unknown, we can efficiently estimate it from the data, recovering the desiderata
of a distribution agnostic bound that enjoys acceleration in fortuitous settings. We further
extend our results from independent data to stationary mixing sequences and illustrate our
methods in the context of hypothesis testing and robust parametric estimation.

Keywords: kernel mean embedding, maximum mean discrepancy, distribution learning,
empirical Bernstein

1. Introduction

Estimating a probability distribution P over a space X from n iid samples X1, . . . , Xn ∼ P is
a central problem in computer science and statistics (Kearns et al., 1994; Tsybakov, 2008).
To formalize the question, one selects a distance (or at least a contrast function) between
distributions and oftentimes introduces assumptions on the underlying probability space
(for instance finitely supported, probability function is absolutely continuous with respect
to the Lebesgue measure, Hölder continuous, . . . ). Increasing the stringency of assumptions
generally leads to substantially faster minimax rates. For instance, in the finite support
|X | <∞ case and with respect to total variation, whilst the expectation risk evolves roughly
as
√
|X | /n, it is known that this rate can be sharpened by replacing |X | with a bound on the

“half-norm” 1 ‖P‖1/2
.
= (
∑

x∈X
√

P(x))2 (Berend and Kontorovich, 2013), when defined, and
which corresponds to some measure of entropy of the underlying distribution. Furthermore,
even without prior knowledge of ‖P‖1/2, one can construct confidence intervals around P that

1. The half-norm is not a norm in the proper sense as it violates the triangle inequality.

c©2025 Geoffrey Wolfer and Pierre Alquier.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v26/23-0161.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v26/23-0161.html


Wolfer and Alquier

depend on ‖P̂n‖1/2—the half-norm of the empirical distribution P̂n(x) = 1
n

∑n
t=1 δ [Xt = x]

(Cohen et al., 2020, Theorem 2.1). Namely, when P is supported on N, with probability at
least 1− δ, it holds that∥∥∥P̂n − P

∥∥∥
TV
≤ 1√

n

(∥∥∥P̂n∥∥∥1/2

1/2
+ 3

√
1

2
log(2/δ)

)
. (1)

The advantage of the above expression is twofold (a) we do not need make assumptions on
‖P‖1/2, which could be non-convergent2, and (b) in favorable cases where ‖P̂n‖1/2 is small,
the intervals will be narrower. In this paper, we set out to explore the question of whether
analogues of (1) are possible for general probability spaces and with respect to maximum
mean discrepancy.

1.1 Notation and Background

The set of integers up to n ∈ N is denoted by [n]
.
= {1, 2, . . .}. Let X be a separable

topological space, and P(X ) the set of all Borel probability measures over X . For a bounded
function f : X → R, we define for convenience

f
.
= sup

x∈X
f(x) f

.
= inf

x∈X
f(x), ∆f

.
= f − f. (2)

Let k : X × X → R be a continuous positive definite kernel and Hk be the associated
reproducing kernel Hilbert space (RKHS) (Berlinet and Thomas-Agnan, 2011). We assume
that the kernel is bounded3 in the sense that supx∈X k(x, x) < ∞. Letting P ∈ P(X ), the
kernel mean embedding (KME) of P is defined as

µP
.
= EX∼P [k(X, ·)] =

∫
X
k(x, ·)dP(x) ∈ Hk,

which is interpreted as a Bochner integral (Diestel and Uhl, 1977, Chapter 2). Let n ∈ N
and X1, . . . , Xn be a sequence of observations sampled independently4 from P. We write

µ̂P(X1, . . . , Xn) = µ̂P
.
=

1

n

n∑
t=1

k(Xt, ·) ∈ Hk, (3)

for the KME of the empirical distribution P̂n
.
= 1

n

∑n
t=1 δXt , and call the distance ‖µ̂P − µP‖Hk

the maximum mean discrepancy (MMD) between the true mean embedding and its empir-
ical estimator. A kernel is called characteristic if the map µ : P 7→ µP is injective. This
property ensures that ‖µP − µP′‖Hk = 0 if and only if P = P′. A kernel is called translation

invariant5 (TI) when there exists a positive definite function ψ : X → R such that for any
x, x′ ∈ X ,

k(x, x′) = ψ(x′ − x). (4)

2. As opposed to the empirical proxy ‖P̂n‖1/2, which is always a finite quantity.
3. Note that the supremum of the kernel is always reached on the diagonal, that is, sup(x,x′)∈X2 k(x, x′) =

supx∈X k(x, x).
4. Unless otherwise specified, the data will be considered iid. We will address the case of dependent data

in Section 5.
5. Also sometimes referred to as an anisotropic stationary kernel.
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In particular, ψ = ψ(0) = k. When X = Rd, a kernel k is said to be a radial basis
function (RBF) when for any x, x′ ∈ X , k(x, x′) = φ(‖x′ − x‖2) for some function φ : R+ →
R. Noticeably, k being positive definite does not preclude it from taking negative values.
However, when k is RBF, the following lower bound on φ holds (see for instance Genton
2001; Stein 1999),

φ ≥ φ inf
t≥0

{(
2

t

)(d−2)/2

Γ(d/2)J(d−2)/2(t)

}
,

where Γ is the Gamma function and Jβ is the Bessel function of the first kind of order β,
showing that |φ| becomes evanescent as the dimension increases.

1.2 Related Work

From an asymptotic standpoint, the weak law of large numbers asserts that µ̂P converges
to the true µP. Furthermore, √

n (µ̂P − µP)

converges in distribution to a zero mean Gaussian process on Hk (Berlinet and Thomas-
Agnan, 2011, Section 9.1). This work, however, is more concerned with the finite sample
theory, and more specifically with the rate of convergence of µ̂P towards µP with respect
to the RKHS norm. Conveniently and perhaps surprisingly, it is possible to derive a rate
that depends neither on the smoothness of the considered kernel k, nor the properties of
the true distribution. To obtain a distribution independent rate at OP (n−1/2), a typical
strategy (see for example Lopez-Paz et al. 2015, Section B.1) consists in first expressing the
dual relationship between the norm in the RKHS and the uniform norm of an empirical
process,

‖µ̂P − µP‖Hk = sup
f∈Hk
‖f‖Hk≤1

〈f, µ̂P − µP〉Hk = sup
f∈Hk
‖f‖Hk≤1

(
1

n

n∑
t=1

f(Xt)− Ef

)
. (5)

A classical symmetrization argument (Mohri et al., 2018) followed by an application of
McDiarmid’s inequality (McDiarmid et al., 1989) yield that with probability at least 1− δ,

sup
f∈Hk
‖f‖Hk≤1

(
1

n

n∑
t=1

f(Xt)− Ef

)
≤ 2Rn +

√
2k log(1/δ)

n
, (6)

where Rn is the Rademacher complexity (Mohri et al., 2018, Definition 3.1) of the class of
unit functions in the RKHS. The bound R2

n ≤ k/n (Bartlett and Mendelson, 2002), and
an application of Jensen’s inequality conclude the claim. With a more careful analysis,
Tolstikhin et al. (2017, Proposition A.1) halved the constant of the first term in (6), hence
showed that with probability at least 1− δ,

‖µ̂P − µP‖Hk ≤

√
k

n
+

√
2k log(1/δ)

n
. (7)
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What is more, Tolstikhin et al. (2017, Theorems 1,6,8) provide corresponding lower bounds
in ΩP (n−1/2), showing that the embedding of the empirical measure achieves an unimprov-
able rate of convergence. Results similar to (7) (with worse constants) can be derived when
the observations are not independent, see Chérief-Abdellatif and Alquier (2022, Lemma
7.2). We note that other estimators have been proposed in the literature for the case where
more information is available about the underlying distribution P. See for instance Muandet
et al. (2014, 2016) who propose a shrinkage estimator inspired by the James-Stein estimator.
In this work, we stress that our estimator will be the KME of the empirical distribution,
defined in (3).

1.3 Main Contributions

In this paragraph, we briefly summarize our findings. The tilde notation suppresses con-
stants and logarithmic factors in 1/δ, and the reader is referred to Theorem 1 and Theo-
rem 12 for the full expression of the second order terms. Our first contribution (Theorem 1)
consists in deriving a bound on ‖µ̂P − µP‖Hk that can leverage additional information about
the underlying distribution P and the selected kernel k. Namely, we show that with proba-
bility at least 1− δ,

‖µ̂P − µP‖Hk ≤
√

2vk(P)
log(2/δ)

n
+ Õ

(
1

n

)
,

where vk(P)—defined in (8)—corresponds to some notion of variance in the RKHS. Notably,
it holds that vk(P) ≤ k, hence our upper bound is superior to and able to recover known
bounds in most settings (Remark 2).

Our chief technical contribution (Theorem 12) is in establishing that, at least when
k is translation invariant, the dependence of the above confidence interval can be made
independent of the underlying distribution by replacing the variance by an empirical proxy.
Specifically, with probability at least 1− δ,

‖µ̂P − µP‖Hk ≤
√

2v̂k(X1, . . . , Xn)
log(4/δ)

n
+ Õ

(
1

n

)
where v̂k—defined in (12), (13)—is a quantity that only depends on the chosen kernel and
the sample. We also extend the latter result to kernels without the translation invariance
property in Theorem 29.

Expanding beyond the iid setting, we obtain convergence rates for stationary mixing
sequences. For φ-mixing processes, Theorem 17 establishes the following rate of convergence.

‖µ̂P − µP‖Hk ≤
√
vk + Σn

n
+ 4

√
2vk ‖Γ‖2 log(1/δ)

n
+ Õ

(
1

n

)
,

where Σn is a total measure of covariance between observations in the RKHS (refer to
Lemma 16) and ‖Γ‖2 is the spectral norm of a coupling matrix defined in (17). We addi-
tionally analyze the broader class of β-mixing processes in Theorem 18.
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1.4 Outline

In Section 2, for the problem of estimating a distribution with respect to maximum mean
discrepancy, we give a convergence rate with a dominant term in OP (n−1/2) involving a
variance term v which depends on both the chosen kernel k and the underlying distribution
P. We then illustrate how the rate can subdue minimax lower bounds when v is favorable.
In particular, we show that for large collections of kernels, and when X ⊂ Rd, the variance v
can be controlled by a quantity that decouples the influence of the kernel and a measure of
total variance of P. In Section 3, we proceed to show that even if v is unknown, it is possible
to efficiently estimate it from the data with an “empirical Bernstein” approach whenever the
kernel is translation invariant, or at least enjoys a mildly varying diagonal. In Section 4, we
illustrate the benefits of the variance aware bounds on the classical two-sample test problem.
In Section 5, we establish convergence rates for stationary φ and β mixing sequences. In
Section 6.2, we put our methods into practice, first in the context of hypothesis testing, and
second by improving the results of Briol et al. (2019) and Chérief-Abdellatif and Alquier
(2022) in the context of robust parametric maximum mean discrepancy estimation. All
proofs are deferred to Section 7 for clarity of the exposition.

2. Variance-Aware Convergence Rates

The central quantity we propose to consider is the following variance term in the RKHS,

vk(P)
.
= EX∼P ‖k(X, ·)− µP‖2Hk . (8)

It is clear that vk(P) depends both on the choice of kernel k and on the underlying distribu-
tion, and we will simply write v = vk(P) to avoid encumbering notation. Simple calculations
(refer to Lemma 16) show that

E ‖µ̂P − µP‖2Hk =
v

n
,

where the expectation is taken with respect to an independent sample X1, . . . , Xn ∼ P, thus
by applications of Jensen’s and Chebyshev’s inequalities, we readily obtain a rate on the
expected risk in terms of v,

E ‖µ̂P − µP‖Hk ≤
√
v

n
,

and a deviation bound

P
(
‖µ̂P − µP‖Hk > (1 + τ)

√
v/n

)
≤ 1/(1 + τ)2, τ ∈ (0,∞).

One basic feature of RKHS is that new kernels can be constructed by linearly combining
existing kernels—see for instance Gretton (2013). It is therefore noteworthy that v is linear
with respect reproducing kernels. Reformulate

v = EX∼P [k(X,X)]− EX,X′∼P
[
k(X,X ′)

]
,
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and suppose that k =
∑

ki∈K αiki where K =
{
k1, . . . , k|K|

}
is a collection of reproducing

kernels with α ∈ R|K|. It then holds that

vk =
∑
ki∈K

αivki .

Moving on to high-probability confidence bounds, an application of Bernstein’s inequality
in Hilbert spaces (Pinelis and Sakhanenko, 1985; Yurinsky, 1995) not only recovers the
rate of convergence, as alluded to by Tolstikhin et al. (2017), but in fact yields a maximal
inequality.

Theorem 1 (Variance-aware confidence interval) Let X1, . . . , Xn
iid∼ P, k : X × X →

R be a reproducing kernel, and let

v
.
= EX∼P ‖k(X, ·)− µP‖2Hk .

