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Abstract

Extremal graphical models encode the conditional independence structure of multivariate
extremes and provide a powerful tool for quantifying the risk of rare events. Prior work on
learning these graphs from data has focused on the setting where all relevant variables are
observed. For the popular class of Hüsler–Reiss models, we propose the eglatent method,
a tractable convex program for learning extremal graphical models in the presence of latent
variables. Our approach decomposes the Hüsler–Reiss precision matrix into a sparse com-
ponent encoding the graphical structure among the observed variables after conditioning on
the latent variables, and a low-rank component encoding the effect of a few latent variables
on the observed variables. We provide finite-sample guarantees of eglatent and show that
it consistently recovers the conditional graph as well as the number of latent variables. We
highlight the improved performances of our approach on synthetic and real data.

Keywords: conditional independence, extreme value theory, latent variable model, multi-
variate Pareto distribution, sparsity

1. Introduction

Floods, heat waves, and financial crashes illustrate the environmental and economic hazards
primarily influenced by rare, yet significant, events. Such catastrophic scenarios often result
from the simultaneous occurrence of extreme values across multiple variables (Zhou, 2009;
Asadi et al., 2015; Zscheischler and Seneviratne., 2017). To effectively measure and mitigate
these disasters, it is essential to understand the dependencies between the various risk factors.
From a mathematical perspective, this requires examining the tail dependence between the
components of the random vector X = (X1, . . . , Xd). Extreme value theory provides the
theoretical foundation for extrapolations to the distributional tail of the random vector X.
Within the multivariate setting, there are two different yet closely related approaches for
modeling extremal data. The first method considers component-wise maxima of independent
copies of X and leads to the notion of max-stable distributions (de Haan and Resnick, 1977).
The second method relies on multivariate Pareto distributions that describe the random
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Extremal graphical modeling with latent variables

vector X conditioned on the event that there is an extreme in one of the coordinates of X
(Rootzén and Tajvidi, 2006).

Given the increasing complexity and dimensionality of contemporary data sets, identify-
ing sparse representations for distributions of extreme events is critical for accurate modeling
and risk assessment (Engelke and Ivanovs, 2021). Graphical models serve as powerful tools
in achieving such sparse representations, offering clear and interpretable models for under-
standing dependencies among variables (Lauritzen, 1996). However, in the framework of
max-stable distributions, Papastathopoulos and Strokorb (2016) highlighted limitations in
developing non-trivial graphical models for their densities. On the other hand, multivariate
Pareto distributions do not face these limitations. Indeed, Engelke and Hitz (2020) intro-
duced extremal graphical models that factorize according to multivariate Pareto distributions
and encode extremal conditional independence relationships, and Segers (2020) showed that
extremal trees naturally arise as limits of Markov trees. For the popular Hüsler–Reiss family
(Hüsler and Reiss, 1989), Hentschel et al. (2022) showed that, similarly to the Gaussian case,
the sparsity pattern of an extremal graphical model can be read off from a positive semi-
definite precision matrix Θ with the all-ones vector in its null space. This precision matrix Θ
is derived from a transformation of the variogram matrix Γ that parameterizes a Hüsler–Reiss
distribution. Several recent papers have proposed methods to learn the extremal graphical
structure from data (Engelke et al., 2022c; Hu et al., 2022; Engelke and Volgushev, 2022;
Chang and Allen, 2023; Wan and Zhou, 2023; Lederer and Oesting, 2023).

The study and techniques for modeling extremes have so far concentrated on scenarios
where all relevant variables are directly observable. However, in many real-world situations,
there exist latent variables that are not observable due to prohibitive costs or other practical
constraints. Mathematically, the overall system of variables is then given by X = (XO, XH),
where XO are the observed and XH the latent variables, with (O,H) = {1, 2, . . . , d}. The
importance of accounting for latent factors becomes apparent in the example of a single latent
variable XH = {Xc}, where the data is generated through the one-factor model

Xj = Xc + εj , j ∈ O.

Here, Xc is the common (unobserved) factor influencing all observed variables, and εj , j ∈ O,
are independent noise terms. Suppose that the exceedances of the random vector X converge
in distribution to a multivariate Pareto distribution Y = (YO, YH); a concrete example where
this is satisfied is when XH is standard exponential and the noise variables are normally
distributed, in which case Y has a Hüsler–Reiss distribution, but many other combinations are
possible (Engelke et al., 2019). The joint vector Y can be shown to be an extremal graphical
model with respect to the star graph on the left-hand side of Figure 1, where the observed
variables YO are conditionally independent given the latent variable YH . However, the sub-
model model of Y corresponding to the observed variables, that is, the limiting multivariate
Pareto distribution arising from threshold exceedances of XO, induces, in general, the fully
connected extremal graph on the right-hand side of Figure 1, where are all the variables are
conditionally dependent.
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Figure 1: One-factor graph with one latent variable with four observed variables O1, . . . , O4 and one latent
variable H (left) and its marginalization on the observed variables (right).

This simple example illustrates that ignoring the effect of latent variables induces con-
founding dependencies among the observed variables: even for a sparse joint graph of ob-
served and latent variables, any two observed variables are dependent when conditioning on
the remaining observed variables. This phenomenon also appears in many real-world appli-
cations. In such cases, a latent extremal graphical model with possibly more than one latent
variable YH serves multiple purposes: i) it obtains the number of latent variables h = |H|
that summarize the effect of external phenomena on the observed variables, (ii) it identifies
the residual graph structure among the observed variables after extracting away the effect of
these external factors, (iii) it often yields a more sparsely represented and accurate statistical
model than a model that ignores the latent variables. Latent extremal graphical models have
only been studied when the graphical structure among the observed and latent variables is
a tree, and where the tree structure is assumed to be known (Asenova and Segers, 2023;
Röttger et al., 2023b).

1.1 Our contributions

We introduce a general latent Hüsler–Reiss graphical model where the graphical structure
among the observed and latent variables as well as the number of latent variables may be
arbitrary. Letting Θ ∈ Rd×d be the precision matrix, a key result that we establish is that the
marginal precision matrix Θ̃ ∈ Rp×p over the observed variables can be expressed in terms
of blocks of Θ as

Θ̃ = ΘO −ΘOHΘ−1
H ΘHO, where Θ =

(
ΘO ΘOH

ΘHO ΘH

)
, Θ̃1p = 0, and Θ1d = 0.

Here, 1r is the all-ones vector with r coordinates. The representation of Θ resembles the
Schur complement in Gaussian latent variable graphical models (Chandrasekaran et al., 2012).
However, in the Hüsler–Reiss case, the matrices Θ and Θ̃ are not invertible since they have
the all-one vector in their kernel, and the link between our representation and the Schur
complement is therefore non-trivial.
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Assuming that the conditional graph among the observed variables is sparse and that
there are a few latent variables influencing the observed variables, the marginal precision
matrix Θ̃ is decomposed as the sum of a sparse and a low-rank matrix, i.e., Θ̃? = S? − L?.
The sparse component S? := ΘO encodes the conditional graphical structure among the
observed variables after conditioning on the latent variables and the low-rank component
L? := ΘOHΘ−1

H ΘHO encodes the effect of a few latent variables on the observed variables.
Using this decomposition, we propose a convex optimization procedure named eglatent

that provides estimates (S,L) for each term in the decomposition without knowledge of the
underlying graphical structure or the number of latent variables. Compared to the latent
variable graphical modeling estimator in Chandrasekaran et al. (2012), eglatent has the
additional constraint that the matrix S − L has the all-ones vector in its kernel. Due to
this structural constraint that arises in extremal models, in addition to assuming that the
number of latent variables is small (compared to the observed variables) and they affect
many observed variables, we require new identifiability assumptions for recovering S? and
L?. Under these identifiability assumptions, we provide finite-sample consistency guarantees
for our estimator, showing that our procedure recovers the conditional graph and the number
of latent variables.

Figure 2 highlights the advantage of our method eglatent over the existing extremal
graph learning method eglearn (Engelke et al., 2022c), which does not account for latent
variables. In this synthetic example, we generated 2000 approximate observations from an ex-
tremal graphical model with h = 2 latent variables and a cycle graph among p = 30 observed
variables, and fitted both methods for different values of the regularization parameters; see
Section 5.1.1 for details on the setup. Compared to eglearn, our eglatent produces a better
model fit on validation data and more accurate graph estimates among the observed vari-
ables in terms of F -score. Indeed, due to the latent confounding, the marginal graph among
the observed variables, encoded by the zero pattern in Θ̃, is dense, and thus the sparsity
that eglearn exploits is not appropriate: the best validated eglearn model has 252 edges
while the true graph has 30 edges. On the other hand, conditional on the latent variables,
the conditional graph among the observed variables, encoded by the zero pattern in ΘO, is
sparse, and eglatent exploits this structure. Furthermore, eglatent estimates the correct
number of latent variables and a near-perfect graph among the observed variables for regu-
larization parameters with high validation likelihood. Note that in the left plot, the crosses
for eglearn mean that the estimated graphical model is disconnected and therefore does not
lead to a valid Hüsler–Reiss model. In contrast, eglatent always yields a valid Hüsler–Reiss
model. More simulations and an application to large flight delays in the U.S. are presented
in Section 5 that demonstrate the utility of our approach.

In summary, compared to the previous literature in extremal graphical modeling and
Gaussian latent variable graphical modeling, our contributions are threefold. From a method-
ological perspective, we provide the first method to learn general extremal graphical models
with latent variables. Our approach eglatent is based on a tractable convex optimiza-
tion procedure that resembles the estimator in Chandrasekaran et al. (2012) but involves an
additional constraint due to the structural properties of extremal models. From a practi-
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Figure 2: Left: F -score of our proposed method eglatent (solid line) and eglearn (dashed line) as a function
of the regularization parameter with larger F -scores being better; top axis shows the number of estimated
latent variables. Right: the likelihood of the same methods evaluated on a validation data set; the top axis
shows the number of estimated edges in the latent model.

cal perspective, compared to existing extremal graphical modeling approaches that do not
account for latent variables, eglatent often yields sparser and thus more interpretable graph-
ical models with better fit to data. Theoretically, to arrive at our estimator eglatent, we
prove a non-trivial Schur decomposition of the observed precision matrix of the observed vari-
ables. Further, since eglatent differs from the estimator in Chandrasekaran et al. (2012),
we require new identifiability assumptions and conduct a more involved analysis to establish
finite-sample consistency guarantees.

Our eglatent method is implemented in the R package graphicalExtremes (Engelke
et al., 2022a) and all numerical results and figures can be reproduced using the code on
https://github.com/sebastian-engelke/extremal_latent_learning.

1.2 Notation

We denote Ir as an r × r identity matrix and denote 1r as the all-ones vector with r coor-
dinates. The collection of r × r symmetric matrices is denoted by Sr. The following matrix
norms are employed throughout this paper: ‖M‖2 denotes the spectral norm, or the largest
singular value of M ; ‖M‖∞ denotes the largest entry in the magnitude of M ; ‖M‖? denotes
the nuclear norm, or the sum of the singular values of M (this reduces to the trace for positive
semidefinite matrices); and ‖M‖1 denotes the sum of the absolute values of the entries of M .
Finally, we will denote σmin(M) as the largest non-zero singular value of M .
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2. Background

2.1 Multivariate extreme value theory

Multivariate extreme value theory studies asymptotically motivated models for the largest
observations of a random vector X = (Xj : j ∈ V ) with index set V = {1, . . . , d}. Since we
concentrate on models for the extremal dependence structure, we assume that the marginal
distributions of X have been standardized to standard exponential distributions. In practice,
this standardization can be achieved by using the marginal empirical distribution functions;
see Section 3.3.1.

A multivariate Pareto distribution models the multivariate tail of the distribution of X. It
is defined as the limit in the distribution of the conditional exceedances over a high threshold
u, that is,

Y = lim
u→∞

(X − u | max(X1, . . . , Xd) > u) , (1)

if the limit exists (Rootzén and Tajvidi, 2006). Here the simple normalization by subtracting
u in each component of X is due to the exponential marginals. The random vector X is said
to be in the domain of attraction of the multivariate Pareto distribution Y , which is supported
on the space L = {y ∈ Rd : max(y1, . . . , yd) > 0}. Multivariate Pareto distributions are the
only possible limits of threshold exceedances (Rootzén et al., 2018) and therefore a canonical
model for extremes. If the convergence in (1) holds, it is easy to see that for any non-empty
subset I ⊂ V , the sub-vector XI = (Xj : j ∈ I) is itself in the domain of attraction of a
|I|-dimensional Pareto distribution, which we call the Ith sub-model of Y .