With probability at least 1− δ, it holds that

max
1≤t≤n

{
t ‖µ̂P(X1, . . . , Xt)− µP‖Hk

}
≤
√

2vn log(2/δ) +
4

3

√
k log(2/δ),

where k = supx∈X k(x, x). In particular, with probability at least 1− δ, it holds that

‖µ̂P(X1, . . . , Xn)− µP‖Hk ≤ Bk,δ(P, n),

with

Bk,δ(P, n) = Bδ
.
=

√
2v

log(2/δ)

n
+

4

3

√
k

log(2/δ)

n
.

Remark 2 Since the reproducing kernel is bounded, it is always the case that

v ≤ EX∼P ‖k(X, ·)‖2Hk ≤ EX∼Pk(X,X) ≤ k,

where the first inequality can be found for example in (Chérief-Abdellatif and Alquier, 2022,
Lemma 7.1, Proof). As a result, Theorem 1 strictly supersedes (7) at least when

n >
16

9

(
log(2/δ)

1 +
√

2 log(1/δ)−
√

2 log(2/δ)

)2

.

For instance, for δ = 0.05, it suffices that n ≥ 46.

Remark 3 The Bernstein approach, in contrast to bounded differences, has the additional
advantage of yielding a maximal inequality, further opening the door for early stopping
methods.

Remark 4 (Sharpness of the constants) We note but do not pursue that there exist
other families of concentration inequalities which are known to dominate Bennett–Bernstein-
type inequalities. For instance, the class of inequalities pioneered by Bentkus et al. (2006),
with empirical counterparts derived by Kuchibhotla and Zheng (2021), which is known to be
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nearly optimal for sample averages of independent observations from a log-concave probabil-
ity distribution. We also mention the family of inequalities obtained by Waudby-Smith and
Ramdas (2024) based on martingale methods. However, our problem requires a bound for
norms of sums of vectors in Hilbert spaces, or alternatively for the supremum of empirical
processes, which we could not locate in the aforementioned references. Additionally, even in
the simpler case of sample averages, computation of the bound requires effort, thus a concen-
tration bound in the more complicated Hilbert space setting could be challenging to compute.
Finally, Bernstein-type bounds have known extensions for the case of time-dependent data,
enabling us to analyze the estimation problem from stationary mixing sequences of observa-
tions (refer to Section 5).

We immediately observe that:

(O1) While the bound in (7) depends solely on chosen quantities and is computable without
any knowledge of P, this is not the case for Bδ in Theorem 1.

(O2) Perhaps even more concerning, it is a priori unclear how v depends on properties of
k and P, thus making it difficult to convert assumptions on P into a bound for v.

We defer (O1) to Section 3 and first address (O2) by pointing out that when X = Rd,
and for numerous hyper-parametrized families of kernels, it is possible to promptly obtain
upper bounds on v that decouple the influence of the hyper-parameter and some measure
of spread of the underlying distribution.

2.1 Gaussian Kernel

For a TI kernel—see (4)—we can rewrite v as

v = ψ − EX,X′∼P
[
ψ(X ′ −X)

]
.

The Gaussian kernel with lengthscale parameter γ > 0, defined by

kγ(x, x′) = exp

(
−
‖x′ − x‖22

2γ2

)
, (9)

is the prototypical example of a characteristic translation invariant kernel, and satisfies
ψ = 1. For x ∈ Rd, let xi denote the ith component of x. The function z 7→ e−z is convex,
thus from Jensen’s inequality

vγ = EX∼P ‖kγ(X, ·)− µP‖2Hkγ ≤ 1− exp

(
−
EX,X′∼P ‖X ′ −X‖22

2γ2

)
.

We can further rewrite the expectation on the right side of this inequality as

EX,X′∼P
∥∥X ′ −X∥∥2

2
=

d∑
i=1

EX,X′∼P
[
(X ′i −Xi)2

]
=

d∑
i=1

2VX∼PXi = 2 Tr ΣP,

where ΣP
.
= VX∼PX = EX∼P [(X − EX)(X − EX)?] is the covariance matrix of P and

its trace is interpreted as a measure a total variance, agnostic to correlations between

7



Wolfer and Alquier

distinct components. As a result, for any fixed γ > 0, we obtain from Theorem 1 that with
probability at least 1− δ,

‖µ̂P − µP‖Hkγ ≤
√

2
(
1− e−Tr ΣP/γ2

) log(2/δ)

n
+

4

3

log(2/δ)

n
. (10)

While γ has no influence over the right-hand side in (7), it is clear that for γ →∞, the rate
of convergence will be accelerated in (10).

Example 1 (Gaussian location model with known variance) Assume that P = Pθ =
N (θ, σ2Id), the Gaussian distribution with unknown location parameter θ ∈ Rd, but with
known covariance matrix σ2Id. It holds that Tr ΣPθ = σ2d.

(i) Fixing γ and taking σ → 0, the bound in (10) vanishes, unlike (7).

(ii) Setting γ2 = λσ2d with λ > 0, we readily obtain the variance upper bound v ≤
(1− e−1/λ) ≤ 1/λ, enabling uncomplicated tuning of the convergence rate by λ.

Remark 5 Example 1 highlights that if we allow the lengthscale parameter to vary with
the sample size n, Theorem 1 speeds up the convergence rate dramatically. For instance,
setting λn = −1/ log(1− 1/n), we achieve a rate in OP (n−1), subverting the lower bounds
of Tolstikhin et al. (2017). In fact, we can reach any prescribed rate of convergence between
OP (n−1/2) and OP (n−1) for a suitable choice of λn. This stands in sharp contrast with
bounds obtained through a bounded differences approach such as (7). However, it is impor-
tant to remember that a larger lengthscale parameter will flatten the kernel, hence make the
left hand side in (10) less informative. Depending on the application, it is possible to achieve
the optimal balance between these two effects; some examples are discussed in Section 6.

2.2 Convex Radial Square Basis Functions

In fact, a technique similar to that used for obtaining (10) yields a bound on the variance
for any (convex) radial kernel.

Lemma 6 Assume that for any x, x′ ∈ X , k(x, x′) = r(−‖x′ − x‖22) for some convex func-
tion r : R+ → R. Then

v ≤ r − r (−Tr ΣP) ,

where ΣP is the covariance matrix that pertains to P.

2.3 Positive Definitive Matrix on the Finite Space

Consider |X | < ∞ and a symmetric positive definite matrix K of size |X |. Write K =∑
x∈X λxv

ᵀ
xvx, where for any x ∈ X , Kvx = λxvx, and by positive definiteness, λx > 0.

Then the feature map can be expressed as

K(x, ·) =
(√

λx′vx(x′)
)
x′∈X

,

8
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and by direct calculation,

‖µ̂P − µP‖2HK =
∑
x∈X

λx

(
1

n

n∑
t=1

vx(Xt)− E[vx(X)]

)2

,

v =
∑
x∈X

λxV[vx(X)].

In particular, for K = I,

‖µ̂P − µP‖HK =
∥∥∥P̂n − P

∥∥∥
2
, v = 1− ‖P‖22 ,

recovering that with probability at least 1− δ,∥∥∥P̂n − P
∥∥∥

2
≤
√

2(1− ‖P‖22)
log(2/δ)

n
+

4

3

log(2/δ)

n
.

So far, we have shown how to obtain for a natural class of kernels an upper bound on
v that decouples the choice of k from some measure of total variance of P. Provided an
upper bound on the latter is available (see Example 1), we obtain an improved convergence
rate. However, we understandably may not have a bound on the variance of P, or could
have insight about its variance, but only have access to contaminated data (see later Sec-
tion 6.2.1). Recovering a bound that still enjoys the discussed speed-up without a priori
knowledge on P is the problem we set out to solve in the next section.

3. Convergence Rates with Empirical Variance Proxy

We solve the issue (O1) of not knowing v by estimating it from the data, simultaneously to
µP. A short heuristic analysis of the Epanechnikov function (which is not typically a kernel
according to our definition) that we conduct in Section 3.1 hints at an “empirical Bernstein”
(Audibert et al., 2007; Maurer and Pontil, 2009) approach—replacing the variance term by
some empirical proxy—which we explore formally in Section 3.2. The argument is structured
around the pivotal definition of a weakly self-bounding function that we first recall.

Definition 7 (Maurer 2006; Boucheron et al. 2009) Let n ∈ N, t0 ∈ [n],

x = (x1, . . . , xt0 , . . . , xn) ∈ X n,

x′t0 ∈ X , and write

x(t0) = (x1, . . . , xt0−1, x
′
t0 , xt0+1, . . . , xn),

for the vector where xt0 has been replaced with xt′0. Let f : X n → R.

(i) The function f is called weakly (α, β)-self-bounding when for all x ∈ X n,

n∑
t0=1

(
f(x)− inf

x′t0
∈X

f
(
x(t0)

))2

≤ αf(x) + β.

(ii) The function f is said to have the bounded differences property when for all x ∈ X n
and all t0 ∈ [n],

f(x)− inf
x′t0
∈X

f
(
x(t0)

)
≤ 1.

9
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3.1 Intuition in the Hypercube

Let us take X = [0, 1]d the binary hypercube for d � 1, and consider the Epanechnikov
(parabolic) function

q(x, x′) = 1−
∥∥x′ − x∥∥2

2
/d.

Note that q does not define a proper kernel (Cuturi, 2009, p.9). Nevertheless, the function
q is TI, with ψ(t) = 1 − ‖t‖22 /d, ψ = 1, and we can extend the definition of the variance
term

v = ψ − EX,X′∼P
[
ψ(X ′ −X)

]
= 2 Tr ΣP/d.

It is natural to define for i ∈ [d],

v̂i(X1, . . . , Xn)
.
=

1

2n(n− 1)

n∑
s=1

n∑
t=1

(
Xi
t −Xi

s

)2
,

that will act as an unbiased empirical proxy for vi
.
= VX∼P

[
Xi
]
, and introduce Tr Σ̂

.
=∑d

i=1 v̂
i, as an estimator for the trace of the covariance matrix ΣP.

Lemma 8 For x ∈ [0, 1]d, the function Xm → R+, x 7→ Tr Σ̂(x)/d is weakly (n/(n− 1), 0)-
self-bounding and has the bounded differences property in the sense of Definition 7.

As a consequence of Lemma 8, the technique of Maurer and Pontil (2009, Theorem 10)
provides the following deviation bounds on the square root of the total variance

P

(
b

[√
Tr ΣP/d−

√
Tr Σ̂(X)/d

]
>

√
2 log(1/δ)

n− 1

)
≤ δ, b ∈ {−1, 1} . (11)

In other words, with high confidence, we can replace the trace of the covariance matrix with
its empirical proxy in the convergence bounds.

3.2 Systematic Approach

Our goal is to rigorously develop the approach intuited in the previous section to include a
large class of reproducing kernels. We propose the following empirical proxy for the variance
term v,

v̂k(X1, . . . , Xn)
.
=

1

n− 1

n∑
t=1

(
k(Xt, Xt)−

1

n

n∑
s=1

k(Xt, Xs)

)
, (12)

write more simply v̂ for v̂k when k is clear from the context, and promptly verify that v̂ is
an unbiased estimator for v.

Lemma 9 (Unbiasedness) It holds that Ev̂ = v, where the expectation is taken over the

sample X1, . . . , Xn
iid∼ P.

10
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The remainder of this section is devoted to analyzing the self-boundedness properties
of v̂ under mild conditions on k and deriving corresponding empirical confidence intervals
around µP. We henceforth let k be a characteristic TI kernel defined by the positive definite
function ψ. We also obtain partial results for the more general case of kernels which are
not translation invariant. This analysis is deferred to the appendix Section A (refer to
Theorem 29). In the TI setting, the expression of v̂ can be simplified as

v̂(X1, . . . , Xn)
.
= ψ − 1

(n− 1)n

∑
t6=s

ψ(Xt −Xs). (13)

Since the kernel is characteristic, ψ cannot be a constant function, that is ∆ψ > 0. Under
our assumptions, we introduce a function involving v̂ and ∆ψ that is weakly self-bounded
and has the bounded differences property.

Lemma 10 Let ψ define a characteristic TI kernel. The function

X n → R, x 7→ n

2∆ψ
v̂(x),

is weakly (2, 0)-self-bounding and has bounded differences in the sense of Definition 7.

This property leads to concentration of
√
v̂ around

√
v.