We now introduce the Hüsler–Reiss model, which is the most popular parametric sub-class
of multivariate Pareto distributions. It can be seen as the analog of Gaussian distributions in
multivariate extreme value theory, a fact, that will become apparent when studying extremal
graphical models in the next section.

Definition 1 A multivariate Pareto distribution Y = (Y1, . . . , Yd) is called a Hüsler–Reiss
distribution parameterized by the variogram matrix Γ in the space of conditionally negative
definite matrices

Cd = {Γ ∈ [0,∞)d×d : Γ = Γ>, diag(Γ) = 0, v>Γv < 0 ∀0 6= v ⊥ 1}, (2)

if its density has the form

f(y; Γ) = cΓ exp

{
−1

2
(y − µΓ)>Θ(y − µΓ)− 1

d

d∑
i=1

yi

}
, y ∈ L, (3)

where cΓ > 0 is a normalizing constant, µΓ = Π(−Γ/2)1d, and Π = Id − 1d1
>
d /d is the

projection matrix onto the orthogonal complement of the all-ones vector in d-dimensions.
The matrix Θ = (Π(−Γ/2)Π)+ is the positive semi-definite Hüsler–Reiss precision matrix
(Hentschel et al., 2022), where A+ is the Moore–Penrose pseudoinverse of a matrix A.
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The Hüsler–Reiss distribution is stable under marginalization, in the sense that for I ⊂
V , the Hüsler–Reiss sub-model corresponding to the Ith marginal is again Hüsler–Reiss
distributed with parameter matrix ΓI . While the density in (3) resembles the density of a
multivariate normal distribution, we note that there are important differences. First, this
function would not have finite integral on Rd because of the second term in the exponential,
and the restriction to the subset L is crucial. Second, the precision matrix Θ is of rank d−1,
which complicates theoretical and practical considerations.

An important summary statistic of the dependence structure in multivariate Pareto dis-
tributions is the extremal variogram (Engelke and Volgushev, 2022). It takes a similar role
as the covariance matrix in the non-extremal world.

Definition 2 For a multivariate Pareto distribution Y = (Yj : j ∈ V ) the extremal variogram
rooted at node m ∈ V is defined as the matrix Γ(m) with entries

Γ
(m)
ij = Var {Yi − Yj | Ym > 1} , i, j ∈ V,

whenever the right-hand side is finite.

If Y follows a Hüsler–Reiss distribution with parameter matrix Γ, it can be checked that
the extremal variogram matrices coincide for all m ∈ V , and that they satisfy

Γ = Γ(1) = · · · = Γ(d). (4)

We use this fact later to combine empirical estimators of the extremal variograms rooted at
the different nodes to obtain a more efficient joint estimator of Γ.

2.2 Extremal graphical models

Conditional independence for multivariate Pareto distributions Y is non-standard since it is
defined on the space L, which is not a product space. Engelke and Hitz (2020) therefore
define a new notion of extremal conditional independence using the auxiliary vectors Y (m),
for m ∈ {1, . . . , d}, defined as Y conditioned on the event that {Ym > 0}. For non-empty
subsets A,B,C ⊂ V , we say that YA is conditionally independent of YB given YC , denoted
by YA ⊥e YB | YC , if for all auxiliary random vectors, we have the corresponding statement
in the usual sense, that is,

Y
(m)
A ⊥⊥ Y (m)

B | Y (m)
C for all m ∈ V.

It can be shown that requiring the relation above is equivalent to requiring the existence of

a single m ∈ V for which Y
(m)
A ⊥⊥ Y (m)

B | Y (m)
C (Engelke et al., 2022b).

Let G = (V,E) be an undirected graph with nodes V = {1, . . . , d} and edge set E ⊂ V ×V .
Using the new notion of conditional independence, an extremal graphical model on G is a
multivariate Pareto distribution Y that satisfies the extremal pairwise Markov property on
G, that is,

Yi ⊥e Yj | YV \{i,j} if (i, j) /∈ E.
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Engelke and Hitz (2020) show that this definition is natural in the sense that it enables a
Hammersley–Clifford theorem showing that densities factorize into lower-dimensional terms
on the cliques of the graph.

For a multivariate Gaussian distribution with covariance matrix Σ, the conditional de-
pendence relationships, or equivalently the edges in the Gaussian graphical model can be
identified from the nonzeros of the precision matrix Σ−1. A similar property holds for ex-
tremal graphical models if Y follows a Hüsler–Reiss distribution, where the matrix Θ in
Definition 1 plays a key role.

Proposition 3 (Lemma 1 and Proposition 3 of Engelke and Hitz (2020)) Let Y ∈
Rd follow a Hüsler–Reiss distribution with precision matrix Θ. Then,

Yi ⊥e Yj | YV \{i,j} ⇔ Θij = 0. (5)

A consequence of Proposition 3 is that for a Hüsler–Reiss graphical model on an arbitrary
connected graph G, we can read off the graph structure from the zero pattern of the precision
matrix Θ.

Finally, we note that an important property of an extremal graphical model is that if
Y possesses a density that factorizes on the graph G, then G must necessarily be connected
(Engelke and Hitz, 2020). The state-of-the-art structure learning methods for extremal data
(Engelke et al., 2022c; Wan and Zhou, 2023) can yield disconnected graphs that thus do
not always yield a valid distribution (see the example in Figure 1). For a detailed review of
recent progress on extremal graphical models, we refer to Engelke et al. (2024a). In the next
section, we present our approach for structure learning, which can handle latent variables
and always yields a valid distribution.

3. Latent Hüsler–Reiss models and the eglatent method

3.1 Latent Hüsler–Reiss models

In the illustrative example in the introduction, we presented a Hüsler–Reiss model with a
single latent variable and a very simple graphical structure among the observed variables. We
next introduce a latent Hüsler–Reiss model with a general extremal graphical structure and
any number of latent variables. In what follows, let XO ∈ Rp be the collection of observed
variables, XH ∈ Rh be a collection of latent variables, and put d := p+ h.

Definition 4 (Latent Hüsler–Reiss models) Suppose that the random vector X = (XO

, XH) ∈ Rd, indexed by V = (O,H), is in the domain of attraction of a Hüsler–Reiss distri-
bution Y ∈ Rd in the sense of (1) with variogram and precision matrices, and corresponding
extremal graphical structure

Γ =

(
ΓO ΓOH

ΓHO ΓH

)
, Θ =

(
ΘO ΘOH

ΘHO ΘH

)
, and G = (V,E),

respectively. Here Θ = (Π(−Γ/2)Π)+, ΓO and ΘO are p×p-dimensional symmetric matrices,
and E = {(i, j) : i, j ∈ V, i 6= j,Θij 6= 0}. We then say that Y is a latent Hüsler–Reiss model,
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and we note that the observed variables XO are in the domain of attraction of a Hüsler–Reiss
model with variogram ΓO.

Note that ΘO and ΘH in the above definition are positive definite since Γ ∈ Cd; see
Definition 1 and Engelke and Hitz (2020, Appendix B). Latent Hüsler–Reiss models have been
studied only for very simple graphs, namely tree structures (Asenova et al., 2021; Röttger
et al., 2023b) and block graphs (Asenova and Segers, 2023). All of the above methods assume
the underlying graph structure among the observed and latent variables and the number of
latent variables to be known, which is rarely realistic in practice. To handle more general
graphs, we establish the following theorem, which relates the marginal distribution of the
observed variables to components of the precision matrix Θ.

Theorem 5 Let Π̃ = Ip − 1p1
T
p /p be the projection matrix onto the orthogonal complement

of the all-ones vector in p dimensions. Then, the precision matrix Θ̃ ∈ Rp×p of the observed
variables of a latent Hüsler–Reiss model with variogram matrix Γ satisfies

Θ̃ = (Π̃(−ΓO/2)Π̃)+ = ΘO −ΘOHΘ−1
H ΘHO. (6)

While it is not possible to observe the joint precision matrix Θ or any of its components
directly, Theorem 5 provides a useful decomposition of the observable precision matrix Θ̃
into the difference of two terms, each term involving the components of Θ. By the property
in (5), we have for any i, j ∈ O that

Yi ⊥e Yj | YH , YO\{i,j} ⇔ [ΘO]i,j = 0.

Thus, the first term ΘO in decomposition (6) specifies the conditional independencies among
the observed variables after conditioning on the latent variables. Moreover, the sparsity
pattern of ΘO encodes the residual graph GO among the observed variables after extracting
the influence of the latent variables. Here, GO = (O,EO) is a subgraph of G restricted to
the observed variables where EO = {(i, j) ∈ E, i, j ∈ O}. The second term ΘOHΘ−1

H ΘHO

in decomposition (6) serves as a summary of the marginalization of the latent variables YH
and encodes their effect on the observed variables. The rank of this matrix is equal to the
number of latent variables. The overall term ΘO−ΘOHΘ−1

H ΘHO is a Schur complement with
respect to ΘH .

As an illustration, consider the extremal graph on the left-hand side of Figure 1. Here,
the matrix ΘO is diagonal. Furthermore, the matrix ΘOHΘ−1

H ΘHO has rank equal to one
with all of its entries being nonzero. Note that Θ̃ generally consists of all nonzero entries and
hence the marginal graphical structure among the observed variables on the right-hand side
of Figure 1 is fully connected.
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3.2 Sparse plus low-rank decomposition

In this paper, we consider a latent Hüsler–Reiss graphical model where the subgraph GO
among the observed variables is sparse and the number of latent variables is small relative
to the number of observed variables, that is, h � p. This modeling assumption is often
natural in real-world applications. For example, Chandrasekaran et al. (2012) and Taeb and
Chandrasekaran (2016) showed that a large fraction of the conditional dependencies among
stock returns can be explained by a small number of latent variables and interpreted these
to be correlated to exchange rate and government expenditures. In a similar spirit, Taeb
et al. (2017) demonstrated that the California reservoir network is sparsely connected after
accounting for a few latent factors, and interpreted these latent factors to be highly correlated
to environmental variables such as drought level and precipitation.

In the case of extremes, a sparse subgraph G0 and the presence of only a few latent
variables in the model translate to a latent Hüsler–Reiss model with matrix ΘO being sparse,
the matrix ΘOHΘ−1

H ΘHO being low-rank, and thus the observed precision matrix Θ̃ being
decomposed as a sparse plus low-rank matrix having zero row sums. Notice that the matrix Θ̃
will generally be dense due to the additional low-rank term ΘOHΘ−1

H ΘHO, highlighting how
the latent variables induce many confounding dependencies among the observed variables
(see Figure 1), and how structure learning procedures that impose sparsity on the precision
matrix Θ̃ will generally not perform well.

In summary, we can cast the problem of learning a latent Hüsler–Reiss graphical model
as obtaining a sparse plus low-rank decomposition of the precision matrix Θ̃ of the observed
variables. The sparse component provides the residual graphical structure of the observed
variables after accounting for the latent variables, the rank of the low-rank component pro-
vides the number of latent variables, and the overall sum provides a compact model of the
observed variables that can be used for downstream tasks. In the following section, we pro-
pose a convex optimization procedure to accurately estimate each of these components from
data.

Finally, we note that in the setting where the observed and latent variables are jointly
Gaussian, Chandrasekaran et al. (2012) also models the precision matrix among the observed
variables as a sum of a sparse and a low-rank matrix. Analogous to our setting, the sparse
component encodes the subgraph of the observed variables and the low-rank component en-
codes the effect of the latent variables on the observed variables. An important distinguishing
feature with our extremal setting however is that in the Gaussian context, the resulting sum is
not constrained to have zero row sum. As we describe in Section 3.3, the additional subspace
constraint in our extremal setting results in a different estimation procedure and assumptions
for statistical consistency.

3.3 Inference for latent Hüsler–Reiss graphical models

Let X = (XO, XH) be a collection of observed and latent variables in the domain of attraction
of a latent Hüsler–Reiss graphical model with a sparse subgraph among the observed variables
and a small number of latent variables; we will specify the sparsity level and the number of
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latent variables in our theoretical results. Let Γ? be the underlying population variogram
matrix and Θ? be the population precision matrix with components Θ?

O,Θ
?
OH and Θ?

H . Let
Θ̃? be the precision matrix among the observed variables. From Theorem 9, we have that
Θ̃? = S? − L? where S? := Θ?

O is a sparse matrix and L? := Θ?
OHΘ?

H
−1Θ?

HO is a low-rank
matrix. Here, the support of S? encodes the subgraph among the observed variables and the
rank of L? encodes the number of latent variables. We will propose a convex optimization
procedure to estimate the matrices (S?, L?) from data.

3.3.1 Empirical extremal variogram matrix

An important ingredient of our procedure is an empirical estimate for the extremal variogram
matrix Γ?O. To arrive at our estimate, define for any m ∈ O, the population extremal vari-

ogram matrix Γ
?,(m)
O rooted at the node m; see Definition 2. Suppose we have n independent

and identically distributed samples {X(t)
O }nt=1 ⊆ Rp of the observed variables XO. Then, a

natural estimate Γ̂
(m)
O for Γ

?,(m)
O is given by

Γ̂
(m)
ij := V̂ar

(
log(1− F̂i(X(t)

i ))− log(1− F̂j(X(t)
j )) : F̂m(X(t)

m ) ≥ 1− k/n
)
, i, j ∈ O.

Here, V̂ar denotes the sample variance, and k is the number of extreme samples considered in
the conditioning event, which can be viewed as the effective sample size. Since in Section 2
we assumed that X has standard exponential margins, for i ∈ O, t ∈ {1, . . . , n}, inside the

variance we normalize the i-th entry of the t-th observation empirically by − log(1−F̂i(X(t)
i )),

where F̂i denotes the empirical distribution function of X
(1)
i , . . . , X

(n)
i . As (4) establishes that

the empirical variogram matrix rooted at node m coincides with the true variogram matrix
Γ?O for every m, a natural empirical estimator of this matrix is

Γ̂O :=
1

p

p∑
m=1

Γ̂
(m)
O . (7)

Under the assumption that k → ∞ and k/n → 0, and mild conditions on the underlying
data generation, this estimator can be shown to be consistent for Γ?O (Engelke and Volgushev,

2022). Moreover, Engelke et al. (2022c) derive finite sample concentration bounds for Γ̂O
that can be used for high-dimensional consistency results. We refer to Appendix G for details
on the assumptions and results.

3.3.2 Parameter estimation and structure learning

For structure learning in Hüsler–Reiss models, formulating optimization problems in the
precision domain leads to computationally efficient procedures. Indeed, the precision matrix
estimate obtained from plugging in the empirical extremal variogram Γ̂O in place of Γ?O in
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the expression Θ̃? = (Π̃(−Γ?O/2)Π̃)+ is the minimizer of the convex problem

Θ̂ = argmin
Θ∈Sp

− log det
(
UTΘU

)
− 1

2
tr(ΘΓ̂O),

s.t. Θ � 0 , Θ1p = 0,

(8)

where the matrix U ∈ Rp×(p−1) consists of the first p − 1 left singular vectors of Π̃ so that
UUT = Π̃; see Appendix C for a formal proof. The constraint � 0 imposes positive semi-
definiteness, Sp denotes the space of symmetric p × p matrices, and the constraint Θ1p = 0
ensures that Θ has zero row sum. The above optimization problem corresponds to the
surrogate maximum likelihood estimator of the Hüsler–Reiss distribution; for more details
on this justification we refer to Röttger et al. (2023b).

The formulation in terms of the precision matrix Θ opens the door to various regularized
estimation methods. Röttger et al. (2023b) solve (8) under the additional constraint that
Θij ≤ 0 for all i, j ∈ V to ensure a from of positive dependence. For a graph G = (V,E),
in order to obtain a graph structured estimate of Γ, Hentschel et al. (2022) solve a matrix
completion problem that corresponds to (8) under the constraint Θij = 0 for (i, j) /∈ E. In
the context of structure learning without latent variables, Engelke et al. (2022c) and Wan
and Zhou (2023) add an `1 penalty to the loss function akin to the graphical Lasso.

In the setting with latent variables, we rely on the sparse plus low-rank decomposition
described in Section 3.1. We, therefore, search over the space of precision matrices Θ that can
be decomposed as Θ = S − L to identify a sparse matrix S and a low-rank matrix L, whose
difference has zero row sum and yields a small surrogate negative likelihood. Motivated by
the estimator for Gaussian latent variable graphical modeling (Chandrasekaran et al., 2012),
we introduce the eglatent method that solves the following regularized convex likelihood
problem for some λn, γ ≥ 0:

(Ŝ, L̂) = argmin
S∈Sp,L∈Sp

− log det(UT (S − L)U)− tr((S − L)Γ̂O/2) + λn(‖S‖1 + γtr(L)),

s.t. S − L � 0, L � 0, (S − L)1p = 0.
(9)

Here, Ŝ and L̂ are estimates for the population quantities S? and L?, respectively. The
matrix Ŝ− L̂ represents an estimated precision matrix among the observed variables. By the
constraints in (9) and the property of logdet functions, span(1p1

>
p ) is the null space of Ŝ− L̂

and Ŝ − L̂ always specifies a valid Hüsler–Reiss model.
The function ‖ ·‖1 denotes the `1 norm that promotes sparsity in the matrix S (Friedman

et al., 2007). The role of the trace penalty on L is to promote low-rank structure (Fazel et al.,
2004). The regularization parameter γ provides a trade-off between the graphical model
component and the latent component. In particular, for very large values of γ, eglatent
produces L̂ = 0 so that no latent variables are included in the model. As γ decreases, the
number of latent variables increases and correspondingly the number of edges in the residual
graphical structure decreases. The regularization parameter λn provides overall control of
the trade-off between the fidelity of the model to the data and the complexity of the model,
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and thus naturally depends on the sample size. For λn, γ ≥ 0, eglatent is a convex program
that can be solved efficiently.

While our eglatent estimator (9) resembles the one in Chandrasekaran et al. (2012),
there is an important distinguishing feature. Specifically, in contrast to the estimator in
Chandrasekaran et al. (2012), our estimator imposes the constraint (S − L)1p = 0 so that
the resulting model is a valid Hüsler–Reiss model. As a result of this additional constraint,
the log-determinant term in our objective is also different in that it projects S − L onto the
space of matrices that have zero row/column sum. Since our estimator is different, we need
additional assumptions and more involved analysis to establish consistency guarantees; see
Section 4 for more details.

Remark 6 A challenge with the optimization in (8), both theoretically and numerically, is
the fact that the matrices range in the space of positive semi-definite matrices with zero row
sum. This factor indeed seems to prohibit direct structure learning without latent variables
(i.e., setting L = 0 in (9) to obtain a graphical lasso analog) where the estimated graphical
structure can be rather different than the true graphical structure; see the discussion in En-
gelke et al. (2022c, Section 7). To circumvent this issue, Engelke et al. (2022c) and Wan
and Zhou (2023) solve slightly different problems to obtain accurate graph estimation, al-
though their estimated graphs do not always yield valid Hüsler–Reiss models. Remarkably,
the addition of the low-rank component L in the eglatent estimator (9) solves these issues.
Indeed, we will show that eglatent consistently recovers the subgraph among the observed
variables and the number of latent variables, and matches the performance of existing proce-
dures (Engelke et al., 2022c; Wan and Zhou, 2023) for learning an accurate model when no
latent variables are present.

4. Consistency guarantees for eglatent

Recall from Section 3.3 that we denote by S? the population matrix encoding the graphical
structure among the observed variables conditioned on the latent variables, and by L? the
population matrix encoding the effect of a few latent variables on the observed variables.
Further, Θ̃? = S? − L? represents the marginal precision matrix in the Hüsler–Reiss model
over the observed variables. In this section, we state a theorem to prove that the estimates
of eglatent in (9) provide, with high probability, the correct graphical structure among the
observed variables, the correct number of latent variables, and an accurate extremal model.
Stated mathematically, we show with high probability that (i) the sign-pattern of Ŝ is the
same as that of S?, i.e., sign(Ŝ) = sign(S?), where sign(0) = 0; (ii) the rank of L̂ is the
same as that of L?, i.e., rank(L̂) = rank(L?); and (iii) the estimated precision model Ŝ − L̂
closely approximates the true precision matrix Θ̃?, i.e., Ŝ − L̂ ≈ Θ̃?. Our analysis requires
assumptions on the population model so that the matrices S? and L? are identifiable from
their sum, and that the number of effective samples k is of order k & p2 log(p).
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4.1 Technical setup

As eglatent is solved in the precision matrix parameterization, the conditions for our the-
orems are naturally stated in terms of the precision matrix S? − L?. The assumptions are
similar in spirit to convex relaxation methods for Gaussian latent-variable graphical model
selection (Chandrasekaran et al., 2012), although some conditions are new due to the zero
row and column sum structure of the observed precision matrix S? − L?.

To ensure correct graph recovery and correct number of latent variables, we seek an
estimate (Ŝ, L̂) from eglatent such that support(Ŝ) = support(S?) and rank(L̂) = rank(L?).
Building on both classical statistical estimation theory, as well as the recent literature on
high-dimensional statistical inference, a natural set of conditions for accurate parameter
estimation, is to assume that the curvature of S? −L? is bounded in certain directions. The
curvature is governed by the modified Hessian of the surrogate log-likelihood loss at S?−L?:

I? :=

(
S? − L? +

1

p
1p1

>
p

)−1

⊗
(
S? − L? +

1

p
1p1

>
p

)−1

,

where ⊗ denotes a Kronecker product between matrices, and I? may be viewed as a map
from Sp to Sp. The matrix I? modifies the Hessian of the surrogate log-likelihood loss (S? −
L?)+⊗ (S?−L?)+, where the addition of the term 1

p1p1
>
p (a dual parameter of the program

(9)) helps to compactify the assumptions we place in our population model.
We impose conditions so that I? is well-behaved when applied to matrices of the form

S−S?− (L−L?+ t1p1
>
p ). Here, S is in the neighborhood of S? restricted to sparse matrices,

L is in the neighborhood of L? restricted to low-rank matrices, and t1p1
>
p is a dual parameter

for some t ∈ R due to the constraint (S−L)1p = 0 that appears in the analysis of (9). These
local properties of I? around S? − (L? + t1p1

>
p ) are conveniently stated in terms of tangent

spaces to algebraic varieties of sparse and low-rank matrices. In particular, the tangent space
of a matrix M with r non-zero entries with respect to the algebraic variety of p× p matrices
with at most r non-zeros is given by

Ω(M) := {N ∈ Rp×p : support(N) ⊆ support(M)}.

Moreover, the tangent space at a rank-r matrix M with respect to the algebraic variety of
p× p matrices with rank less than or equal to r is given by:

T (M) := {NR +NC : NR, NC ∈ Rp×p,
row-space(NR) ⊆ row-space(M), col-space(NC) ⊆ col-space(M)}.

For more discussion on the tangent spaces of sparse and low-rank matrices, see Chan-
drasekaran et al. (2012). In the next section, we describe conditions on the population
Hessian I? in terms of tangent spaces Ω(S?) and T (L?). Under these conditions, we present
a theorem in Section 4.4 showing that the convex program provides accurate estimates. For
notational simplicity, we let Ω? := Ω(S?) and T ? := T (L?). Finally, the linear operators
A : Sp × Sp → Sp and its adjoint A† : Sp → Sp × Sp are defined as:

A(M,N) := (M −N), A†(Q) := (Q,Q). (10)
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4.2 Conditions on the Hessian I?

Given a norm ‖ · ‖Ψ on Sp × Sp, we first consider a classical condition in statistical
estimation literature, which is to control the minimum gain of the Hessian I? restricted to a
subspace Q ⊆ Sp × Sp as follows:

χ(Q, ‖ · ‖Ψ) := min
Z∈H
‖Z‖Ψ=1

‖PQA†I?APQ(Z)‖Ψ, (11)

where PQ denotes the projection operator onto the subspace Q and the linear maps A and
A† are defined in (10). The quantity χ(Q, ‖ · ‖Ψ) insures that the Hessian is well-conditioned
restricted to the image AQ. The remaining condition we impose on I? are in the spirit of
irrepresentability-type conditions that are frequently employed in high-dimensional estima-
tion problems (Meinshausen and Buhlmann, 2006; Wainwright, 2009; Zhao and Yu, 2006;
Ravikumar et al., 2008; Candès and Recht, 2012; Chandrasekaran et al., 2012). Specifically,
we control the inner-product between elements in AQ and AQ⊥ as quantified by the metric
induced by I? via the following quantity:

ϕ(Q, ‖ · ‖Ψ) := max
Z∈Q
‖Z‖Ψ=1

‖PQ⊥A†I?APQ(PQA†I?APQ)−1(Z)‖Ψ. (12)

The operator (PQA†I?APQ)−1 in (12) is well-defined if χ(Q, ‖ · ‖Ψ) > 0, since this latter
condition implies that I? is injective restricted to AQ. The quantity ϕ(Q, ‖ · ‖Ψ) being small
implies that any element of AQ and any element of Q⊥ have a small inner-product (in the
metric induced by I?).