Lemma 11 For b ∈ {−1, 1}, with probability at least 1− δ,

b
[√

v̂ −
√
v
]
≤ 2

√
2∆ψ log(1/δ)

n
. (14)

Theorem 12 (Confidence interval with empirical variance for TI kernel) Let n ∈
N, X1, . . . , Xn

iid∼ P, let k be a characteristic translation invariant kernel defined from a pos-
itive definite function ψ [see (4)]. Then with probability at least 1− δ, it holds that

‖µ̂P − µP‖Hk ≤ B̂k,δ(X1, . . . , Xn),

with

B̂k,δ(X1, . . . , Xn) = B̂δ
.
=

√
2v̂(X1, . . . , Xn)

log(4/δ)

n
+

16

3

√
∆ψ

log(4/δ)

n
,

and where v̂ is the empirical variance proxy defined in (13).

Example 2 Theorem 12 immediately holds for Gaussian kernels, regardless of the length-
scale parameter.

Remark 13 We make the following observations.

(i) It still almost surely holds that v̂ ≤ ∆k ≤ 2k, thus the fully empirical bound can never
be more than a constant factor away from (7) or Theorem 1.

(ii) Crucially, self-boundedness of v̂ and being able to apply Theorem 12 (or Theorem 29
for non TI kernels) only depends on the choice of kernel, and not on the properties of
the underlying distribution.

(iii) Theorem 12 does not depend on smoothness properties of the kernel (also true for
Theorem 29 for non TI kernels).
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3.3 Computability of the Empirical Variance Proxy

The proxy v̂ is computable from data with O(n2) calls to the kernel function. In Section 6,
we will discuss how to use variance-aware bounds to improve confidence bounds and test pro-
cedures based on the minimum-MMD estimator. In general, this estimator is computed by
stochastic gradient descent (SGD) (Dziugaite et al., 2015; Li et al., 2015; Chérief-Abdellatif
and Alquier, 2022) or variants like stochastic natural gradient descent (Briol et al., 2019).
A single step of SGD requires to sample m iid random variables from Pθ where θ is the
current estimate, and to compute the unbiased estimate of the gradient which requires
(among others) O(mn) calls to the kernel function. In the natural version, one must also
compute a Jacobian at each step, which requires O(n2) calls to the kernel. Morever, in
the discussion following Theorem 2 of Briol et al. (2019), it is argued that we should take
m & n in these algorithms. Thus, both SGD and its natural variant will require at least
O(n2) calls to the kernel at each iteration. In this light, the computation of v̂ does not
significantly affect the computational burden. Note however that, in a few situations where
the gradient of the MMD is available in close form, it is possible to use a non-stochastic
gradient descent. Such examples include Gaussian mean estimation (Chérief-Abdellatif and
Alquier, 2022) and Gaussian copula estimation (Alquier et al., 2023). Each step of the
gradient descent requires only O(n) calls to the kernel and convergence is typically very
fast. In these situations, the computation of v̂ can increase the computational cost when n
is large.

4. Convergence Rates for the Difference of Two Means

We now extend the results of the previous section to the estimation of the norm of the
difference of two means ‖µP − µQ‖Hk . One of the applications of these results is two-sample
tests, where we test the hypothesis P = Q, as in Gretton et al. (2012). We will cover this
application in Section 6. However, they also have an interest on their own, to illustrate the
benefits of variance-aware bounds.

In all this section, we assume that two samples are observed: X1, . . . , Xn iid from P,
and Y1, . . . , Ym iid from Q. We want to estimate the norm of the difference ‖µP − µQ‖Hk .

4.1 First Approach: Estimation by a U-Statistic

A classical approach is to estimate the squared norm ‖µP − µQ‖2Hk using a U-statistic, as
proposed by Gretton et al. (2012), and then to use a Hoeffding or Bernstein-type inequality
for U-statistics.

While Gretton et al. (2012) used the U-statistics version of Hoeffding’s inequality to
control the risk of this estimator, using a Bernstein inequality instead might allow to derive
variance-aware bounds. The first version of such inequalities were proven by Hoeffding
(1963) and Arcones (1995). More recently, the results of these two papers are included in
Theorem 2 of Peel et al. (2010) while Theorem 3 gives an empirical version of each.

We now provide more details on this approach. First, note that

‖µP − µQ‖2Hk = EX,X′∼Pk(X,X ′) + EY,Y ′∼Qk(Y, Y ′)− 2EX∼P,Y∼Qk(X,Y )

12



Variance-Aware Estimation of Kernel Mean Embedding

can be directly estimated by the U-statistic:

Ũn,m =
1

n(n− 1)

n∑
i=1

∑
j 6=i

k(Xi, Xj) +
1

m(m− 1)

m∑
i=1

∑
j 6=i

k(Yi, Yj)−
2

mn

n∑
i=1

m∑
j=1

k(Xi, Yj)

as proposed by Gretton et al. (2012). This is an unbiased estimator: EŨn,m = ‖µP − µQ‖2Hk .

In the special case m = n, we can replace Ũn,n by the simpler

Ûn =
1

n(n− 1)

n∑
i=1

∑
j 6=i

[k(Xi, Xj) + k(Yi, Yj)− k(Xi, Yj)− k(Xj , Yi)] .

We will illustrate the U-statistics approach in this simpler setting.
Using Theorem 2 in Peel et al. (2010), with their q((Xi, Yi), (Xj , Yj)) = k(Xi, Xj) +

k(Yi, Yj) − k(Xi, Yj) − k(Xj , Yi) and their m = 2, we obtain the first part of the following
statement. Using Theorem 3, we obtain the second one.

Theorem 14 Put

σ2
P,Q = VX∼P,Y∼Q[EX′∼Pk(X,X ′) + EY ′∼Qk(Y, Y ′)− EY ′∼Qk(X,Y ′)− EX′∼Pk(X ′, Y )]

and

σ̂2
P,Q =

1

n(n− 1)(n− 2)

n∑
i=1

∑
j 6=i

∑
k 6=i,j

[
k(Xi, Xj) + k(Yi, Yj)− k(Xi, Yj)− k(Xj , Yi)

]

×
[
k(Xi, Xk) + k(Yi, Yk)− k(Xi, Yk)− k(Xk, Yi)

]
.

Note that Eσ̂2
P,Q = σ2

P,Q + ‖µP − µQ‖4Hk . For any δ ∈ (0, 1], with probability at least 1− δ,

∣∣∣‖µP − µQ‖2Hk − Ûn∣∣∣ ≤ 2∆k

√
8σ2

P,Q
n

log
4

δ
+ 2∆k

64 + 1
6

n
log

4

δ
.

Moreover, with probability at least 1− δ,

∣∣∣‖µP − µQ‖2Hk − Ûn∣∣∣ ≤ 2∆k

√
8σ̂2

P,Q
n

log
8

δ
+ 2∆k

64 + 1
6 + 5

√
2

n
log

8

δ
.

Observe that, when P 6= Q, the bound states that
√
Ûn will be of the order of ‖µP − µQ‖Hk .

On the other hand, when P = Q, we have both ‖µP − µQ‖Hk = 0 and σ2
P,Q = 0, and thus

the first inequality in the theorem gives:

√
Ûn ≤

√
2∆k

64 + 1
6 + 5

√
2

n
log

8

δ
, (15)

which does not depend on the variances of P and Q.
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4.2 Variance-Aware Control of the Fluctuations for Each Sample

An alternative approach is to apply the triangle inequality to upper bound separately the
fluctuations for each sample:∣∣∣∣‖µP − µQ‖Hk − ‖µ̂P(X1, . . . , Xn)− µ̂Q(Y1, . . . , Yn)‖Hk

∣∣∣∣
≤ ‖µP − µ̂P(X1, . . . , Xn)‖Hk + ‖µQ − µ̂Q(Y1, . . . , Yn)‖Hk .

For example, a direct application of Theorem 1 with a union bound gives the following
corollary.

Corollary 15 Let X1, . . . , Xn ∼ P, Y1, . . . , Ym ∼ Q, k : X×X → R be a reproducing kernel,
and let

vP
.
= EX∼P ‖k(X, ·)− µP‖2Hk and vQ

.
= EY∼Q ‖k(Y, ·)− µQ‖2Hk

and k = supx∈X k(x, x). With probability at least 1− δ, it holds that∣∣∣∣‖µP − µQ‖Hk − ‖µ̂P(X1, . . . , Xn)− µ̂Q(Y1, . . . , Ym)‖Hk

∣∣∣∣
≤
√

2vP
log(4/δ)

n
+

√
2vQ

log(4/δ)

m
+

(
1

n
+

1

m

)
4

3

√
k log(4/δ).

Of course, we can also state results with empirical variance instead of the true variance, by
using Theorems 12 and 29.

In order to compare this result to the U-statistics approach, consider the case n = m.
Corollary 15 gives the following upper bound:

‖µ̂P(X1, . . . , Xn)− µ̂Q(Y1, . . . , Yn)‖Hk

≤ ‖µP − µQ‖Hk +

√
2vP

log(4/δ)

n
+

√
2vQ

log(4/δ)

n
+

8

3n

√
k log(4/δ).

In particular, when P = Q, the bound becomes:

‖µ̂P(X1, . . . , Xn)− µ̂Q(Y1, . . . , Yn)‖Hk ≤ 2

√
2vP

log(4/δ)

n
+

8

3n

√
k log(2/δ). (16)

Even though ‖µ̂P(X1, . . . , Xn)− µ̂Q(Y1, . . . , Yn)‖2Hk is not an unbiased estimator of ‖µP − µQ‖2Hk
as Û , (15) and (16) show the fluctuations of ‖µ̂P(X1, . . . , Xn)− µ̂Q(Y1, . . . , Yn)‖Hk when

P = Q are upper bounded by
√
vP/n + 1/n while the ones of

√
Û by

√
1/n. This can be

a serious improvement if vP is small. Note that we do not claim superiority of the plug-in
estimator, but rather that the currently available non-asymptotic bounds for this estimator
are tighter. This is an illustration of the power of the variance-aware bounds. A way to
compare both estimators would be through an accurate study of their asymptotic fluctua-
tions when P = Q. So far, this analysis is only available for the U-statistic, see Theorem 12
in Gretton et al. (2012).
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5. Convergence Rates with Time-Dependent Data

In this section, we establish convergence rates for cases where the data X1, . . . , Xn is not
independent. Namely, we will assume the data to be a stationary mixing sequence (Bradley,
2005; Doukhan, 2012). In this setting, the observations are identically distributed with
marginal distribution P, but exhibit time dependencies that diminish as the time interval
increases.

Lemma 16 Suppose that X1, . . . , Xn is a stationary sequence of possibly dependent random
variables. Then

E ‖µ̂P − µP‖2Hk =
1

n
(v + Σn) ,

with

Σn
.
=

2

n

n∑
t=2

(n− t+ 1)ρt, where ρt
.
= E〈k(Xt, ·)− µP, k(X1, ·)− µP〉Hk ,

are the covariance coefficients in the RKHS introduced in Chérief-Abdellatif and Alquier
(2022). In particular, when the process is iid, the expression above simplifies to

E ‖µ̂P − µP‖2Hk =
v

n
.

5.1 For φ

The first flavor of mixing we consider is φ-mixing, introduced by Ibragimov (1962). Recall
that the φ-mixing coefficient (Bradley, 2005; Doukhan, 2012) is defined for two σ-fields A
and B by

φ(A,B)
.
= sup

A∈A,B∈B
P(A)>0

|P (B|A)− P (B)| .

For s ∈ N, we further define

φ(s)
.
= sup

r∈N
φ (σ ({Xt : t ≤ r}) , σ ({Xt : t ≥ r + s})) ,

where for T ⊂ N, σ({Xt}t∈T ) is the σ-field generated by the random variables {Xt}t∈T .
The random process is then called φ-mixing when lims→∞ φ(s) = 0. Additionally, we define
the triangular coupling matrix Γ (Samson, 2000) as follows. For t, s ∈ [n],

Γ(t, s)
.
=


1 when t = s

0 when t > s√
2φ(σ(X1, . . . , Xt), σ(Xs, . . . , Xn)) otherwise.

(17)

Theorem 17 (Variance-aware confidence interval with φ-mixing data) Let δ ∈ (0, 1),
and X1, . . . , Xn be a stationary φ-mixing sequence with marginal distribution P. We let
k : X × X → R be a reproducing kernel with k = supx∈X k(x, x). With probability at least
1− δ, it holds that

‖µ̂P(X1, . . . , Xn)− µP‖Hk ≤ B
φ
k,δ(P, n),
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with

Bφk,δ(P, n) = Bφδ
.
=

√
v + Σn

n
+ 4

√
2v ‖Γ‖2 log(1/δ)

n
+

8k ‖Γ‖2 log(1/δ)

n
,

where Σn is defined in Lemma 16, Γ is defined in Eq. (17) and ‖·‖2 is the spectral norm.

In particular, when the process is iid, Γ is the identity matrix, hence ‖Γ‖2 = 1.

Example 3 (Uniformly ergodic Markov chains) Suppose that there exists φ0, φ1 ∈
R+ such that for all t ∈ R, φ(t) ≤ φ0 exp(−φ1t). Then it holds (refer for example to
Samson (2000)) that

‖Γ‖2 ≤
√

2φ0

1− e−φ1/2
.

In particular, this is known to hold for a uniformly ergodic Markov chain (Roberts and
Rosenthal, 2004) with transition operator P and stationary distribution π. In this case we
can choose, φ0 = 4 and φ1 = log(2)/tmix, where

tmix
.
= min

t∈N

{
sup
x∈X

∥∥P t(x, ·)− π(·)
∥∥
TV

< 1/4

}
,

is called the mixing time of the chain with respect to total variation (Levin et al., 2009);
here we obtain ‖Γ‖2 ≤ 10tmix.

5.2 For β-Mixing Processes

We next consider β-mixing, a common assumption in the machine learning literature (Mohri
and Rostamizadeh, 2010). Recall that the β-mixing coefficient (Bradley, 2005; Doukhan,
2012) is defined for two σ-fields A and B,

β(A,B)
.
= sup

1

2

I∑
i=1

J∑
j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)| ,

where the supremum is taken over all pairs of finite partitions {A1, . . . , AI} and {B1, . . . , BJ}
of X such that for any 1 ≤ i ≤ I and any 1 ≤ j ≤ J , Ai ∈ A and Bj ∈ B (Bradley, 2005,
Equation 7). For s ∈ N, we further define

β(s)
.
= sup

r∈N
β (σ ({Xt : t ≤ r}) , σ ({Xt : t ≥ r + s})) ,

where for T ⊂ N, σ({Xt}t∈T ) is the σ-field generated by the random variables {Xt}t∈T . The
random process is then called β-mixing6 when lims→∞ β(s) = 0. In this case, for ξ ∈ (0, 1),
we define the β-mixing time as

tβmix(ξ)
.
= arg min

t∈N
{β(t) < ξ} .

We observe that when the process is a stationary time-homogeneous Markov chain, tβmix

corresponds to the definition of the average-mixing time (Münch and Salez, 2023; Wolfer

6. A β-mixing process is also called absolutely regular in the literature.
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and Alquier, 2024). Note that β(A,B) ≤ φ(A,B) (Bradley, 2005, Equation 1.11), and no
reverse inequality holds for any universal constant, thus β-mixing is a strictly weaker notion
than φ-mixing.

Theorem 18 (Variance-aware confidence interval with β-mixing data) We let δ ∈
(0, 1), and X1, . . . , Xn be a stationary β-mixing sequence. We let k : X × X → R be a re-
producing kernel with k = supx∈X k(x, x). Finally, we suppose for simplicity7 that n is a

multiple of τβn,δ where

τβn,δ
.
= arg min

s∈N

{
s ≥ tβmix

(
δ

6(n/(2s)− 1)

)}
.

With probability at least 1− δ, it holds that

‖µ̂P(X1, . . . , Xn)− µP‖Hk ≤ B
β
k,δ(P, n),

with

Bβk,δ(P, n) = Bβδ
.
= 2

√(
v + Σ

τβn,δ

)
log(3/δ)

n
+

8

3
τβn,δ

√
k

log(3/δ)

n
,

where Σs is defined in Lemma 16.

Example 4 (Countable state time-homogeneous Markov chains) Irreducible, ape-
riodic and stationary countable Markov chains are always β-mixing (Bradley, 2005). As-
sume that there exist β1 ∈ R+ and b ∈ (1,∞) such that for any t ∈ N, β(t) ≤ β1/t

b, that is,
the chain is only known to be algebraically mixing. Interestingly, such a chain may not be
φ-mixing, thus this example cannot be recovered from Theorem 17.

6. Applications

We put the apparatus developed in Section 2 and Section 3 to application in the context
of hypothesis testing and robust parametric estimation. In this section, all considered
kernels will be TI unless otherwise specified, and X1, . . . , Xn are i.i.d. from P ∈ P(X ).
We introduce a statistical model M = {Pθ : θ ∈ Θ} indexed by the parameter space Θ.
Examples of models studied in the literature on MMD include parametric models such as
the Gaussian model Pθ = N (θ, σ2Id) (with σ2 known) and mixture of Gaussians (Briol
et al., 2019; Chérief-Abdellatif and Alquier, 2022), copulas Alquier et al. (2023) but also
more complex models such as generative adversarial networks (Dziugaite et al., 2015; Li
et al., 2015), stochastic volatility models and stochastic differential equations (Briol et al.,
2019). Following Briol et al. (2019), our estimator will be the closest element8 of the model

7. An adaptation of the proof removes this assumption and recovers similar bounds up to universal con-
stants.

8. Note that it might be that the infimum is reached by multiple elements of Θ, or is not reached. The
first case does not lead to any difficulty, we must simply define a rule to break ties (for example, we
can equip Θ with a total order and chose the smallest minimizer according to this order). While Briol
et al. (2019) provide sufficient conditions to ensure that the infimum is reached, the non-existence of a
minimizer is also not a problem in practice: all the non-asymptotic results in Briol et al. (2019) and
Chérief-Abdellatif and Alquier (2022) can easily be extended to any ε-minimizer, for ε small enough.
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M to the empirical measure obtained from X, where the distance is measured in the RKHS,∥∥∥µP
θ̂n(X1,...,Xn)

− µ̂P(X1, . . . , Xn)
∥∥∥
Hk

= inf
θ∈Θ
‖µPθ − µ̂P(X1, . . . , Xn)‖Hk . (18)

The computation of θ̂n(X1, . . . , Xn) is usually done via stochastic gradient descent and
variants, see Remark 13 above.

6.1 Hypothesis Testing

In this subsection we study hypothesis testing based on MMD. In the literature, two kinds
of tests were proposed and studied: two-sample tests, and goodness of fit. In the two-
sample test problem, we are given X1, . . . , Xn iid from some PX and Y1, . . . , Ym iid from
some PY , and we want to test H0 : PX = PY against the alternative H1 : PX 6= PY . In
the goodness of fit problem, we are given X1, . . . , Xn iid from P and we wish to test the
hypothesis H0 : P ∈M = {Pθ : θ ∈ Θ}, against the alternative H1 : P /∈ {Pθ : θ ∈ Θ}.

In the MMD literature, two-sample tests are more prevalent (Gretton et al., 2009, 2012).
Recent work tackle goodness of fit testing (Chwialkowski et al., 2016; Jitkrittum et al., 2017),
albeit with an asymptotic treatment. We will study both problems here. In both cases,
we propose a non-asymptotic treatment. That is, the level of the test is smaller than α
for a finite sample size, and not only asymptotically. Moreover, in both cases, our data-
dependent bound (Theorem 12) allows to increase the power of the test, when compared to
the procedure that would be based on the McDiarmid-based bound in (7).

6.1.1 Goodness-of-Fit Test

Recall that we define the significance level α ∈ [0, 1] of a test as the probability of outputting
H1 when H0 is true. Taking advantage of a non-asymptotic bound B(X1, . . . , Xn, α) (for
example B(X1, . . . , Xn, α) = B̂α given in Theorem 12), we can design a test with prescribed
level α for any n as follows. We introduce the test statistic

T (X1, . . . , Xn)
.
= inf

θ∈Θ
‖µ̂P − µPθ‖Hk ,

and reject H0 on the “critical set”

C(X1, . . . , Xn)
.
= {T > B(X1, . . . , Xn, α)} .

We show that the probability of rejection under the null hypothesis is at most α and that
the test is consistent.

Theorem 19 Let n ∈ N, X1, . . . , Xn ∼ P, and k a translation invariant kernel. Let B(·, α)
be such that

(a) for any α, with probability at least 1− α, ‖µ̂P − µP‖Hk ≤ B(X1, . . . , Xn, α).

Then

(i) PH0 (C(X1, . . . , Xn)) ≤ α.

If, moreover,
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(b) for any fixed α, B(X1, . . . , Xn, α)
a.s.−−−→
n→∞

0,

(c) there is a sequence αn → 0 such that B(X1, . . . , Xn, αn)
a.s.−−−→
n→∞

0,

then

(ii) when the model M is closed with respect to the MMD metric 9,

lim
n→∞

PH1 (C(X1, . . . , Xn)) = 1,

more precisely,
1− PH1 (C(X1, . . . , Xn)) = O(αn).

Obviously, the empirical bound B̂k,α of Theorem 12 satisfies (a) and (b) (regardless of
P), and (c) with αn = exp(−n1−ε) for any fixed ε > 0. So does the McDiarmid-based
bound in (7). On the other hand, we claimed that the empirical bound is smaller than
bounds that does not take the variance into account. In other words, the power of the test
PH1 (C(X1, . . . , Xn)) for a finite n will be larger if we use the variance aware bound.

Example 5 We first consider a single hypothesis test (that is a special case of goodness-
of-fit when Θ is a singleton). We consider data in R2: here P = N (0, σ2I2) with Pθ =
N (θ, I2), and Θ = {(1, 1)}. In other words, H0 is true iff σ = 1. Note that in this
case, if Y1, . . . , Yn are iid from Pθ = P{(1,1}, then q1−α defined as the (1 − α)-quantile of
‖µP0 − µ̂P(Y1, . . . , Yn)‖Hk allows to define a test with rejection zone given by C′(X1, . . . , Xn) =
{T > q1−α} that satisfies PH0 (C′(X1, . . . , Xn)) = α by definition. It is a very natural
procedure to estimate q1−α by Monte-Carlo, by sampling multiple times Y1, . . . , Yn from
Pθ = P{(1,1}. This leads to a Monte-Carlo estimator q̂1−α of q1−α. In our simulations, we
sample X1, . . . , Xn from P, perform the test based on q̂1−α, the test based on the empirical
bound and the test based on McDiarmid bound . This is repeated 100 times for each value
σ ∈ {0, 1/50, 2/50, . . . , 1}. We report the frequency of rejections in Figure 1. The kernel
used is a Gaussian kernel with γ = 1, and we consider sample sized n ∈ {16, 40, 100, 250}.
We observe that, when compared to test based q̂1−α, both tests based on bounds have a weak
power (note that we did not try to optimize γ for now, this question will be tackled later).
However, the test based on the empirical bound indeed rejects more often H0 when H1 is
true. The improvement is clearer for small sample sizes.

Example 6 We now consider a proper goodness-of-fit test in R2: we still consider P =
N (0, σ2I2) and Pθ = N (θ, I2), with Θ = R2. It is important to observe that in this case,
because H0 is composite, we don’t have a natural definition for q1−α as in the previous
example. We sample X1, . . . , Xn from P, perform the test based on the empirical bound
and the test based on McDiarmid bound. This is repeated 100 times for each value σ ∈
{0, 1/50, 2/50, . . . , 1}. We report the frequency of rejections in Figure 2. The kernel used is
a Gaussian kernel with γ = 1, and we consider sample sized n ∈ {16, 40, 100, 250}. Similar
comments to the previous case apply, but in this case, this makes the test based on the
empirical Bernstein bound the best test available.

9. For any Q, if there is a sequence (θh)h∈N of elements of Θ such that
∥∥∥µQ − µPθh

∥∥∥
Hk
−−−−→
h→∞

0, then

Q = Pθ for some θ ∈ Θ.
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Figure 1: Comparison of the test based on the Bernstein empirical (EmpBer) bound,
versus the test based on McDiarmid bound (McDia), and the test based on
the Monte-Carlo estimation of the quantile q1−α. Frequency of rejection of
H0 : P ∈ {N ((1, 1), I2)} as a function of σ with P = N (0, σ2I2).
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Figure 2: Comparison of the test based on the Bernstein empirical (EmpBer) bound, versus
the test based on McDiarmid bound (McDia). Frequency of rejection of H0 : P ∈
{N (θ, I2), θ ∈ R2} as a function of σ with P = N (0, σ2I2).
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6.1.2 Two-Sample Test

Let (n,m) ∈ N2, X1, . . . , Xn ∼ PX and Y1, . . . , Ym ∼ PY . Here, we wish to test H0 : PX =
PY against H1 : PX 6= PY . This time, we use the test statistic

T2(X1, . . . , Xn, Y1, . . . , Ym)
.
= ‖µ̂P(X1, . . . , Xn)− µ̂P(Y1, . . . , Ym)‖Hk ,

and reject H0 on the “critical set”

C2(X1, . . . , Xn, Y1, . . . , Ym)
.
= {T2 > B(X1, . . . , Xn, α/2) + B(Y1, . . . , Ym, α/2)} .