A natural approach to controlling the condition of the Hessian I? around S?−L?+ t1p1
>
p

is to bound the quantities χ(Q?, ‖ · ‖Ψ) and ϕ(Q?, ‖ · ‖Ψ) for Q? = Ω? × (T ? ⊕ span(1p1
>
p )).

However, a complication that arises with tangent spaces to low-rank varieties is that they are
locally smooth. To account for this curvature, we bound distances of nearby tangent spaces
via the following induced norm:

ρ(T1, T2) := max
‖N‖2≤1

‖(PT1 − PT2)(N)‖2.

The quantity ρ(T1, T2) measures the sine of the largest angle between T1 and T2. Using
this approach for bounding nearby tangent spaces, we consider subspaces Q′ = Ω? × (T ′ ⊕
span(1p1

>
p )) for all T ′ close to T ? as measured by ρ. For ω ∈ (0, 1), we bound χ(Q′, ‖ · ‖Ψ)

and ϕ(Q′, ‖ · ‖Ψ) in the sequel for all subspaces Q′ in the following set:

U(ω) = {Ω? × (T ′ ⊕ span(1p1
>
p )) | ρ(T ′, T ?) ≤ ω}.

We control the quantities χ(Q′, ‖ ·‖Ψ) and ϕ(Q′, ‖ ·‖Ψ) using the dual norm of the regularizer
‖S‖1 + γtr(L?):

Φγ(S,L) := max

{
‖S‖1,

‖L‖2
γ

}
.
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As the dual norm max{‖S‖1, ‖L‖2γ } plays a central role in the optimality conditions of (9),

controlling the quantities χ(Q′, ‖ · ‖Φγ ) and ϕ(Q′, ‖ · ‖Φγ ) leads to a natural set of conditions
that guarantee the consistency of the estimates produced by (9). In summary, given a fixed
set of parameters (ω, γ) ∈ (0, 1) × R+, we assume that I? satisfies the following conditions,
where F = PT ?⊥(1/p1p1

>
p )/‖PT ?⊥(1/p1p1

>
p )‖2 and ‖I?‖2 denotes the spectral norm of the

operator I?.
Assumption 1 infQ′∈U(ω) χ(Q′,Φγ) ≥ α for some α > 8ωmax{γ, 1}(‖I?(F )‖2 +‖I?‖2ω+1).

Assumption 2 supQ′∈U(ω) ϕ(Q′,Φγ) ≤ 1− ν for some ν ∈ [4ω, 1).

Chandrasekaran et al. (2012) impose a sufficient set of conditions, and prove that they imply
conditions similar to Assumptions 1-2 (see Proposition 3.3 in Chandrasekaran et al. (2012)).
A key distinction between our conditions and the implied conditions in Chandrasekaran et al.
(2012) is that our subspace Q′ also contains the directions span(1p1

>
p ). This distinction

arises from the additional zero row-sum constraint in our estimator which introduces the
dual parameter t1p1

>
p . Moreover, we require the following condition for how far span(1p1

>
p )

deviates from T ?:

Assumption 3 κ? := ‖PT ?⊥(1p1
>
p /p)‖2 ∈

(
ω,min

{
4ν, α

8 max{γ,1}(‖I?(F )‖2+‖I?‖2ω+1) − ω
})

.

Assumption 3 is also a new condition relative to Chandrasekaran et al. (2012). This as-
sumption ensures that k? not so small so that L? and the dual parameter t1p1

>
p can be

distinguished from one another. Assumption 3 also ensures that κ? is not too large. This
condition comes from the optimality conditions of (9), which involve controlling the size of
the inner product of elements in span(1p1

>
p ) and in T ?⊥. Further, bounding κ? allows the

size of t to be controlled.

Remark 7 (Dependency on h and graph structure) The dependence on the number of
latent variables h and the density of the graphical structure among the observed variables
conditioned on the latent variables does not appear explicitly in Assumptions 1–3, but is
implicit in the quantities α, ν. Indeed, as larger h and denser graphical structures increase
the dimensions of the tangent spaces T ? and Ω?, respectively, they result in smaller α, ν. In
Appendix F, we provide conditions on the Hessian I? that do not depend on γ and measure
the behavior of I? restricted to individual subspaces Ω? and T ? (rather than their coupling as
in Assumptions 1–2). With these conditions and when the latent variables affect most of the
observed variables (see also the discussion in Section 4.1), we prove in Appendix F that as
long as d?

√
h/p = O(1), there exists a choice of γ that satisfies Assumption 1–3. Here,

d? := max
i

∑
j

I[S?ij 6= 0] (13)

is the maximum degree of the graphical structure among the observed variables. For instance,
for the following nontrivial classes of models the above condition holds:
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• Polynomial degree: the maximum degree d? grows at most polynomially with p, that is,
d? = O(pq), and the number of latent variables satisfies h = O

(
p1−q) , where q ∈ (0, 1).

Here, consistent estimation is possible even when the graph structure is complex.

• Bounded degree: we have d? = O(1) so that h = O(p). Here again, consistent estimation
of the underlying graphical structure among the observed variables is possible even when
the number of latent variables is in the same order as the number of observed variables.

Remark 8 (Choice of γ) We make two observations. First, a smaller range of values of
γ naturally leads to larger α and ν. Second, intuitively, the choice of γ should decrease with
a larger h so that less penalty is imposed on the rank of L̂, and it should increase with larger
d? so that L̂ does not contain some of the components of S?. To formalize this intuition, we
consider the setting described in the previous paragraph. We show in Appendix F that the
lower-bound on the range of values of γ that satisfy Assumptions 1–3 scales with d?, and the
upper-bound is in the order

√
p/h.

4.3 When do Assumptions 1–3 on the Hessian hold? Connections to
identifiability

In this section, we provide concrete examples of latent extremal models that satisfy Assump-
tions 1–3 for some choices of α > 0, ν ∈ [0, 1), ω ∈ (0, 1) and γ > 0. To arrive at such models,
we must intuitively understand when the matrices S?, L?, and t1p1

>
p are identifiable from

their sum for some t ∈ R (recall, the term t1p1
>
p arises from the zero row-sum constraint).

Since the matrix t1p1
>
p has rank equal to one and is thus also low-rank, we consider a com-

bined term L? + t1p1
>
p . Two identifiability issues arise: the first is to distinguish S? from

L? + t1p1
>
p and the second is to distinguish L? from L? + t1p1

>
p .

To address the first identifiability issue, we appeal to the previous literature on sparse-
plus-low rank decompositions, which states that the matrices S? and L? + t1p1

>
p are iden-

tifiable from their sum if the row and columns of the matrix S? are sufficiently sparse and
the matrix L? + t1p1

>
p is sufficiently low-rank with most of its entries non-zero and similar

in magnitude (Candès et al., 2011; Chandrasekaran et al., 2011; Recht et al., 2010). Sparsity
of S? corresponds to small d? in (13) so that no observed variable is directly connected to
“many” other observed variables. Thus, we want d? to be small so that no observed variable
is directly connected to “many” other observed variables. Since the matrix t1p1

>
p has equal

entries and is rank one, the structural constraint on L? + t1p1
>
p can be interpreted as the

number of latent variables being small (as compared to the ambient dimension p) with their
effects spread across all the observed variables. To measure the “diffuseness” of the latent
effects, we consider the following quantity for any linear subspace Z ⊆ Rp (Candès et al.,
2011; Candès and Recht, 2012; Chandrasekaran et al., 2011, 2012): µ[Z] := maxi ‖PZ(ei)‖2,
where PZ is the projection onto the subspace Z and ei is a standard coordinate basis. The
quantity µ[Z] is also known as the “incoherence parameter” (Candès and Recht, 2012; Chan-
drasekaran et al., 2011). It measures how aligned the subspace Z is with respect to standard
basis elements and is lower-bounded by

√
dim(Z)/p and upper-bounded by one. In our
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setting, the relevant subspace is the row or column space of L? and so we define

µ? := µ[col-space(L?)]. (14)

Thus, a lower bound for µ? is
√
h/p, which is achieved when the effect of latent variables on

the observed variables is equally spread out. A small value of µ? ensures the matrix L? has
a small rank and is far from being sparse.

To address the second identifiability issue of disentangling L? and t1p1
>
p from their sum,

as described earlier, we want the deviation of the subspaces T ? and span(1p1
>
p ) to not be too

large (i.e. the lower-bound condition in Assumption 3). This deviation can be conveniently
measured by κ? : −‖PT ?⊥(1p1

>
p /p)‖2 which is equivalent to ‖Pcol-space(L?)⊥(1/

√
p1p)‖2F .

Having these identifiability concerns in mind, we give stylized extremal graphical mod-
els and numerically check that the Hessian conditions in Assumptions 1–3 are satisfied for
appropriate choice of parameters. Specifically, we set p = 30, h = 1 and specify the sub-
graph GO = (EO, O) among the observed variables to be an Erdős–Rënyi graph with edge
probability τ ∈ {0.001, 0.005} and set Θ?

ij to 0.2 for every (i, j) ∈ EO and zero otherwise.
We connect the latent variable to each observed variable and select the corresponding en-
tries Θ?

p+1,k uniformly at random from the interval [1/
√
k, 1.1/

√
k] for all k ∈ O. Notice

that larger values of τ lead to larger sparsity parameter d?. We let ω = 0.003 so that the
largest angle between tangent spaces T ′ and T ? is less than 0.0005 degrees. Employing a
numerical procedure described in Appendix D.1, we obtain a range of values of γ, α, ν that
satisfy Assumptions 1–3. The values of α and ν that are computed using this procedure serve
as a lower bound for the optimal α, ν, respectively. Indeed, an exciting direction for future
research is to develop numerical or analytical techniques to precisely characterize the opti-
mal values of α, ν. Table 1 illustrates d? and the corresponding values of γ, α, ν that satisfy
Assumptions 1–3. Examining Table 1, we can make two observations. First, for each value
of τ , a larger range of γ results in smaller α and ν. Second, larger graph density (i.e., larger
τ) reduces the range of values of γ that satisfy Assumption 1-3. These two observations are
consistent with theory; see Remark 8.

τ d? γ α ≥ ν ≤
0.001 1 (1.7,3.6) 0.91 0.004

0.001 1 (2.15,3) 1.14 0.150

0.005 2 (2.8,3.45) 1.26 0.007

0.005 2 (3,3.3) 1.3 0.04

Table 1: Different values of the edge probability τ , the maximum node degree (13), and the
corresponding ranges of the regularization γ in (9) and values of α, ν that satisfy Assump-
tions 1–3.
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4.4 Theorem statement

We now describe the performance of eglatent under suitable conditions on the quantities
from the previous section. We state the theorem based on essential aspects of the conditions
required for the success of our convex relaxation (i.e., the Hessian conditions) and omit
complicated constants. We specify these constants in Appendix H. Our results depend on a
second-order parameter ξ > 0 that determines the rate of convergence of a random vector
X in the domain of attraction of a Hüsler–Reiss distribution to its limit, with larger values
corresponding to faster convergence; see Appendix G.

Theorem 9 Suppose that we have n independent and identically distributed samples in the
domain of attraction of a latent Hüsler–Reiss model as described in Section 3.3 with second-
order parameter ξ > 0 in Assumption 9 in Appendix G. Assume that there exists α > 0,
ν ∈ (0, 1], ω ∈ (0, 1) and the choice of the parameter γ so that the Hessian I? corresponding
to this latent Hüsler–Reiss model satisfies Assumptions 1–3. Let m := max{1, 1/γ} and
m̄ := max{1, γ}. Let the effective sample size k be chosen such that k < n2ξ/(2ξ+1). Let
h := rank(L?) be the true number of latent variables and d? the maximum degree of the true
graph structure among the observed variables conditioned on the latent variables as in (13).
Suppose:

1. k & m5hd?2

α6 p2 log(p), i.e., effective sample size is sufficiently large;

2. λn ∼ m
ν

√
p2 log(p)

k , i.e., λn is appropriately chosen;

3. σmin(L?) & m4m̄h
να4

√
p2 log(p)

k , i.e., the minimum nonzero singular value of L? is suffi-
ciently bounded away from zero;

4. |S?ij | & m3m̄
√
h

να2

√
p2 log(p)

k for every (i, j) with |S?ij | > 0, i.e., the minimum nonzero
entry of S? is sufficiently bounded away from zero.

Then, the estimate (Ŝ, L̂) defined as the unique minimizer of eglatent in (9) with empirical
variogram in (7) satisfies

P

(
sign(Ŝ) = sign(S?), rank(L̂) = rank(L?), ‖(Ŝ − L̂)− Θ̃?‖2 .

m3
√
h

να2

√
p2 log(p)

k

)
≥ 1− 1

p
.

Remark 10 The class of distributions X in the domain of attraction of a Hüsler–Reiss dis-
tribution is very large. For instance, the max-stable Hüsler–Reiss distribution is one member
of this class. Note that since we are considering threshold exceedances, the right-hand side
of (1) changes with the threshold u even if X is a max-stable distribution. Indeed, Engelke
et al. (2022c, Proposition S.6) showed that the rate of convergence is governed by a second-
order parameter ξ that can be chosen as any value in (0, 1). In this case, the effective sample
size k in Theorem 9 must satisfy k = o(n0.66). Thus, in our simulations with max-stable
distribution, we use k = n0.65.
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We prove Theorem 9 in Appendix H. Due to the zero row-sum constraint in the eglatent
estimator (9), the proof of Theorem 9 is more involved than the consistency analysis in
Chandrasekaran et al. (2012). Specifically, we need additional technical arguments to deal
with the dual parameter t1p1

>
p that arises from the zero row-sum constraint. We highlight

these technical arguments in Appendix D.1.

Theorem 9 essentially states that if Assumptions 1–3 hold, (λ, γ) are chosen appropriately,
the effective sample size k is sufficiently large, the minimum nonzero singular value of the
low-rank term L? and the minimum nonzero entry of the sparse piece S? are bounded away
from zero, then, with high probability, eglatent provides accurate estimates for the subgraph
among the observed variables, the number of latent variables, and a marginal extremal model.

The quantities (α, ν, ω) as well as the choices of the parameters λn and γ play a prominent
role in the result. Indeed, larger values of α, ω, ν lead to a better conditioned Hessian I?
around the tangent spaces Ω? and T ? ⊕ span(1p1

>
p ). The better conditioning of the Hessian

I? then results in less stringent requirements on sample complexity, the minimum nonzero
singular value of L?, and the magnitude of the minimum nonzero entry of S?. Notice that
the complexity of the true graph structure among the observed variables d? and the true
number of latent variables h appears explicitly in the bounds in Theorem 9. We also note
the dependence on d? and h is implicit in the dependence on α, ν and γ. Indeed, as larger
d? and h increases the dimension of the tangent space Ω? and T ?, respectively, they result in
smaller α, ν. Furthermore, as described in Remark 8 , the range of values of γ decrease with
larger graph complexity and number of latent variables.

Remark 11 Engelke et al. (2022c) prove that k ≥ O(log(p)) suffices for consistent estima-
tion of extremal graphical models without latent variables. Further, Chandrasekaran et al.
(2012) prove that k ≥ O(p) suffices for consistent estimation of Gaussian latent variable
graphical model. According to Theorem 9, we require k ≥ O(p2 log(p)) in our setting. This
requirement is determined by the deviation ‖Γ̂O − Γ?O‖2, namely how fast the empirical vari-

ogram matrix Γ̂O converges in spectral norm to the true variogram matrix Γ?O. Engelke et al.
(2022c) carried out extensive mathematical arguments to obtain the following concentration
of the empirical variogram matrix in `∞ norm ‖Γ̂O−Γ?O‖∞ ≤ O(

√
log(p)/k). In our analysis,

we use this result and the equivalence of norms relation

‖Γ̂O − Γ?O‖2 ≤ p‖Γ̂O − Γ?O‖∞ ≤ O(
√
p2 log(p)/k)

to obtain a convergence rate in the spectral norm. We suspect that a tighter convergence
result of ‖Γ̂O − Γ?O‖2 ≤ O(

√
p/k) holds. Such a tighter convergence guarantee would then

imply k ≥ O(p) is sufficient for consistency guarantees of our estimator.

Finally, we should expect a more stringent sample size requirement for the latent extremal
model than for the extremal model without latent variables. In particular, a larger sample
size allows us to guarantee spectral norm consistency of the low-rank component, ensuring
accurate estimates for the number of latent variables and their effects; see also the discussion
in Chandrasekaran et al. (2012).
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5. Experimental demonstrations

cnIn our numerical experiments, we use eglatent as a model selection procedure and perform
a second refitting step on the selected model structure to estimate the model parameters;
see Appendix I for details. Code to reproduce our results can be found at https://github.
com/sebastian-engelke/extremal_latent_learning.

5.1 Synthetic simulations

We illustrate the utility of our method for recovering the subgraph among the observed vari-
ables and the number of latent variables on synthetic data. We compare the performance of
our eglatent method to eglearn by Engelke et al. (2022c) for learning extremal graphical
models. (In Appendix J.3, we provide comparisons with the Gaussian latent variable esti-
mator in Chandrasekaran et al. (2012). As expected, our estimator is better at capturing
dependency structure in the extremes and outperforms the Gaussian estimator.) To evaluate
the accuracy of the estimated graphs with edges Ê relative to the true subgraph among the
observed variables with edges E = EO, we use the F -score

F =
|E ∩ Ê|

|E ∩ Ê|+ 1
2(|Ec ∩ Ê|+ |E ∩ Êc|)

.

Larger F -scores thus indicate more accurate graph recovery.

5.1.1 Structure recovery

In order to evaluate the performance of our new method, we generate data from a random
vector X = (XO, XH) in the domain of attraction of a latent Hüsler–Reiss multivariate
Pareto distribution Y with the precision matrix Θ? ∈ Rp+h×p+h, p observed variables O =
{1, 2, . . . , p} and h latent variables H = {p+1, . . . , p+h}. We choose to simulate X from the
Hüsler–Reiss max-stable distribution with the same precision matrix Θ?, which is well-known
to be in the domain of attraction of Y ; see Resnick (2008) for details. The simulation can be
done efficiently with the method in Dombry et al. (2016).

We specify the sub-graph GO = (EO, O) among the observed variables to be a cycle
graph and set Θ?

ij to −2 for every (i, j) ∈ EO and zero otherwise. The latent variables are
not connected in the joint graph, so Θ?

ij = 0 for every i, j ∈ H, i 6= j. We connect each latent
variable node i ∈ H to every k ∈ O satisfying k = i− (p+ 1) + ζh for some positive integer ζ
(thus every latent variable is connected to a distinct set of observed variables in the graph).
The corresponding entries Θ?

ik in the precision matrix are chosen uniformly at random from
the interval [50/

√
p+ h, 75/

√
p+ h]. Finally, we set the diagonal entries of Θ? to have the

all-ones vector in its null space. Appendix J.1 shows results for a setting where the subgraph
among the observed variables is generated according to an Erdős–Rényi graph.

We let p = 30, h ∈ {1, 2, 3}, and we set the number of marginal exceedances to k =
bn0.65c. Following Remark 10, this choice satisfies the assumptions of Theorem 9 since we
simulate from a max-stable distribution. Altering k in a reasonable range does not change the
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Figure 3: F -score (top row) and estimated number of latent variables (middle row) of eglatent method with
the selection of the tuning parameter based on the oracle and validation on the F -score for the cycle graph
with h = 1, 2, 3 latent variables and different effective sample sizes k = 200, 1000, 5000. The bottom row shows
the difference between best eglatent and best eglearn log-likelihoods on the validation set.
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qualitative results of the simulation study. A more detailed discussion of the choice of k can
be found in the real data application in Section 5.2. We generate n samples from the max-
stable Hüsler–Reiss distribution parameterized by Θ? so that we obtain k ∈ {200, 1000, 5000}
effective extreme samples. When deploying our eglatent estimator in (9), we fix γ = 4 to a
reasonable default value; In Appendix J.2, we demonstrate the robustness of our results to
different values of γ. Concerning the regularization parameter λn, which also appears in the
eglearn method, in both methods, it is chosen either by validation likelihood on a separate
dataset of size n or by an oracle approach maximizing the F -score for the sub-graph among
observed variables.

Figure 3 summarizes the performance of the methods on 50 independent trials for the
different sample sizes and different numbers of latent variables. We observe that our proposed
approach outperforms eglearn in several ways. Indeed, the top row shows that the graph
learned by eglearn only poorly recovers the graphical structure among observed variables.
This reveals a limitation of this method, namely that in the presence of latent variables,
the marginal graph of observed variables is dense and sparsity cannot be well detected by
methods that ignore this fact. Clearly, this problem becomes more pronounced with a larger
number of latent variables. On the other hand, our new eglatent method exploits the latent
structure for learning the sparse graph among the observed variables conditional on the latent
variables. It recovers the graphical structure among the observed variables increasingly well
with a growing sample size. In fact, the results for the tuning parameter λn chosen through
validation likelihood are almost as good as those based on the oracle. The middle row of
Figure 3 shows that eglatent is able to identify the correct number of latent variables,
especially for larger sample sizes.

We can also compare the model in terms of their likelihood on the validation data. Again,
our eglatent method generally attains a better validation likelihood and is thus more rep-
resentative of the data. As an exception, we observe that if the effective sample size is small
(k = 100), then eglearn performs better. The reason is that eglatent is a more flexible
model with more parameters to learn, and it therefore benefits more from additional data.

5.1.2 Robustness to zero latent variables

We now evaluate the performance of eglatent when there are no latent variables present and
compare its performance to eglearn. We first specify a graph structure using a Barabási–
Albert model denoted by BA(d,m), which is a preferential attachment model with d notes
and a degree parameter m (Albert and Barabási, 2001). We set d = 20 and m = 2. We
then define a Hüsler–Reiss precision matrix Θ? ∈ Rd×d with entries sampled uniformly at
random from the interval [−5,−2]. The diagonal entries of Θ? are chosen so that it has the
all-ones vector in its null space. We generate n samples from the max-stable Hüsler–Reiss
distribution parameterized by Θ? such that there are k = bn0.65c = 200 effective marginal
extreme samples. We also generate a separate dataset of size n for validation. For the method
eglatent, for each value of the regularization parameter γ = 1, 4, 8, 20 the regularization
parameter λn is chosen based on the validation set. The regularization parameter λn in
eglearn is chosen similarly.
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Figure 4: Left: F -score of eglatent for different regularization parameters γ ∈ {1, 4, 8, 20} and eglearn; top
axis shows the average number of estimated latent variables in eglatent. Right: the log-likelihood of the
same methods evaluated on a validation data set; the top axis shows the average number of estimated edges
in each model.

Figure 4 presents the F -scores and validation log-likelihood scores of eglatent as γ
varies and for 50 independent trials. We also display the average numbers of edges and
latent variables, as well as the performance of eglearn. As expected, larger values of γ
lead to smaller estimates for the number of latent variables. We observe that when γ =
4, eglatent obtains an accurate graphical structure (F -score close to one) with a similar
validation likelihood as eglearn. Here, eglearn yields a sparse graph since, unlike the
previous settings, there are no unobserved confounding. Interestingly, the average number of
estimated latent variables in this case is not close to zero. In particular, we observe that when
γ is chosen so that eglatent yields nearly zero latent variables (i.e., L̂ ≈ 0), the F -scores
scores obtained by eglatent drop significantly. For such γ, our estimator (9) resembles
the analog of the graphical lasso which is known to yield inaccurate models (Engelke et al.,
2022c); see also Remark 6.

In summary, when the sample size is sufficiently large, eglatent yields a similar model
fit and graph recovery as eglearn even when there are no latent variables. It is worth
emphasizing that eglatent achieves this favorable performance by estimating some latent
variables. This shows the robustness of our method to model misspecification.