Theorem 20 Let (n,m) ∈ N2, X1, . . . , Xn ∼ PX and Y1, . . . , Ym ∼ PY , and k a translation
invariant kernel. Let B(·, α) be such that

(a) for any α, each of these inequalities hold with probability at least 1− α each:

‖µ̂P(X1, . . . , Xn)− µPX‖Hk ≤ B(X1, . . . , Xn, α)

‖µ̂P(Y1, . . . , Ym)− µPY ‖Hk ≤ B(Y1, . . . , Ym, α).

Then

(i) PH0 (C2(X1, . . . , Xn, Y1, . . . , Ym)) ≤ α.

Moreover, if

(b) for any fixed α, B(X1, . . . , Xn, α)
a.s.−−−→
n→∞

0 and B(Y1, . . . , Yn, α)
a.s.−−−−→

m→∞
0,

(c) there is a sequence αn → 0 such that

B(X1, . . . , Xn, αn)
a.s.−−−→
n→∞

0 and B(Y1, . . . , Yn, αm)
a.s.−−−−→

m→∞
0,

then

(ii) limn,m→∞ PH1 (C2(X1, . . . , Xn, Y1, . . . , Tm)) = 1.

Here again, the empirical bound B̂k,α of Theorem 12 satisfies (a) and (b), and (c) with
αn = exp(−n1−ε) for any ε > 0.

6.2 Robust Parametric Estimation under Huber Contamination

Chérief-Abdellatif and Alquier (2022, Proof of Theorem 3.1) show how to upper-bound (18)
by the estimation error of the empirical measure in the RKHS and the approximation error
of the model, ∥∥∥µP

θ̂n
− µP

∥∥∥
Hk
≤ inf

θ∈Θ
‖µPθ − µP‖Hk + 2 ‖µ̂P − µP‖Hk . (19)

Recall that in the Huber contamination model (Huber, 2011), the observations X1, . . . , Xn

are drawn independently from the mixture

P = (1− ξ)Pθ0 + ξH,
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where ξ ∈ [0, 1/2) is the contamination rate, H is some unknown noise distribution and
θ0 ∈ Θ. In this setting, we can control the approximation error of the model: starting from
(19), and adapting the argument of Chérief-Abdellatif and Alquier (2022, Corollary 3.3),
we obtain ∥∥∥µP

θ̂n
− µPθ0

∥∥∥
Hk
≤ 4ξ

√
ψ + 2 ‖µ̂P − µP‖Hk .

We wish to apply Theorem 1 to the second term. However, when the sample is contaminated,
the variance term v(P) we collect also depends on the properties of H, which are unknown—
for all we know H does not even have finite moments. Fortunately, we now see how to bound
v(P) is terms of v(Pθ0) and ξ.

6.2.1 Improved Confidence Bounds in the Huber Contamination Model

Lemma 21 In the Huber contamination model, that is, P = (1 − ξ)Pθ0 + ξH, writing
v = v(P) and v0 = v(Pθ0), it holds that

v ≤ v0 + 2ξ(∆ψ − v0) + ξ2(v0 −∆ψ). (20)

The bound can be streamlined; when ψ ≥ 0,

v ≤ (1− 2ξ)v0 + 2ξψ,

and otherwise
v ≤ (1− 2ξ)v0 + 2ξ∆ψ.

Remark 22 In (20), observe that when ψ ≥ 0 and ξ → 1, the first term vanishes, and
v → ψ, recovering the distribution independent rates. Conversely, when ξ → 0, we confirm
that v → v0, which could be further bounded using properties of the model. In practice, we
will focus on small values ξ � 1/2, and the simplified bounds will be sufficient.

An application of Theorem 1 yields the following.

Corollary 23 In the Huber contamination model P = (1 − ξ)Pθ0 + ξH, writing v = v(P)
and v0 = v(Pθ0), with probability at least 1− δ,

∥∥∥µP
θ̂n
− µPθ0

∥∥∥
Hk
≤ 4ξ

√
ψ + 2

√
2[(1− 2ξ)v0 + 2ξψ]

log(2/δ)

n
+ 2

4
√
ψ

3

log(2/δ)

n
.

When ψ = 1, v0 � 1, ξ � 1, the bound offers a significant improvement over Chérief-
Abdellatif and Alquier (2022, Corollary 3.4).

6.2.2 Improved Confidence Bounds in the Parameter Space

In this subsection we still employ the Gaussian kernel kγ (9). It is instructive to analyze
how robust estimation with respect to the MMD distance translates into what happens in
the space of parameters. In fact, since we have freedom over the lengthscale parameter, we
may understandably want to select γ such that the distance in the space of parameters is
kept small as well.
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Definition 24 (Link function F ) Let M = {Pθ : θ ∈ Θ} indexed by the parameter space
Θ ⊂ P(Rd). We say that a non-decreasing function Fk : R+ → R+ is a link function for the
model M and kernel k when for any θ, θ′ ∈ Θ,∥∥θ − θ′∥∥

2
≤ Fk

(∥∥µPθ − µPθ′∥∥Hk) .
Remark 25 Note that a link function Fk will only provide nontrivial information if Fk(0) =
0 and Fk is continuous at 0. The existence of such a nontrivial link function implies that
the model is identifiable: if µPθ = µPθ′ then 0 = Fk(

∥∥µPθ − µPθ′∥∥Hk) ≥ ‖θ − θ′‖2, hence

θ = θ′. In this case, there is a unique function p :M→ Θ such that p(Pθ) = θ, and Fk is
a modulus of continuity of p.

A direct application of Corollary 23 gives the following.

Corollary 26 In the setting of Corollary 23, assume that M and k are such that a link
function Fk exists. With probability at least 1− δ,∥∥∥θ̂n − θ0

∥∥∥
2
≤ Fk

(
4ξ

√
ψ + 2

√
2[(1− 2ξ)v0 + 2ξψ]

log(2/δ)

n
+ 2

4
√
ψ

3

log(2/δ)

n

)
.

Gaussian location model, continued. We continue here Example 1. A direct computation
(see for instance Chérief-Abdellatif and Alquier 2022) shows that

∥∥µPθ − µPθ′∥∥2

Hkγ
= 2

(
γ2

2σ2 + γ2

)d/2 [
1− exp

(
−
‖θ′ − θ‖22
4σ2 + 2γ2

)]
.

In other words, a link function for the Gaussian location model is explicitly given by

F 2
kγ (h) = −2(2σ2 + γ2) log

(
1− h

2

(
1 + 2

σ2

γ2

)d/2)
.

An application of Corollary 26, and setting γ = λσ
√
d, for some λ > 0, proves that, with

probability at least 1− δ,∥∥∥θ − θ̂n∥∥∥2

2
≤ −2σ2(2 + dλ2) log

{
1−

(
1 +

2

dλ2

)d/2(
4ξ

+

√
2
[
(1− 2ξ)

(
1− e−

1
λ2

)
+ 2ξ

] log(2/δ)

n
+

4

3

log(2/δ)

n

)2}
.
= Gd,σ,n(λ, ξ).

(21)

For comparison, we provide the bound of Chérief-Abdellatif and Alquier (2022, Proposi-
tion 4.1-Equation 2) that is obtained by plugging (7) into the link function:

∥∥∥θ − θ̂n∥∥∥2

2
≤ −2σ2(2 + dλ2) log

1−
(

1 +
2

dλ2

)d/2(
4ξ +

1 +
√

2 log(1/δ)√
n

)2


.
= Hd,σ,n(λ, ξ).

(22)
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Figure 3: Comparison of the bounds in (21) versus Chérief-Abdellatif and Alquier (2022,
Proposition 4.1-Equation 2) as a function of γ.
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Figure 4: Comparison of Chérief-Abdellatif and Alquier (2022) and (21) for the optimal
hyper-parameter γ as a function of n.
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In order to compare the tightness of the bounds in Eq. (22) and Eq. (21), we run
experiments for fixed sample size (n = 10000), fixed confidence level (δ = 0.1), fixed variance
parameter (σ = 3) and two different contamination levels (ξ = 0.01 and ξ = 0.2). We
compute and plot the bound obtained when varying the scale parameter γ (see Figure 3).
For a contamination level ξ = 0.1, we also compare the quantitative decay of the two
bounds—optimized for γ—as the sample size n grows and report our results in 4. Based on
our experiments, we make the following observations.

(i) The new bound is always tighter than the one of Chérief-Abdellatif and Alquier (2022).

(ii) When the contamination level increases, the two bounds are getting closer together.
This is expected since we are losing the benefit of the variance factor.

(iii) Especially under weak contamination, the new bound is much flatter in the sense
where overshooting for the value of γ does not lead to a catastrophic degradation of
the bound.

(iv) The new bound performs exceptionally well in the small sample setting.

We conclude this section by showing heuristically that the bound in (21) can always be
made smaller than the bound in (22), at least asymptotically in n, with an adequate choice
of λ. For the sake of simplicity, we work in the non-contaminated setting ξ = 0. First,

Hd,σ,n(λ, 0) = 4σ2(2 + dλ2)

(
1 +

2

dλ2

)d/2 (1 +
√

2 log(1/δ)
)2

n
(1 + o(1)),

and the first order term is exactly minimized for λ = 1, it leads to

Hd,σ,n(1, 0) = 4σ2(2 + d)

(
1 +

2

d

)d/2 (1 +
√

2 log(1/δ)
)2

n
(1 + o(1)).

An exact minimization of the bound in (21) is not feasible, but we will propose a choice
of λ = λn that will lead to an improvement on Hd,σ,n(1, 0). First, let us assume that λ1 > 0
and that (λn)n∈N is a non-decreasing sequence. We obtain:

Gd,σ,n(λn, 0) = 4σ2(2 + dλ2
n)

(
1 +

2

dλ2
n

)d/2(
1− e−

1

λ2n

)
log(2/δ)

n
(1 + o(1))

= 4σ2(2 + dλ2
n)

(
1 +

2

dλ2
n

)d/2 log(2/δ)

λ2
nn

(1 + o(1))

= 4dσ2

(
1 +

2

dλ2
n

)1+d/2 log(2/δ)

n
(1 + o(1)).

It is clear that choosing λn →∞ when n→∞ gives:

Gd,σ,n(λn, 0) = 4dσ2 log(2/δ)

n
(1 + o(1)).
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Figure 5: Comparison of the bounds in (21) versus Chérief-Abdellatif and Alquier (2022,
Proposition 4.1-Equation 2) as a function of γ, versus the empirical MSE on 50
experiments, n = 500, log-scale, ξ = 0, δ = 0.05. Right panel: we zoom on the
MSE.

Finally, observe that

Hd,σ,n(1, 0)

Gd,σ,n(λn, 0)
= 2

(
1 +

2

d

)d/2+1

︸ ︷︷ ︸
↘−−−→

d→∞
e

(1 +
√

2 log 1/δ)2

(
√

2 log(2/δ))2︸ ︷︷ ︸
≥1 for δ∈(0,9/10)

(1 + o(1)) ≥ 2e(1 + o(1)).

Unfortunately, this first order analysis is too crude to provide an accurate recommenda-
tion on the choice of λn. On the other hand, it shows that our variance-aware bound
leads to a significant improvement over the bound of Chérief-Abdellatif and Alquier (2022)
for Gaussian mean estimation. Moreover, the choice λn → ∞ is in accordance with the
considerations on the asymptotic variance in Briol et al. (2019) in this model.

We illustrate this with an experiment in Figure 5. We observe that: indeed, the variance-
aware bound decrease with γ ∝ λ, while the McDiarmid bound has a minimum. Interest-
ingly, the true MSE also has a minimum. Note however how the MSE is actually very flat
as a function of γ: in other words, in this experiment, the choice of γ does not matter so
much on the performance of the MMD estimator. The possibility to use the variance-aware
bound to calibrate γ in practice should be investigated further in other models.

7. Proofs

In this section, we provide the detailed technical proofs that were deferred in earlier parts
of the paper.

7.1 Proof of Theorem 1

In Tolstikhin et al. (2017), the authors mention but do not pursue the idea that Bernstein’s
inequality in separable Hilbert spaces yields the proper rate of OP (n−1/2). We follow-up on
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their idea in this proof. First recall that

µ̂P
.
=

1

n

n∑
t=1

k(Xt, ·), µP
.
= EX∼P [k(X, ·)] ,

and that we can write

‖µ̂P − µP‖Hk =
1

n

∥∥∥∥∥
n∑
t=1

Zt

∥∥∥∥∥
Hk

,

where for 1 ≤ t ≤ n,

Zt
.
= k(Xt, ·)− EX∼P [k(X, ·)] ,

is centered. For ε > 0, we are thus interested in bounding the probability of the following
deviation,

P

 max
1≤s≤n

∥∥∥∥∥
s∑
t=1

Zt

∥∥∥∥∥
Hk

> nε

 .