5.2 Real data application

We apply our latent Hüsler–Reiss model to analyze large flight delays. We use a data set
from the R package graphicalExtremes (Engelke et al., 2022a) with p = 29 airports in the
southern U.S. shown in the left panel of Figure 5. Large flight delays cause huge financial
losses and lead to congestion of critical airport infrastructure. Our method provides an
improved model for the dependence of such excessive delays at different airports, and can
eventually be used for stress testing of the system; see Hentschel et al. (2022) for details on
this application. Unless otherwise noted, we fit the models in the whole dataset consisting of
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Figure 5: Airports in the Southern U.S. (dots) and flight connections, where the thickness of the nodes
indicates the average number of daily flights at the airports. Left: flight connection graph with an edge
between any pair of airports with daily flights. Center: estimated graph of optimal eglearn model. Right:
estimated sub-graph corresponding to observed variables of optimal eglatent model.

n = 3603 observations from 2005-01-01 to 2020-12-31. We compare our eglatent method for
latent Hüsler–Reiss models with the eglearn algorithm by (Engelke and Volgushev, 2022)
that estimates a graphical structure without latent variables. We report here the results for
the exceedance threshold of be q = 0.90 (i.e., 1− k/n = 0.90) resulting in k = 360 marginal
exceedances for the computation of the empirical variogram Γ̂O; see Section 3.3.1. The latter
is the input for the different structure learning methods. Different choices of the threshold,
or equivalently, of k, are discussed below.

The left-hand side of Figure 6 shows the number of edges of eglatent and of eglearn as
a function of the tuning parameter λn, where the parameter γ related to the latent variable
selection in eglatent is fixed to the default choice γ = 4; different values of γ give similar
results and are omitted here. We see that for both methods, larger values of λn result in
sparser graphs. It is important to note that for eglearn, we count the edges of the usual
estimated graph. For our eglatent method we count the edges of the residual graph among
the observed variables. The latent graphs generally have fewer edges and are therefore more
easily interpretable.

To compare the different model fits and to select the optimal value for the tuning parame-
ter λn, we must compute the likelihood of the fitted models on an independent validation set.
To this end, we split the data chronologically into five equally large folds and perform cross-
validation by leaving one fold out (validation data) and fitting on the remaining four folds
(training data). The results for model performance on the validation sets are then averaged.
The right-hand side of Figure 6 shows the averaged log-likelihood values on the validation
sets that were not used for model fitting. For both methods, we see that for too small values
of λn, the graphs are too dense and overfit to the training data. In fact, for λn = 0, both
models correspond to the fully connected graph whose performance (horizontal line) is much
worse than the models enforcing sparsity. For too large values of λn, the graph becomes too
sparse and the model is not flexible enough. Clearly, the latent model outperforms eglearn,
indicating that latent variables are present in this data set. In this particular application,
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Figure 6: Left: number of edges of the estimated graph of eglearn (dashed line) and the estimated sub-graph
of observed variables of eglatent (solid line) as functions of the regularization parameter ρ; top axis shows the
number of latent variables in eglatent. Right: corresponding log-likelihoods; horizontal line is the validation
log-likelihood of the fully connected graph.

they can be thought of as confounding factors such as meteorological variables or strikes in
the aviation industry that affect many airports simultaneously.

Figure 5 compares the estimated graphs of eglatent (center) and eglearn (right) fitted
on the whole data set, where the regularization parameter λn in both methods is chosen as
the maximizers of the respective validation likelihoods. We observe that the latent graph
is much sparser and therefore highlights more clearly certain features of the system. For
instance, it seems that hubs, such as the Fort Worth International Airport in Dallas (the
thickest point on the map), are more central in the graph since they have more connections
than smaller airports.

The number of exceedances k used in the analysis, or equivalently, the probability thresh-
old q = 1 − k/n, is a tuning parameter appearing in virtually all extreme value analyses.
In theory and simulation studies with knowledge of the underlying distributions, there is an
optimal choice of the asymptotic order of k compared to the sample size n; see for instance
Remark 10. In real data, we typically neither know the data generating distribution nor
the second-order parameter ξ that determines the rate of k in Theorem 9. Therefore, it
is common practice to run the analysis for different choices of reasonable values of k and
compare the results in terms of stability. In addition to the threshold q = 0.90 (k = 360), we
rerun the above application with thresholds q = 0.85 (k = 540) and q = 0.95 (k = 180); see
Appendix J.4 for the results. Similarly to Figure 6, Figures 9 and 10 show that also for these
threshold choices, eglatent outperforms eglearn significantly. Moreover, Figure 11 com-
pares the different estimated graphs among the observed variables for the three thresholds.
We see that the results are very stable and the graphs only have a few edges that differ.
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6. Future work

Our work on latent variables in the analysis of extremal dependence opens several future
research directions. First, as described in Section 4.4, our sample size requirement is driven
by a spectral norm concentration result on the empirical variogram matrix. This result was
derived by translating the `∞ concentration result of Engelke et al. (2022c) to the spectral
norm setting using equivalence of norms. To obtain tighter convergence results, one must
obtain direct concentration bounds on the spectral norm; such a result would be of inde-
pendent interest in the multivariate extremes literature. Second, solving eglatent can be
challenging for large problems. Building on the work of Ma et al. (2012) in the Gaussian
setting, faster solvers can be developed using alternating direction method of multipliers
(Boyd et al., 2011). Moreover, we observed in Section 5.1.2 that eglatent estimates a few
latent variables to accurately recover the underlying graphical structure when there are no
latent variables present. It would be of interest to develop a theoretical justification for this
phenomenon. Also additional structure on the dependency structures among the observed
and latent variables, such as multivariate total positivity of order 2 (Röttger et al., 2023b;
Rodŕıguez and Röttger, 2024) or colored graphs (Röttger et al., 2023a), may be exploited to
develop more powerful extremal graphical models with latent variables. The recent connec-
tion between extremal graphical models and graphical models for Lévy processes could allow
us to use eglatent also for modeling latent variables in stochastic processes dependence
structure (Engelke et al., 2024b).
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Appendix A. Useful lemmas for proving Theorem 5

Our analysis of Theorem 5 relies on some lemmas.

Lemma 12 Let A ∈ Sd and B ∈ Sd be two symmetric matrices with A+B being nonsingular
and row/column spaces of A and B being orthogonal to one another. Then, (A + B)−1 =
A+ +B+.

Proof [Proof of Lemma 12] Let UADAU
T
A and UBDBU

T
B be the reduced SVD of A and B.

Then, since A+B is non-singular, and the subspaces spanned by the columns of UA and UB
are orthogonal, we have that (UA, UB) forms an orthogonal matrix. Therefore,

(A+B) =
(
UA UB

)(DA 0
0 DB

)(
UA UB

)T
,
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and thus (A+B)−1 = UAD
−1
A UTA + UBD

−1
B UTB = A+ +B+.

Lemma 13 Suppose that UUTMUUT = M . Then, U(UTMU)−1UT = M+.

Proof [Proof of Lemma 13] Let UDUT be the reduced-SVD of M . Then, U(UMU)−1UT =
UD−1UT , which is equivalent to M+.

Lemma 14 Let Π̃ = (Ip − 1p1
>
p /p). Let Θ =

(
ΘO ΘOH

ΘHO ΘH

)
∈ Rd×d with ΘO ∈ Rp×p,

ΘH ∈ Rh×h and d = h + p. Suppose Θ is a positive semi-definite matrix with its null-space
being the span of the all-ones vector. Then:

Π̃(ΘO −ΘOHΘH
−1ΘHO)Π̃ = ΘO −ΘOHΘH

−1ΘHO.

Proof Since Θ1d = 0, we have

ΘO1p + ΘOH1h = 0, (15)

ΘHO1p + ΘH1h = 0. (16)

Consider ΘO −ΘOHΘH
−1ΘHO, we have

(ΘO −ΘOHΘH
−1ΘHO)1p = ΘO1p −ΘOHΘH

−1ΘHO1p,

by(16)
= ΘO1p + ΘOHΘH

−1(ΘH1h),

= ΘO1p + ΘOH1h
by(15)

= 0.

Thus, 1p ∈ ker(ΘO−ΘOHΘH
−1ΘHO). To complete the proof, we will show that dim(ker(ΘO−

ΘOHΘH
−1ΘHO)) = 1. Suppose there exist non-zero vector v ∈ ker(ΘO − ΘOHΘH

−1ΘHO),
and let u = ΘH

−1ΘHOv. Since v 6= 0, u 6= 0, and then it follows that ΘOv −ΘOHu = 0 and

ΘHOv −ΘHu = 0 yielding Θ?

(
v
−u

)
= 0. Since

(
v
−u

)
∈ ker(Θ), v = α′1p for some α′ ∈ R,

which implies that dim(ker(ΘO −ΘOHΘH
−1ΘHO)) = 1.

Lemma 15 Let Π̃ = Ip − 1p1
>
p /p and Π = Id − 1d1

T
d /d with d = p + h. For any matrix

M ∈ Rd×d, Π̃(ΠMΠ)1:p,1:pΠ̃ = Π̃M1:p,1:pΠ̃

Proof Note that (ΠMΠ)1:p,1:p =
(
Ip 0

)
ΠMΠ

(
Ip
0

)
. Then it follows that

Π̃(ΠMΠ)1:p,1:pΠ̃ = Π̃
(
Ip 0

)
ΠMΠ

(
Ip
0

)
Π̃ =

(
Π̃ 0

)
ΠMΠ

(
Π̃
0

)
. (17)
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Notice that:(
Π̃ 0

)
Π =

(
(Ip − 1p1

>
p /p)(Ip − 1p1

>
p /d) (Ip − 1p1

>
p /p)1p/d

)
=
(
(Ip − 1p1

>
p /p)(Ip − 1p1

>
p /p+ 1p1

>
p /(p)− 1p1

>
p /d) 0

)
=
(
Π̃(Π̃ + 1p1

>
p /(p)− 1p1

>
p /d) 0

)
=
(
Π̃ 0

)
.

(18)

Putting (17) and (18) together, we have the desired result.

Appendix B. Proof of Theorem 5

Proof [Proof of Theorem 5] For notational simplicity, we let M = −Γ?/2. Let Π = Id −
1d1

T
d /d. We have from Hentschel et al. (2022) that (ΠMΠ)+ = Θ? or equivalently ΠMΠ =

(Θ?)+. Since Θ? has zero row/column sums and thus its row/column spaces are orthogonal
to the all-ones vector, we have by Lemma 12 that for any t > 0, (Θ? + t1d1

T
d )−1 = Θ?+ +

(t1d1
T
d )+ = Θ?+ + 1

td2 (1d1
T
d ). As Π1d1

T
d Π = 0, we have that:

ΠMΠ = Π(Θ? + t1d1
T
d )−1Π.

The equation above implies Π̃[ΠMΠ]1:p,1:pΠ̃ = Π̃[Π(Θ?+t1d1
T
d )−1Π]1:p,1:pΠ̃.Using Lemma 15,

we have that:
Π̃M1:p,1:pΠ̃ = Π̃[(Θ? + t1d1

T
d )−1]1:p,1:pΠ̃. (19)

We will now analyze the term [(Θ? + t1d1
T
d )−1]1:p,1:p inside (19). From Schur’s complement,

we have that:

[(Θ? + t1d1
T
d )−1]1:p,1:p =[

Θ?
O + t1p1

T
p − (Θ?

OH + t1p1
T
h )(Θ?

H + t1h1
T
h )−1(Θ?

HO + t1h1
T
p )
]−1

.
(20)

By the Woodbury inversion lemma, we have that:

(Θ?
H + t1h1

T
h )−1 = (Θ?

H)−1 − (Θ?
H)−11h

(
1

t
+ 1Th (Θ?

H)−11h

)−1

1Th (Θ?
H)−1. (21)

Plugging the result of (21) into (20), we have that:

[(Θ? + t1d1
T
d )−1]1:p,1:p

= Θ?
O + t1p1

T
p − (Θ?

OH + t1p1
T
h )(Θ?

H + t1h1
T
h )−1(Θ?

HO + t1h1
T
p ) = A+B + C

where
A = Θ?

O −Θ?
OH(Θ?

H)−1Θ?
HO,

B = t1p1
T
p + t21p1

T
h (Θ?

H + t1h1
T
h )−11h1

T
p ,

C = t1p1
T
h (Θ?

H + t1h1
T
h )−1Θ?

HO + tΘ?
OH(Θ?

H + t1h1
T
h )−11h1

T
p

+ Θ?
OH(Θ?

H)−11h

(
1

t
+ 1Th (Θ?

H)−11h

)−1

1Th (Θ?
H)−1Θ?

HO.
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From Lemma 14, we have that: Π̃AΠ̃ = A. Furthermore, notice that B lies in the all-ones
subspace, i.e. Π̃BΠ̃ = 0 and is a positive semi-definite matrix for t > 0. Thus, the matrix
A+B is invertible. Notice

lim
t→0

t1p1
T
h (Θ?

H + t1h1
T
h )−1Θ?

HO = lim
t→0

t1p1
T
h (Θ?

H)−1Θ?
HO = 0,

lim
t→0

tΘ?
OH(Θ?

H + t1h1
T
h )−11h1

T
p = lim

t→0
tΘ?

OH(Θ?
H)−11h1

T
p = 0,

lim
t→0

Θ?
OH(Θ?

H)−11h

(
1

t
+ 1Th (Θ?

H)−11h

)−1

1Th (Θ?
H)−1Θ?

HO = lim
t→0

tΘ?
OH(Θ?

H)−11h(Θ?
H)−1Θ?

HO = 0,

so that limt→0C = 0. Notice on the other hand that limt→0A + B 6= 0. By the Woodbury
inversion lemma, we have that: (A + B + C)−1 = (A + B)−1 − (A + B)−1C(I + (A +
B)−1C)−1(A+B)−1. Thus:

lim
t→0

Π̃(A+B + C)−1Π̃ = Π̃ lim
t→0

(A+B)−1Π̃− lim
t→0

Π̃(A+B)−1C(I +A−1C)−1A−1Π̃.

Since limt→0C = 0, we have that:

lim
t→∞

Π̃[(Θ? + t1d1
T
d )−1]1:p,1:pΠ̃ = lim

t→0
Π̃(A+B +C)−1Π̃ = lim

t→0
Π̃(A+B)−1Π̃ = Π̃A+Π̃ = A+.

Here, the second equality follows from noting that the row/column spaces of A and B are
orthogonal to one another and so by Lemma 12, (A+B)−1 = A+ +B+. Furthermore, since
B is a multiple of all-ones matrix, Γ̃B+Γ̃ = 0. The last equality follows from Lemma 14.
Noting that M1:p,1:p = −Γ?O/2 and plugging in A+ for Π̃[(Θ? + t1d1

T
d )−1]1:p,1:pΠ̃ in (19), we

conclude that:
(Π̃(−Γ?O/2)Π̃)+ = Θ?

O −Θ?
OH(Θ?

H)−1Θ?
HO.

Taking pseudo-inverses of both sides, we have the desired result. In Lemma 14, we also
showed that Θ?

O −Θ?
OH(Θ?

H)−1Θ?
HO = Π̃(Θ?

O −Θ?
OH(Θ?

H)−1Θ?
HO)Π̃.

Appendix C. Arriving at estimator (9)

Recall that Θ̃? = (Π̃(−Γ?O/2)Π̃)+, where Π̃ = UUT . Furthermore, the null-space of Θ̃? is the
subspace span(1p1

>
p ). In other words, UUT Θ̃?UUT = Θ̃?. We arrive at our estimator by

noting that Θ̃? is the unique minimizer of the convex program:

Θ̂ = argmin
Θ∈Sp

− log det
(
UTΘU

)
− 1

2
tr(ΘΓ?O),

s.t Θ � 0 , Θ1p = 0.

(22)

To see why that is, first note that the constraint Θ � 0 can be removed since the log-det
function forces UTΘU to be positive definite and together with the constraint Θ1p forces
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Θ � 0 and additionally UUTΘUUT = Θ. Note that tr(ΘΓ?O) = tr(UUTΘUUTΓ?O) =
tr(ΘUUTΓ?OUU

T ). Thus, an equivalent optimization to (22) is

Θ̂ = argmin
Θ∈Sp

− log det
(
UTΘU

)
− 1

2
tr(ΘUUTΓ?OUU

T ),

s.t Θ ∈ span(1p1
>
p )⊥.

(23)

Using Lagrangian duality theory, we have that Θ̂ must satisfy for some t ∈ R

−U(UT Θ̂U−1)UT − 1

2
UUTΓ?OUU

T + t1p1
>
p = 0.

Note that t = 0 since the first two terms live in the space spanned by the columns of U and the
last term lies in the orthogonal subspace. Similarly, −U(UT Θ̂U−1)UT − 1

2UU
TΓ?OUU

T = 0.

Since UUT Θ̂UUT = Θ̂, we appeal to Lemma 13 to conclude that Θ̂+ = −1
2

1
2UU

TΓ?OUU
T .

Some simple manipulations allow us to conclude that Θ̂ = Θ̃?.

Appendix D. Useful lemmas for proof of consistency

Our analysis will depend on the following quantities for any pair of subspaces Ω, T ⊆ Rp×p:

θ(Ω) := max
N∈Ω,‖N‖∞=1

‖N‖2 ; ξ(T ) := max
N∈T,‖N‖2=1

‖N‖∞.

When Ω = Ω? and T = T ?, these quantities are closely connected to the maximal degree d?

and the incoherence parameter µ? (defined in Section 4.1). In particular, Chandrasekaran
et al. (2012) showed that µ(Ω?) ∈ [0, d?] and ξ(T ?) ∈ [µ?, 2µ?].

D.1 Some auxillary lemmas

Lemma 16 (Lemma 3.1 of Chandrasekaran et al. (2012)) For any tangent spaces T1, T2

of same dimension with ρ(T1, T2) < 1, we have that: ξ(T2) ≤ ξ(T1)+ρ(T1,T2)
1−ρ(T1,T2) .

Lemma 17 Consider a tangent space T ′ of a symmetric matrix with ρ(T ?, T ′) ≤ ω with
ω < 1. Let C′ and C? be the column spaces that form the tangent spaces T ′ and T ? respectively.
Then, we have that: ‖PC′ − PC?‖2 ≤ ω.

Proof [Proof of Lemma 17] Since ω < 1, T ? and T ′ are of the same dimension. Let σs(·) be
the s-th largest singular value of the input matrix. Notice that

‖PC′ − PC?‖2 = ‖PC′⊥ − PC?⊥‖2 =

√
1− σp−k

(
PC′⊥PC?⊥

)2
=
√

1− σ(p−k)2

(
PT ′⊥PT ?⊥

)
≤
√

1− σ(p−k)2

(
PT ′⊥PT ?⊥

)2
= ‖PT ′⊥ − PT ?⊥‖2 = ‖PT ′ − PT ?‖2.
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D.2 Lemmas to account for the zero row-sum constraint

To deal with the additional dual parameter t1p1
>
p introduced by the zero row-sum con-

straint (S − L)1p, our analysis requires the following lemmas.
Lemma 18 Let C1, C2 ⊆ Rp be a pair of subspaces. Then, for any z ∈ Rp:

max
v∈C1⊕C2,‖v‖2=1

〈z, v〉 ≤ 2 min

{
max

v∈C1,‖v‖2=1
〈z, v〉, max

v∈C2,‖v‖2=1
〈z, v〉

}
+ max

{
max

v∈C1,‖v‖2=1
〈z, v〉, max

v∈C2,‖v‖2=1
〈z, v〉

}
.

Proof [Proof of Lemma 18] Suppose without loss of generality that maxu1∈C1,‖u1‖2=1 u
T
1 z ≤

maxu2∈C2,‖u2‖2=1 u
T
2 z. Thus

max
v∈C1⊕C2,‖v‖2=1

〈z, v〉 = max
u1∈C1,u2∈C2,‖u1‖2=‖u2‖2=1

v=c1u1+c2u2

|vT z|/‖v‖2,

= max
u1∈C1,u2∈C2,‖u1‖2=‖u2‖2=1

u3=u2−(uT2 u1)u1
v=c1u1+c2u3

|vT z|/‖v‖2,

≤ max
u1∈C1,u2∈C2,‖u1‖2=‖u2‖2=1

u3=u2−(uT2 u1)u1
v=c1u1+c2u3

|c1|√
c2

1 + c2
2

|uT1 z|+
|c2|√
c2

1 + c2
2

|uT3 z|,

≤ max
u1∈C1,‖u1‖2=1

2|uT1 z|+ max
u2∈C2,‖u2‖2=1

|uT2 z|.

Lemma 19 Let Z ∈ T ′⊕span(1p1
>
p ) with ρ(T ′, T ?) ≤ ω and ‖Z‖2 = 1. Then, 1+2(κ?+ω) ≥

‖PT ′(Z)‖2 ≥ 1− 2(κ? + ω) and thus ‖PT ′⊥(Z)‖2 ≤ 2(κ? + ω).

Proof [Proof of Lemma 19] Note that ‖Z‖2+‖PT ′⊥(Z)‖2 ≥ ‖PT ′(Z)‖2 ≥ ‖Z‖2−‖PT ′⊥(Z)‖2.

Let T ′ be a tangent space with associated row and column spaces C′ and R′. Let C̃ =
C′⊕ span(1p) and R̃ = R′⊕ span(1p). Since Z ∈ T ′⊕ span(1p), it is straightforward to show
that Z = PC̃ZPR̃⊥+ZPR̃. Therefore, we have that PT ′⊥(Z) = PC′⊥

[
PC̃ZPR̃⊥ + ZPR̃

]
PR′⊥ .

Thus, ‖PT ′⊥(Z)‖2 ≤ ‖PC′⊥PC̃‖2 +‖PR̃PR′⊥‖2. Letting C1 = C′ and C2 = span(1p), we appeal
to Lemma 18 to conclude that:

max
v∈C̃,‖v‖2=1

‖PC′⊥(v)‖2 ≤ max
z∈C′⊥
‖z‖2=1

max
u1∈C′,‖u1‖2=1

2|〈z, u1〉|+ max
z∈C′⊥
‖z‖2=1

max
u2∈span(1),‖u2‖2=1

|〈z, u2〉|

= ‖PC′⊥(1p/
√
p)‖2.
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Again, appealing to Lemma 18,

max
v∈C′⊥,‖v‖2=1

‖PC̃(z)‖2 ≤ max
z∈C′⊥
‖z‖2=1

max
u1∈C′,‖u1‖2=1

2|〈z, u1〉|+ max
z∈C′⊥
‖z‖2=1

max
u2∈span(1),‖u2‖2=1

|〈z, u2〉|

= ‖PC′⊥(1p/
√
p)‖2.

So we have concluded that ‖PC′⊥PC̃‖2 ≤ ‖PC′⊥(1/
√
p)‖2. Thus, appealing to Lemma 17

, ‖PC′⊥PC̃‖2 ≤ κ? + ω. Similarly, we have that: ‖PR′⊥PR̃‖2 ≤ ‖PR′⊥(1/
√
p)‖2 and thus

‖PR′⊥PR̃‖2 ≤ κ
? + ω. Putting things together, we have the desired bound.

Lemma 20 Let T ′ ⊆ Rp×p be a tangent space to a low-rank variety. Then,
‖P

(T ′⊕span(1p1>p ))⊥
(L)‖2 ≤ ‖PT ′⊥(L)‖2 for any matrix L ∈ Rp×p.

Proof [Proof of Lemma 20] Let R′, C′ be row/column space pair that form the tangent
space T ′. Let C̃ = span(C′,1) and R̃ = span(R′,1). Then, it is straightforward to
see that T ′ ⊕ span(1p1

>
p ) is itself a tangent space formed by column space C̃ and row

space R̃. Thus, ‖P(T ′⊕span(1p1>p ))⊥(L?)‖2 = ‖PC̃⊥L
?PR̃⊥‖2. Since C′ ⊆ C̃, we have that:

‖PC̃⊥LPR̃⊥‖2 ≤ ‖PC′⊥LPR′⊥‖2 = ‖PT ′⊥(L)‖2.

Lemma 21 Suppose that κ? > ω. Then, span(1p1
>
p ) ∩ (T ′ ⊕ T ?) = {0} for every tangent

space T ′ with ρ(T ′, T ?) ≤ ω.

Proof [Proof of Lemma 21] It suffices to show that ‖P(T ′⊕T ?)⊥(1p1
>
p /p)‖2 > 0. Let C′ be

the column space associated with the tangent space T ′ at a symmetric matrix. Note that
T ′⊕T ? is another tangent space with column space C′⊕C?. Then, ‖P(T ′⊕T ?)⊥(1p1

>
p /p)‖2 =

‖P(C′⊕C?)⊥(1/
√
p)‖22. So it suffices to show that ‖PC′⊕C?(1/

√
p)‖2 < 1. Note additionally

that ‖PC′⊕C?(1/
√
p)‖2 ≤ ‖PC′⊕C?PC?(1/

√
p)‖2 + ‖PC′⊕C?PC?⊥(1/

√
p)‖2 ≤ ‖PC?(1/

√
p)‖2 +

‖PC′⊕C?PC?⊥‖2. We have that: ‖PC?(1/
√
p)‖2 = 1 − κ?. Using Lemma 18, it is straightfor-

ward to conclude that ‖PC′⊕C?PC?⊥‖2 ≤ ‖PC′PC?⊥‖2 ≤ ‖PC′−PC?‖2. Appealing to Lemma 17
, and putting everything together, we conclude that: ‖PC′⊕C?(1/

√
p)‖2 ≤ (1 − κ?) + ω. As

κ? > ω, we have the desired result.