We rely on a Bernstein-type inequality in Hilbert spaces, credited to Pinelis and Sakhanenko
(1985) (see also Yurinsky 1995, Theorem 3.3.4), which is reported in Theorem 32. We
first observe that the RKHS Hk is separable by separability of the topological space X
and continuity of k. In order to invoke Theorem 32, we need to control from above the∑n

t=1 E ‖Zt‖
p
Hk , for any p ≥ 3. For p = 2,

n∑
t=1

E ‖k(Xt, ·)− µP‖2Hk = nv.

Moving on to higher moments, for p ≥ 3, we have that

‖Zt‖Hk ≤ ‖k(Xt, ·)‖Hk + ‖EX∼P [k(X, ·)]‖Hk
≤
√
k(Xt, Xt) + sup

x∈X

√
k(x, x)

≤ 2
√
k.

As a result,

n∑
t=1

E ‖Zt‖pHk ≤

(
n∑
t=1

E ‖Zt‖2Hk

)(
2
√
k
)p−2

≤ nv(2
√
k)p−2 ≤ p!

2
nv

(
2
√
k

3

)p−2

.

Invoking Theorem 32 with G2 = nv, H = 2
√
k/3, we obtain that for any ε > 0,

P

 max
1≤s≤n

∥∥∥∥∥
s∑
t=1

Zt

∥∥∥∥∥
Hk

> nε

 ≤ 2 exp

(
− (εn)2

2(nv + (εn)2
√
k/3)

)

= 2 exp

− nε2

2
(
v + 2ε

√
k/3
)
 .
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�

7.2 Proof of Lemma 10

We first verify the bounded-differences property.

v̂(x)− inf
x′t0
∈X

v̂
(
x(t0)

)

=ψ − 1

(n− 1)n

∑
t6=s

ψ(xt − xs)− inf
x′t0
∈X

ψ − 1

(n− 1)n

∑
t6=s

ψ
(
x

(t0)
t − x(t0)

s

)
=

1

(n− 1)n

 sup
x′t0
∈X

∑
t6=s

ψ
(
x

(t0)
t − x(t0)

s

)−∑
t6=s

ψ(xt − xs)



=
2

(n− 1)n

 sup
x′t0
∈X


∑
t∈[n]
t6=t0

ψ
(
x′t0 − xt

)−
∑
t∈[n]
t6=t0

ψ(xt0 − xt)



≤ 2

(n− 1)n

(n− 1)ψ −
∑
t∈[n]
t6=t0

ψ(xt0 − xt)


(?)
=

2

n

ψ − 1

n− 1

∑
t∈[n]
t6=t0

ψ(xt0 − xt)


≤ 2

n
∆ψ.
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It follows from (?) that,

n∑
t0=1

(
v̂(x)− inf

x′t0
∈X

v̂
(
x(t0)

))2

≤
n∑

t0=1

 2

n

ψ − 1

n− 1

∑
t∈[n]
t6=t0

ψ(xt0 − xt)




2

=
4

n2

n∑
t0=1

 1

n− 1

∑
t∈[n]
t6=t0

(
ψ − ψ(xt0 − xt)

)
2

≤ 4

n2

n∑
t0=1

1

n− 1

∑
t∈[n]
t6=t0

(
ψ − ψ(xt0 − xt)

)2

≤ 4∆ψ

n

n∑
t0=1

1

(n− 1)n

∑
t∈[n]
t6=t0

(
ψ − ψ(xt0 − xt)

)

=
4∆ψ

n
v̂

where the second inequality is Jensen’s.
�

7.3 Proof of Lemma 11

From Lemma 10, the function

X n → R, x 7→ n

2∆ψ
v̂(x),

is weakly (2, 0)-self-bounding and has the bounded differences property in the sense of
Definition 7. From the second statement of Maurer (2006, Theorem 13),

P
(
E
[

n

2∆ψ
v̂(X)

]
− n

2∆ψ
v̂(X) > t

)
≤ exp

− t2

4E
[

n
2∆ψ v̂(X)

]
 ,

that can be rewritten,

P (v − v̂(X) > t) ≤ exp

(
− nt2

8∆ψv

)
.

In other words, with probability at least 1− δ,

v − 2
√
v

√
2∆ψ log(1/δ)

n
≤ v̂(X).

Completing the square, and by sub-additivity of the square root function, we successively
have with probability 1− δ,(

√
v −

√
2∆ψ log(1/δ)

n

)2

≤ v̂(X) +
2∆ψ log(1/δ)

n
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√
v −

√
2∆ψ log(1/δ)

n
≤
√
v̂(X) +

2∆ψ log(1/δ)

n

√
v ≤

√
v̂(X) + 2

√
2∆ψ log(1/δ)

n
,

which proves the lemma for b = −1. On the other hand, from the first inequality in Maurer
(2006, Theorem 13),

P
(

n

2∆ψ
v̂(X)− E

[
n

2∆ψ
v̂(X)

]
> t

)
≤ exp

− t2

4E
[

n
2∆ψ v̂(X)

]
+ 2t

 ,

that can be rewritten as

P (v̂(X)− v > t) ≤ exp

(
− nt2

8∆ψ(v + t/2)

)
.

The positive solution t+ for

nt2 = 8∆ψ(v + t/2) log(1/δ)

is readily given by

t+ =
2∆ψ log(1/δ)

n
+

4

n

√(
∆ψ

2
log(1/δ)

)(
∆ψ

2
log(1/δ) + nv

)
.

Thus, it holds with probability at least 1− δ that

v̂(X) ≤ v + t+,

and from sub-additivity of the square root, successively, with probability at least 1− δ, we
have

v̂(X) ≤ v +
4∆ψ log(1/δ)

n
+ 2

√
2v∆ψ log(1/δ)

n
,

v̂(X) ≤

(
√
v +

√
2∆ψ log(1/δ)

n

)2

+
2∆ψ log(1/δ)

n
,

√
v̂(X) ≤

√√√√(√v +

√
2∆ψ log(1/δ)

n

)2

+
2∆ψ log(1/δ)

n
,

√
v̂(X) ≤

√
v + 2

√
2∆ψ log(1/δ)

n
,

which finishes proving the lemma10 for b = 1.

�

10. In this proof, Maurer (2006) is sufficient. We do not need the stronger results of Boucheron et al. (2009).
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7.4 Proof of Theorem 12

From Theorem 1, with probability at least 1− δ/2, it holds that

‖µ̂P(X1, . . . , Xn)− µP‖Hψ ≤
√

2v
log(4/δ)

n
+

4

3

√
ψ

log(4/δ)

n
. (23)

Invoking Lemma 11 for b = −1, at confidence 1− δ/2 it holds that

√
v ≤

√
v̂(X) + 2

√
2∆ψ log(2/δ)

n
≤
√
v̂(X) + 2

√
2∆ψ log(4/δ)

n
, (24)

thus by combining (23) and (24) and a union bound yields that with probability at least
1− δ,

‖µ̂P(X1, . . . , Xn)− µP‖Hψ

≤

(√
v̂(X) + 2

√
2∆ψ log(4/δ)

n

)√
2 log(4/δ)

n
+

4

3

√
ψ

log(4/δ)

n

=

√
2v̂(X)

log(4/δ)

n
+ 4

(√
∆ψ +

√
ψ

3

)
log(4/δ)

n

≤
√

2v̂(X)
log(4/δ)

n
+

16

3

√
∆ψ

log(4/δ)

n
.

(25)

�

7.5 Proof of Lemma 16

E ‖µ̂P − µP‖2Hk =E〈 1
n

n∑
t=1

k(Xt, ·)− µP,
1

n

n∑
s=1

k(Xs, ·)− µP〉
Hk

=
1

n2

n∑
s=1

n∑
t=1

E〈k(Xt, ·)− µP, k(Xs, ·)− µP〉Hk

=
2

n2

n∑
t=1

∑
s<n

E〈k(Xt, ·)− µP, k(Xs, ·)− µP〉Hk

+
1

n2

n∑
t=1

E〈k(Xt, ·)− µP, k(Xt, ·)− µP〉Hk

=
2

n2

n∑
t=2

(n− t+ 1)E〈k(Xt, ·)− µP, k(X1, ·)− µP〉Hk +
v

n
.

�

7.6 Proof of Theorem 17

An application of Jensen’s inequality and Lemma 16 immediately yield that

‖µ̂P − µP‖Hk ≤
√
v + Σn

n
,
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where Σn is a total measure of covariance in the RKHS introduced in Lemma 16. Addi-
tionally, recall that we can express the norm of the deviation of µ̂P from its mean µP in the
RKHS as a supremum of empirical processes as follows,

‖µ̂P − µP‖Hk = sup
f∈Hk
‖f‖Hk≤1

〈f, µ̂P − µP〉Hk =
1

n
sup
f∈Hk
‖f‖Hk≤1

n∑
t=1

(f(Xt)− Ef) =
1

n
sup
g∈F

n∑
t=1

g(Xt),

where F is the re-centered class,

F .
=
{
g : X → R, g = f − Ef, f ∈ Hk, ‖f‖Hk ≤ 1

}
.

In particular, observe that g ∈ F =⇒ |g| ≤ k. Furthermore, the variance v in the RKHS
can be expressed as

v = E ‖k(X, ·)− µP‖2Hk

= E

 sup
f∈Hk
‖f‖Hk≤1

〈f, k(X, ·)− µP〉Hk


2

= E sup
f∈Hk
‖f‖Hk≤1

〈f, k(X, ·)− µP〉2Hk

= E sup
f∈Hk
‖f‖Hk≤1

(f(X)− Ef)2 .

We invoke Theorem 33 for φ-dependent random sequences, with Z = n ‖µ̂P − µP‖Hk and
observing that

E [V ] =
n∑
t=1

E sup
g∈F

g(Xt)
2 = nv,

with probability at least 1− δ it holds that

‖µ̂P − µP‖Hk ≤
√
v + Σn

n
+ 4

√
2v ‖Γ‖2 log(1/δ)

n
+

8k ‖Γ‖2 log(1/δ)

n
.

�

7.7 Proof of Theorem 19

First, assume that H0 is true, that is: there is a θ0 ∈ Θ such that P = Pθ0 . Then,

PH0 (C) = PH0 (T > B(X1, . . . , Xn, α))

= PH0

(
inf
θ∈Θ
‖µ̂P − µPθ‖Hk > B(X1, . . . , Xn, α)

)
≤ PH0

(∥∥∥µ̂P − µPθ0∥∥∥Hk > B(X1, . . . , Xn, α)

)
≤ α
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thanks to (a).

Now, assume that H0 is not true, that is P /∈ {Pθ, θ ∈ Θ}. Note that under the
assumption that the model is closed, we have

0 < ∆ := inf
θ∈Θ
‖µP − µPθ‖Hk .

By the triangle inequality, for any θ,

‖µPθ − µ̂P‖Hk ≥ ‖µPθ − µP‖Hk − ‖µP − µ̂P‖Hk

and thus, taking the infimum w.r.t θ on both sides,

T ≥ ∆− ‖µP − µ̂P‖Hk .

We apply (a) with confidence level αn and obtain

PH1

(
‖µP − µ̂P‖Hk ≥ B(X1, . . . , Xn, αn)

)
≤ αn

and thus

PH1 (T ≤ ∆− B(X1, . . . , Xn, αn)) ≤ αn.

As B(X1, . . . , Xn, αn)→ 0 when n→∞ thanks to (c), there is a N large enough such that,
for any n ≥ N , B(X1, . . . , Xn, αn) ≤ ∆/2, and thus

PH1

(
T ≤ ∆

2

)
≤ αn.

Moreover, as we also have B(X1, . . . , Xn, αn)→ 0 when n→∞ thanks to (b), there is a N ′

large enough such that, for any n ≥ N ′, B(n, α) ≤ ∆/2 and thus

PH1 (T ≤ B(X1, . . . , Xn, αn)) ≤ αn.

Finally,

PH1 (C) = 1− PH1 (T ≤ B(X1, . . . , Xn, αn)) ≥ 1− αn

as soon as n ≥ max(N,N ′).

�
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7.8 Proof of Theorem 20

First, under H0, we have PX = PY and thus

PH0 (C2) = PH0 (T2 > B(X1, . . . , Xn, α/2) + B(Y1, . . . , Ym, α/2))

= PH0

(
‖µ̂P(X1, . . . , Xn)− µ̂P(Y1, . . . , Ym)‖Hk

> B(X1, . . . , Xn, α/2) + B(Y1, . . . , Ym, α/2)

)

= PH0

(
‖µ̂P(X1, . . . , Xn)− µPX + µPX − µ̂P(Y1, . . . , Ym)‖Hk

> B(X1, . . . , Xn, α/2) + B(Y1, . . . , Ym, α/2)

)
≤ PH0

(
‖µ̂P(X1, . . . , Xn)− µPX‖Hk > B(X1, . . . , Xn, α/2)

)
+ PH0

(
‖µ̂P(Y1, . . . , Ym)− µPX‖Hk > B(Y1, . . . , Ym, α/2)

)
≤ α/2 + α/2 = α.

thanks to (a).

Now, assume that H0 is not true, that is PX 6= PY , and put

∆ := ‖µPX − µPY ‖Hk > 0.

By the triangle inequality,

T2 = ‖µ̂P(X1, . . . , Xn)− µ̂P(Y1, . . . , Ym)‖Hk
≥ ∆− ‖µ̂P(X1, . . . , Xn)− µPX‖Hk − ‖µ̂P(Y1, . . . , Yn)− µPY ‖Hk .

We apply (a) with respectice confidence levels αn and αm to get

PH1

(
‖µPX − µ̂P(X1, . . . , Xn)‖Hk ≥ B(X1, . . . , Xn, αn)

)
≤ αn

and

PH1

(
‖µPY − µ̂P(Y1, . . . , Ym)‖Hk ≥ B(Y1, . . . , Ym, αm)

)
≤ αm.

Thus,

PH1 (T2 ≤ ∆− B(X1, . . . , Xn, αn)− B(Y1, . . . , Ym, αm)) ≤ αn + αm.

Thanks to (c), there is a N large enough such that, as soon as both n,m ≥ N , both
B(X1, . . . , Xn, αn) ≤ ∆/4 and B(Y1, . . . , Ym, αm) ≤ ∆/4 hold, and thus

PH1

(
T ≤ ∆

2

)
≤ αn + αm.
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Moreover, thanks to (b), there is N ′ large enough such that, when n,m ≥ N ′, both
B(X1, . . . , Xn, α/2) ≤ ∆/4 and B(Y1, . . . , Ym, α/2) ≤ ∆/4 hold, and thus

PH1 (T2 ≤ B(X1, . . . , Xn, α/2) + B(Y1, . . . , Ym, α/2)) ≤ αn + αm.

Finally,

PH1 (C2) = 1− PH1 (T2 ≤ B(X1, . . . , Xn, α/2) + B(Y1, . . . , Ym, α/2)) ≥ 1− αn − αm

as soon as n ≥ max(N,N ′), and thus

PH1 (C2) ≥ 1− αn − αm −−−−−→
n,m→∞

1.

�

7.9 Proof of Lemma 21

v(P) = EX∼P ‖k(X, ·)− µP‖2Hk

= ψ −
∫ ∫

ψ(x′ − x)d(P× P)(x, x′)

= ψ −
∫ ∫

ψ(x′ − x)dP(x)dP(x′)

= ψ −
∫ ∫

ψ(x′ − x)d((1− ξ)Pθ0(x) + ξH(x))d((1− ξ)Pθ0(x′) + ξH(x′))

= ψ − (1− ξ)2

∫ ∫
ψ(x′ − x)dPθ0(x)dPθ0(x′)

− 2ξ(1− ξ)
∫ ∫

ψ(x′ − x)dPθ0(x)dH(x′)

− ξ2

∫ ∫
ψ(x′ − x)dH(x)dH(x′)

≤ ψ − (1− ξ)2(ψ − v)− 2ξ(1− ξ)ψ − ξ2ψ

= ψ − (1− 2ξ + ξ2)(ψ − v)− ξ(2− ξ)ψ
= ψ − (ψ − v) + 2ξ(ψ − v)− ξ2(ψ − v)− ξ(2− ξ)ψ
≤ (1− 2ξ)v + 2ξψ − ξ(2− ξ)ψ,
= (1− 2ξ)v + 2ξ∆ψ + ξ2ψ,

and the lemma follows by disjunction of cases. �
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Appendix A. Extension to Non Translation Invariant Kernels

Let us define diag k : X → R by diag k(x) = k(x, x), and use the shorthands diag k, diag k
and ∆ diag k introduced in (2) accordingly. We show that the properties obtained in Sec-
tion 3 can be extended to non TI kernel when ∆ diag k is controlled from above.

Lemma 27 Let k be a characteristic reproducing kernel. The function

X n → R, x 7→ n

∆ diag k + 2∆k
v̂(x),

is weakly (
2, 2n

∆ diag k

∆ diag k + 2∆k

)
-self-bounding,

and has bounded differences in the sense of Definition 7.

Lemma 28 For b ∈ {−1, 1}, with probability at least 1− δ,

b
[√

v̂(X) + ∆ diag k −
√
v + ∆ diag k

]
≤ 2

√
(∆ diag k + 2∆k) log(1/δ)

n
. (26)

Attempting to recover concentration of
√
v̂ around

√
v with self-boundedness leads to

an additional term in O
(
n−1/4

)
in (26) when ∆ diag k 6= 0. We thus settle for concentration

of
√
v̂ + ∆ diag k around

√
v + ∆ diag k instead.

Theorem 29 (Confidence interval with empirical variance for general kernel) Let
n ∈ N, X1, . . . , Xn ∼ P, let k be a characteristic reproducing kernel defined from a positive
definite function ψ [see (4)]. Then with probability at least 1− δ, it holds that

‖µ̂P − µP‖Hk ≤ B̂k,δ(X1, . . . , Xn),

with

B̂k,δ(X1, . . . , Xn) = B̂δ
.
=

√
2(v̂(X1, . . . , Xn) + ∆ diag k)

log(4/δ)

n

+

(
16

3

√
∆k + 2

√
2
√

∆ diag k

)
log(4/δ)

n
,

and where v̂ is the empirical variance proxy defined in (12).

Remark 30 In particular, for a TI kernel ∆ diag k = 0, recovering the results of the pre-
vious section. It is currently unclear whether the term in ∆ diag k is necessary or if it is an
artifact of our proof.
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Appendix B. Additional Proofs

In this section, we present supplementary technical proofs that were postponed in previous
sections of the paper

B.1 Proof of Lemma 8

For some t0, we let x(t0) = (x1, . . . , xt0−1, x
′
t0 , xt0+1, . . . , xn) where xt0 was replaced with

x′t0 .

1

d
Tr Σ̂(x)− 1

d
Tr Σ̂

(
x(t0)

)
=

1

d

d∑
i=1

1

2n(n− 1)

(
n∑
s=1

n∑
t=1

(
xit − xis

)2 − n∑
s=1

n∑
t=1

(
x

(t0)i
t − x(t0)i

s

)2
)

≤1

d

d∑
i=1

(
1

n− 1

n∑
s=1

(
xit0 − x

i
s

)2) ≤ 1,

(27)

thus

1

d
Tr Σ̂(x)− inf

x′t0
∈X

1

d
Tr Σ̂

(
x(t0)

)
≤ 1.

Furthermore,

n∑
t0=1

(
1

d
Tr Σ̂(x)− 1

d
Tr Σ̂

(
x(t0)

))2 (i)

≤
n∑

t0=1

(
1

d

d∑
i=1

(
1

n− 1

n∑
s=1

(
xit0 − x

i
s

)2))2

(ii)

≤ 1

d

d∑
i=1

n∑
t0=1

(
1

n− 1

n∑
s=1

(
xit0 − x

i
s

)2)2

(iii)

≤ 1

d

d∑
i=1

n

n− 1
v̂i(X)

=
n

n− 1

1

d
Tr Σ̂(X),

where (i) follows from (27), (ii) is Jensen’s inequality, and (iii) stems from Maurer and
Pontil (2009, Corollary 9).

�
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B.2 Proof of Lemma 9

We verify that v̂ is an unbiased estimator for v.

EX1,...,Xn∼P [v̂(X1, . . . , Xn)]

=EX1,...,Xn∼P

[
1

n− 1

n∑
t=1

(
k(Xt, Xt)−

1

n

n∑
s=1

k(Xt, Xs)

)]

=
1

n− 1

n∑
t=1

(
EX∼P [k(X,X)]− 1

n

n∑
s=1

EXt,Xs∼P [k(Xt, Xs)]

)

=
n

n− 1
EX∼P [k(X,X)]− 1

n(n− 1)

n∑
t=1

n∑
s=1

EXt,Xs∼P [k(Xt, Xs)]

=
n

n− 1
EX∼P [k(X,X)]− 1

(n− 1)
EX∼P [k(X,X)]

− n2 − n
n(n− 1)

EX,X′∼P
[
k(X,X ′)

]
=EX∼P [k(X,X)]− EX,X′∼P

[
k(X,X ′)

]
=v.

�

B.3 Proof of Theorem 18

For t ∈ N, we write Zt
.
= k(Xt, ·)− µP, thus

‖µ̂P(X1, . . . , Xn)− µP‖Hk =
1

n

∥∥∥∥∥
n∑
t=1

Zt

∥∥∥∥∥
Hk

.

We assume that n = 2Bs, where B, s ∈ N will be determined later. For b ∈ [B], we denote

Z [2b] .= Z
[2b]
1 , . . . , Z [2b]

s
.
= Z(2b−1)s+1, . . . , Z2bs,

Z [2b−1] .= Z
[2b−1]
1 , . . . , Z [2b−1]

s
.
= Z(2b−2)s+1, . . . , Z(2b−1)s,

and we decompose the random process into blocks

Z [1], Z [2], . . . , Z [2B].

From sub-additivity of the norm and the blocking method described in Yu (1994, Corol-
lary 2.7), it holds that

P

∥∥∥∥∥
n∑
t=1

Zt

∥∥∥∥∥
Hk

> nε

 ≤ ∑
σ∈{0,1}

P

∥∥∥∥∥
B∑
b=1

(
s∑
t=1

Z
[2b−σ]
t

)∥∥∥∥∥
Hk

> nε/2


≤

∑
σ∈{0,1}

P

∥∥∥∥∥
B∑
b=1

(
s∑
t=1

Z̃
[2b−σ]
t

)∥∥∥∥∥
Hk

> nε/2

+ 2 (B − 1)β(s)
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where for b ∈ [2], the blocks Z̃ [2b] = Z̃
[2b]
1 , . . . , Z̃

[2b]
s are mutually independent and a sim-

ilar fact holds for the blocks Z̃ [2b−1] = Z̃
[2b−1]
1 , . . . , Z̃

[2b−1]
s . As a result, for b ∈ [B], the∑s

t=1 Z̃
[2b−σ]
t are independent, centered and valued in Hk, thus the problem above has been

reduced to controlling the norm of a sum of B iid random vectors in the Hilbert space Hk.
Let us fix σ ∈ {0, 1}. Similar to our proof in the iid setting, our goal is to invoke Theorem 32
(Yurinsky, 1995, Theorem 3.3.4). In order to do that, we need to control from above the∑B

b=1 E
∥∥∥∑s

t=1 Z̃
[2b−σ]
t

∥∥∥p
Hk

, for any p ≥ 3. For p = 2, by linearity of the expectation, we

have

B∑
b=1

E

∥∥∥∥∥
s∑
t=1

Z̃
[2b−σ]
t

∥∥∥∥∥
2

Hk

=

B∑
b=1

s∑
t=1

s∑
r=1

E〈Z̃ [2b−σ]
t , Z̃ [2b−σ]

r 〉Hk .

By stationarity, we can write more simply

B∑
b=1

E

∥∥∥∥∥
s∑
t=1

Z̃
[2b−σ]
t

∥∥∥∥∥
2

Hk

=

B∑
b=1

s∑
t=1

s∑
r=1

E〈k(X(2b−σ−1)s+t, ·)− µP, k(X(2b−σ−1)s+r, ·)− µP〉Hk

=B
s∑
t=1

s∑
r=1

E〈k(Xt−r+1, ·)− µP, k(X1, ·)− µP〉Hk

=B

(
s∑
t=1

〈k(X1, ·)− µP, k(X1, ·)− µP〉Hk

+ 2
s∑
t=2

(s− t+ 1)E〈k(Xt, ·)− µP, k(X1, ·)− µP〉Hk

)
.

It is then natural to consider the following covariance coefficients in the RKHS introduced
by Chérief-Abdellatif and Alquier (2022),

ρt
.
= E〈k(Xt, ·)− µP, k(X1, ·)− µP〉Hk ,

and in particular, observe that we recover ρ1 = v. It follows that

B∑
b=1

E

∥∥∥∥∥
s∑
t=1

Z̃
[2b−σ]
t

∥∥∥∥∥
2

Hk

≤ n

2

(
v +

2

s

s∑
t=2

(s− t+ 1)ρt

)
=
n

2
(v + Σs) ,

where the mixing coefficient Σs was introduced in Lemma 16. In particular, Σs vanishes for
iid processes. For p ≥ 3, by sub-additivity of the norm,∥∥∥∥∥

s∑
t=1

Z̃
[2b−σ]
t

∥∥∥∥∥
Hk

≤
s∑
t=1

∥∥∥Z̃ [2b−σ]
t

∥∥∥
Hk
≤ 2s

√
k.
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Therefore, invoking Theorem 32 with G2 = n
2 (v + Σs) and H = 2s

√
k/3, we obtain for

σ ∈ {0, 1} and for any ε > 0 that,

P

∥∥∥∥∥
B∑
b=1

(
s∑
t=1

Z̃
[2b−σ]
t

)∥∥∥∥∥
Hk

>
nε

2

 ≤ 2 exp

(
− ((ε/2)n)2

2(n(v + Σs)/2 + ((ε/2)n)2s
√
k/3)

)

= 2 exp

− nε2

4
(
v + Σs + 2εs

√
k/3
)
 .

It remains to control the term involving the β-mixing coefficient by suitable choosing the
blocking size. For

τβn,δ
.
= arg min

s∈N

{
s ≥ tβmix

(
δ

6(n/(2s)− 1)

)}
,

it holds that 2 (B − 1)β(s) ≤ δ/3, which concludes the proof.

�

B.4 Proof of Lemma 27

We will rely on the following property for general kernels.

Lemma 31 Let x = (x1, . . . , xt0 , . . . , xn) ∈ X n and x′t0 ∈ X . Writing

x(t) = (x1, . . . , xt0−1, x
′
t0 , xt0+1, . . . , xn),

it holds that

v̂(x)− v̂
(
x(t0)

)
=

1

n

(
k (xt0 , xt0)− k

(
x′t0 , x

′
t0

))
+

2

(n− 1)n

∑
t∈[n],t6=t0

(
k
(
x′t0 , xt

)
− k (xt0 , xt)

)
.

From Lemma 31, if follows that

v̂(x)− inf
x′t0
∈X

v̂
(
x(t0)

) (†)
≤ 1

n

(
k (xt0 , xt0)− diag k

)
+

2

(n− 1)n

∑
t∈[n],t 6=t0

(
k − k (xt0 , xt)

)
(‡)
≤∆ diag k + 2∆k

n
,
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and the bounded differences property follows directly from (‡). Furthermore, as a result of
(†),

n∑
t0=1

(
v̂(x)− inf

x′t0
∈X

v̂
(
x(t0)

))2

≤
n∑

t0=1

 1

n

(
k (xt0 , xt0)− diag k

)
+

2

(n− 1)n

∑
t∈[n],t6=t0

(
k − k (xt0 , xt)

)2

=
1

n2

n∑
t0=1

 1

(n− 1)

∑
t∈[n],t6=t0

k (xt0 , xt0)− diag k + 2k − 2k (xt0 , xt)

2

≤ 1

n2

n∑
t0=1

1

(n− 1)

∑
t∈[n],t 6=t0

(
k (xt0 , xt0)− diag k + 2k − 2k (xt0 , xt)

)2
≤∆ diag k + 2∆k

n2

n∑
t0=1

1

(n− 1)

∑
t∈[n],t6=t0

(
k (xt0 , xt0)− diag k + 2k − 2k (xt0 , xt)

)
≤∆ diag k + 2∆k

n2

n∑
t0=1

1

(n− 1)

∑
t∈[n],t6=t0

(
2k (xt0 , xt0)− 2diag k + 2k − 2k (xt0 , xt)

)
=2

∆ diag k + 2∆k

n2

n∑
t0=1

1

(n− 1)

∑
t∈[n],t6=t0

(k (xt0 , xt0)− k (xt0 , xt))

+ 2
∆ diag k + 2∆k

n

(
k − diag k

)
(?)
=2

∆ diag k + 2∆k

n2

n∑
t0=1

1

(n− 1)

∑
t∈[n]

(k (xt0 , xt0)− k (xt0 , xt))

+ 2
∆ diag k + 2∆k

n
∆ diag k

=2
∆ diag k + 2∆k

n
v̂(x) + 2

∆ diag k + 2∆k

n
∆ diag k,

where for (?) we relied on k = diag k for a positive definite kernel.

�

B.5 Proof of Lemma 28

Lemma 27 established that the function

X n → R, x 7→ n

∆ diag k + 2∆k
v̂(x),
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is weakly self-bounding and has the bounded differences property. From an application of
Boucheron et al. (2009, Theorem 1),

P (v̂ − v > t) ≤ exp

(
− nt2

4(∆ diag k + 2∆k)(v + ∆ diag k + t/2)

)
,

P (v − v̂ > t) ≤ exp

(
− nt2

4(∆ diag k + 2∆k)(v + ∆ diag k)

)
.

The claim follows from rewriting

v̂ − v = [v̂ + ∆ diag k]− [v + ∆ diag k],

and solving quadratic inequalities as in Lemma 11. �

B.6 Proof of Theorem 29

From Theorem 1, and since ∆ diag k > 0, with probability at least 1− δ/2, it holds that

‖µ̂P(X1, . . . , Xn)− µP‖Hk ≤
√

2(v + ∆ diag k)
log(4/δ)

n
+

4

3

√
k

log(4/δ)

n
. (28)

By Lemma 28 for b = −1, at confidence 1− δ/2 it holds that

√
v + ∆ diag k ≤

√
v̂ + ∆ diag k + 2

√
(∆ diag k + 2∆k) log(4/δ)

n
, (29)

thus by combining (28) and (29) and a union bound yields that with probability at least
1− δ,

‖µ̂P − µP‖Hk

≤

(√
v̂ + ∆ diag k + 2

√
(∆ diag k + 2∆k) log(4/δ)

n

)√
2 log(4/δ)

n
+

4

3

√
k

log(4/δ)

n

=

√
2(v̂ + ∆ diag k)

log(4/δ)

n
+

(
2
√

2
√

∆ diag k + 2∆k +
4

3

√
k

)
log(4/δ)

n

≤
√

2(v̂ + ∆ diag k)
log(4/δ)

n
+

(
16

3

√
∆k + 2

√
2
√

∆ diag k

)
log(4/δ)

n
,

(30)

where the last inequality is by sub-additivity of the square root. �

43



Wolfer and Alquier

B.7 Proof of Lemma 31

v̂(x)− v̂
(
x(t)
)

=
1

n− 1

n∑
r=1

(
k (xr, xr)−

1

n

n∑
s=1

k (xr, xs)

)

− 1

n− 1

n∑
r=1

(
k
(
x(t)
r , x

(t)
r

)
− 1

n

n∑
s=1

k
(
x(t)
r , x

(t)
s

))

=
1

n− 1

n∑
r=1

(
k (xr, xr)− k

(
x(t)
r , x

(t)
r

))
− 1

(n− 1)n

∑
(r,s)∈[n]2

(
k (xr, xs)− k

(
x(t)
r , x

(t)
s

))
thus,

v̂(x)− v̂
(
x(t)
)

=
1

n− 1

(
k (xt, xt)− k

(
x′t, x

′
t

))
− 1

(n− 1)n

∑
(r,s)∈[n]2,r=s

(
k (xr, xs)− k

(
x(t)
r , x

(t)
s

))
− 1

(n− 1)n

∑
(r,s)∈[n]2,r 6=s

(
k (xr, xs)− k

(
x(t)
r , x

(t)
s

))
,

=
1

n− 1

(
k (xt, xt)− k

(
x′t, x

′
t

))
− 1

(n− 1)n

n∑
r=1

(
k (xr, xr)− k

(
x(t)
r , x

(t)
r

))
− 1

(n− 1)n

∑
(r,s)∈[n]2,r 6=s,r=t

(
k (xr, xs)− k

(
x(t)
r , x

(t)
s

))
− 1

(n− 1)n

∑
(r,s)∈[n]2,r 6=s,s=t

(
k (xr, xs)− k

(
x(t)
r , x

(t)
s

))
=

1

n

(
k (xt, xt)− k

(
x′t, x

′
t

))
− 1

(n− 1)n

∑
s∈[n],s 6=t

(
k (xt, xs)− k

(
x′t, xs

))
− 1

(n− 1)n

∑
s∈[n],s 6=t

(
k (xt, xs)− k

(
x′t, xs

))
=

1

n

(
k (xt, xt)− k

(
x′t, x

′
t

))
+

2

(n− 1)n

∑
s∈[n],s 6=t

(
k
(
x′t, xs

)
− k (xt, xs)

)
.

�

Appendix C. Tools from the Literature

We report here tools from the literature.
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Theorem 32 (Yurinsky, 1995, Theorem 3.3.4) Let Z1, . . . , Zn be independent random
variables in a separable Hilbert space H that are centered, that is,

∀t ∈ [n],E [Zt] = 0,

If there exists real numbers G,H ≥ 0 such that for any p ≥ 2,

n∑
t=1

E ‖Zt‖pH ≤
1

2
p!G2Hp−2,

it holds that for any ε > 0,

P

(
max

1≤s≤n

∥∥∥∥∥
s∑
t=1

Zt

∥∥∥∥∥
H

> ε

)
≤ 2 exp

(
− ε2/2

G2 + εH

)
.

Theorem 33 (Samson, 2000, Theorem 3) Let X1, . . . , Xn be a stationary φ-mixing se-
quence. For every ε > 0,

P (Z ≥ EZ + ε) ≤ exp

(
− 1

8 ‖Γ‖2
min

{
ε

C
,

ε2

4E [V ]

})
where

Z
.
= sup

g∈F

∣∣∣∣∣
n∑
t=1

g(Xt)

∣∣∣∣∣ ,
with F an arbitrary class of real bounded functions with |g| ≤ C, and where the random
variable V is defined as

V
.
=

n∑
t=1

sup
g∈F

g(Xt)
2,

and Γ is the coupling matrix (refer to Equation 17).
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Journal de l’École polytechnique — Mathématiques, 10:575–590, 2023. doi: 10.5802/jep.
226.

T. Peel, S. Anthoine, and L. Ralaivola. Empirical Bernstein inequalities for U-statistics.
Advances in Neural Information Processing Systems, 23, 2010.

I. F. Pinelis and A. I. Sakhanenko. Remarks on inequalities for the probabilities of large
deviations. Teoriya Veroyatnostei i ee Primeneniya, 30(1):127–131, 1985.

G. O. Roberts and J. S. Rosenthal. General state space Markov chains and MCMC algo-
rithms. Probability Surveys, 1(none):20 – 71, 2004. doi: 10.1214/154957804100000024.

P.-M. Samson. Concentration of measure inequalities for Markov chains and Φ-mixing pro-
cesses. The Annals of Probability, 28(1):416 – 461, 2000. doi: 10.1214/aop/1019160125.

M. L. Stein. Interpolation of spatial data: some theory for kriging. Springer Science &
Business Media, 1999.

I. Tolstikhin, B. K. Sriperumbudur, and K. Muandet. Minimax estimation of kernel mean
embeddings. The Journal of Machine Learning Research, 18(1):3002–3048, 2017.

A. B. Tsybakov. Introduction to nonparametric estimation. Springer Science & Business
Media, 2008.

I. Waudby-Smith and A. Ramdas. Estimating means of bounded random variables by
betting. Journal of the Royal Statistical Society Series B: Statistical Methodology, 86(1):
1–27, 2024.

G. Wolfer and P. Alquier. Optimistic estimation of convergence in Markov chains with the
average-mixing time. arXiv:2402.10506, 2024.

B. Yu. Rates of convergence for empirical processes of stationary mixing sequences. The
Annals of Probability, pages 94–116, 1994.

V. Yurinsky. Sums and Gaussian Vectors. Lecture Notes in Mathematics. Springer Berlin,
Heidelberg, 1995.

48


	Introduction
	Notation and Background
	Related Work
	Main Contributions
	Outline

	Variance-Aware Convergence Rates
	Gaussian Kernel
	Convex Radial Square Basis Functions
	Positive Definitive Matrix on the Finite Space

	Convergence Rates with Empirical Variance Proxy
	Intuition in the Hypercube
	Systematic Approach
	Computability of the Empirical Variance Proxy

	Convergence Rates for the Difference of Two Means
	First Approach: Estimation by a U-Statistic
	Variance-Aware Control of the Fluctuations for Each Sample

	Convergence Rates with Time-Dependent Data
	For Phi-Mixing Processes
	For Beta-Mixing Processes

	Applications
	Hypothesis Testing
	Goodness-of-Fit Test
	Two-Sample Test

	Robust Parametric Estimation under Huber Contamination
	Improved Confidence Bounds in the Huber Contamination Model
	Improved Confidence Bounds in the Parameter Space


	Proofs
	Proof of Theorem 1
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Theorem 12
	Proof of Lemma 16
	Proof of Theorem 17
	Proof of Theorem 19
	Proof of Theorem 20
	Proof of Lemma 21

	Extension to Non Translation Invariant Kernels
	Additional Proofs
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Theorem 18
	Proof of Lemma 27
	Proof of Lemma 28
	Proof of Theorem 29
	Proof of Lemma 31

	Tools from the Literature