Lemma 22 Let Z = T ′ ⊕ span(1p1
>
p ) with ‖Z‖2 = 1 and ρ(T ′, T ?) ≤ ω. Then, assuming

κ? > ω, Z can be decomposed uniquely as follows Z = Z1 + Z2 where Z1 ∈ T ′, Z2 ∈
span(1p1

>
p ) with max{‖Z1‖2, ‖Z2‖2} ≤ 2

√
5h

1−
√

1−(κ?−ω)2
.
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Proof [Proof of Lemma 22] The unique decomposition follows from Lemma 21. Since
ω < 1, we have that T ′ and T ? have the same dimension. Since Z1 ∈ T ′ ⊕ T ?, then
rank(Z1) ≤ 4h (this follows from noting that every matrix inside T ′ or T ? has rank at most
2h and rank of a sum of matrices is less than the sum of the ranks). Further, rank(Z2) ≤ 1,
so that rank(Z) ≤ 5h. Therefore, ‖Z‖F ≤

√
5h. Notice that: ‖Z‖2F = ‖Z1 + PT ′(Z2) +

PT ′⊥(Z2)‖2F = ‖Z1 + PT ′(Z2)‖2F + ‖PT ′⊥(Z2)‖2F . Thus, ‖Z1 + PT ′(Z2)‖F ≤
√

5h. Using

reverse triangle inequality, we conclude that ‖Z1‖F ≤
√

5h+ ‖PT ′(Z2)‖F . Now notice that:

‖Z2‖2F = ‖PT ′⊥(Z2)‖2F +‖PT ′(Z2)‖2F , so that:
√
‖Z2‖2F − ‖PT ′⊥(Z2)‖2F = ‖PT ′(Z2)‖F . Since

Z2 is rank-1, we have then that: ‖PT ′(Z2)‖F = ‖Z2‖2
√

1− ‖PT ′⊥(1p1>p /p)‖22. Combin-

ing things, we conclude that ‖Z1‖F ≤
√

5h + ‖Z2‖2
√

1− ‖PT ′⊥(1p1>p /p)‖22. Notice that

‖PT ′⊥(1p1
>
p /p)‖2 ≥ ‖PT ?⊥(1p1

>
p /p)‖2 − ω = κ? − ω. Reverse triangle inequality also

gives ‖Z2‖F ≤ ‖Z1‖F +
√

5h. Putting the last bounds together, we have that: ‖Z2‖F ≤
2
√

5h

1−
√

1−(κ?2−ω)2
. Plugging this into a previous bound, we also find that ‖Z1‖F ≤ 2

√
5h

1−
√

1−(κ?2−ω)2
.

Lemma 23 Let T ′ ⊆ Rp×p be a tangent space to a low-rank variety. Then:
maxN∈T ′⊕span(1p1>p ),‖N‖2=1 ‖N‖∞ ≤ 3ξ(T ′).

Proof [Proof of Lemma 23] Let (R′, C′) be the row/column space pair associated with T ′.
Let C̃ = C′ ⊕ span(1p) and R̃ = R′ ⊕ span(1p). Since Z ∈ T ′ ⊕ span(1), it is straightforward
to show that Z = PC̃ZPR̃⊥ + ZPR̃. Therefore, ‖Z‖∞ ≤ maxi ‖PC̃(ei)‖2 + maxi ‖PR̃(ei)‖2.
Letting C1 = C′ and C2 = span(1p), and appealing to Lemma 18, we have that:

max
i
‖PC̃(ei)‖2 ≤ 2 max

i
max

u1∈span(1),‖u1‖2=1
2|uT1 ei|+ max

i
max

u2∈C′,‖u2‖2=1
|uT2 ei| ≤ 2/

√
p+ µ[C′].

Analogously, letting C1 = R′ and C2 = span(1), and appealing to Lemma 18, we have that:

max
i
‖PR̃(ei)‖2 ≤ 2/

√
p+ µ[R′].

Since ξ(T ′) ≥ max{[µ[C′], µ[R′]} and 2ξ(T ′) ≥ 2√
p , we conclude the desired result.

Lemma 24 Let T ′ be a tangent space to the low-rank matrix variety with ρ(T ′, T ?) ≤ ω
for some ω ∈ (0, 1). Let H′ = Ω? × T ′ and Q′ = Ω? × (T ′ + span(1p1

>
p )). Then for any

matrix N ∈ Rp×p, we have that |‖PH′(N)‖2 − ‖PQ′(N)‖2| ≤ 2(κ? + ω) and |‖PH′⊥(N)‖2 −
‖PQ′⊥(N)‖2| ≤ 2(κ? + ω).

Proof Decompose N = N1 +N2 where N1 ∈ Q′ and N2 ∈ Q′⊥. Thus, PQ′(N) = N1. Fur-
thermore, since H′ ⊆ Q′, PH′(N) = PH′(N1). From Lemma 19, we have that ‖PH′(N1)‖2 ≥
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‖N1‖2(1 − 2(κ? + ω)). Thus, |‖PQ′(N)‖2 − ‖PH′(N)‖2| ≤ 2(κ? + ω). Since for any tangent
space to a low-rank variety F ⊆ Rp×p, ‖PF⊥(N)‖2 = ‖N‖2−‖PF (N)‖2, we can also conclude
that |‖PH′⊥(N)‖2 − ‖PQ′⊥(N)‖2| ≤ 2(κ? + ω).

Lemma 25 Let H′ = Ω? × T ′ where ρ(T ′, T ?) ≤ ω. Let κ? = ‖PT ?⊥(1/p1p1
>
p )‖2. Suppose

that minQ′∈U(ω) χ(Q′, ‖ · ‖Φγ ) > 2(κ? + ω). Let F = PT ?⊥(1/p1p1
>
p )/‖PT ?⊥(1/p1p1

>
p )‖2.

Then, we have the following results:

min
Z∈H′
‖Z‖Φγ=1

ρ(T ′,T ?)≤ω

‖PH′A†I?APH′(Z)‖Φγ ≥ min
Q′∈U(ω)

χ(Q′, ‖ · ‖Φγ )− 2(κ? + ω),

max
Z∈H′
‖Z‖Φγ=1

Q′∈U(ω)

‖PH′⊥A
†I?APQ′(PH′A†I?APQ′)−1(Z)‖Φγ ≤ max

Q′∈U(ω)
ϕ(Q′, ‖ · ‖Φγ ) + 2(κ? + ω),

max
Z∈Q′
‖Z‖Φγ=1

Q′∈U(ω)

‖(PH′A†I?APH′)−1PH′A†I?APH′⊥(Z)‖Φγ ≤
4(κ? + ω) max{γ, 1}(‖I?(F )‖2 + ‖I?‖2ω)

minQ′∈U(ω) χ(Q′, ‖ · ‖Φγ )− 2(κ? + ω)
.

where the linear operators A,A†, the norm Φγ, the set U(ω), and the functions χ and ϕ are
defined in Section 4.

Proof To prove the first part, consider Z ∈ H′. Thus, PQ′(Z) = Z. Combining this
with Lemma 24 and noting that the first components of H′ and Q′ are identical, we find
that |‖PH′A†I?APH′(Z)‖Φγ − ‖PQ′A†I?APQ′(Z)‖Φγ | ≤ 2(κ? + ω). This results allows us to
conclude the first paper.

To prove the second part, let Z ∈ H′ with ‖Z‖Φγ ≤ 1. We first notice that by appealing
to Lemma 24, we have that: ‖PH′A†I?APQ′(Z)‖Φγ ≥ ‖PQ′A†I?APQ′(Z)‖Φγ − 2(κ? + ω) >
0. Thus, the operator PH′A†I?APQ′ is invertible. Furthermore, suppose that there exists
N1 ∈ Q′, N2 ∈ Q′ such that PH′A†I?APQ′(N1) = PQ′A†I?APQ′(N2). Since H′ ⊆ Q′, we have
that then: PH′A†I?APQ′(N1 − N2) = 0, which allows us to conclude that for any Z ∈ H′,
(PH′A†I?APQ′)−1(Z) = (PQ′A†I?APQ′)−1(Z). Appealing to Lemma 24, we have that for any
N ∈ Q′, |PH′⊥A

†I?APQ′(N)− PQ′⊥A
†I?APQ′(N)| ≤ 2(κ? + ω), which allows us to conclude

the desired result.
To prove the third part, Consider any Z ∈ Q′ with Z2 denoting its second compo-

nent which is contained in T ′ ⊕ span(1p1
>
p ). Let Z2 = Z21 + Z22 where Z21 ∈ T ′ and

Z22 ∈ span(1p1
>
p ). Notice that PH′⊥(Z) = PT ′⊥(Z22). By Lemma 19, ‖Z22‖2 ≤ κ? + ω.

Furthermore, PT ′⊥(Z22) = (PT ′⊥ − PT ?⊥)(Z22) + PT ?⊥)(Z22). Thus, using the fact that
‖PT ′(M)‖2 ≤ 2‖M‖2 for any matrix M , we have that: PH′A†I?APH′⊥(Z)‖Φγ ≤ 4(κ? +
ω) max{γ, 1}(‖I?(F )‖2 + ‖I?‖2ω). Then, appealing to the first part of the Lemma, we have
the desired result.
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Lemma 26 Let Q? = Ω? × (T ? + span(1p1
>
p )) and Q′ = Ω? × (T ′ + span(1p1

>
p )) where

ρ(T ′, T ?) ≤ ω). Then, for any Z ∈ Rp×p × Rp×p with ‖Z‖Φγ = 1,

|‖PQ′(Z)‖Φγ − ‖PQ?(Z)‖Φγ | ≤ 5ω + 4κ?.

Proof Notice that:

‖PQ?(Z)‖Φγ − ‖(PQ′(Z)− PQ?)(Z)‖Φγ ≤ ‖PQ′(Z)‖Φγ ≤ ‖PQ?(Z)‖Φγ + ‖(PQ′(Z)− PQ?)(Z)‖Φγ .

Further, letting Z = (Z1, Z2) with ‖Z2‖2/γ ≤ 1:

‖(PQ′ − PQ?)(Z)‖Φγ =
1

γ
‖(PT ′⊕span(1p1>p ) − PT ?⊕span(1p1>p ))(Z2)‖2

≤ 4(κ? + ω) +
1

γ
‖(PT ′ − PT ?)(Z2)‖2 ≤ 4κ? + 5ω.

Combining the results proves our result.

Lemma 27 Let Q? = Ω? × (T ? + span(1p1
>
p )) and Q′ = Ω? × (T ′ + span(1p1

>
p )) where

ρ(T ′, T ?) ≤ ω). Suppose

min
Z∈Q?,‖Z‖Φγ=1

‖PQ?A†I?APQ?(Z)‖Φγ ≥ β.

Then,

min
Z∈Q′,‖Z‖Φγ=1

‖PQ′A†I?APQ′(Z)‖Φγ ≥ β(1− (4κ? + 5ω))

− 2(5ω + 4κ?)‖I?‖2 max{γ, 1}
− (4κ? + 5ω)‖I?‖2(d?/γ + 1).

Additionally, for any Z ∈ Rp×p × Rp×p with ‖Z‖Φγ = 1:

|‖PQ′A†I?APQ′(Z)‖Φγ − ‖PQ?A†I?APQ?(Z)‖Φγ | ≤ 2(5ω + 4κ?)‖I?‖2 max{γ, 1}
+ (4κ? + 5ω)‖I?‖2(d?/γ + 1).

Proof Consider any Z with ‖Z‖Φγ = 1. Then,

‖PQ′A†I?APQ′(Z)‖Φγ ≥ ‖PQ′A†I?APQ?(Z)‖Φγ − ‖PQ′A†I?A(PQ′ − PQ?)(Z)‖Φγ
≥ ‖PQ?A†I?APQ?(Z)‖Φγ − ‖PQ′A†I?A(PQ′ − PQ?)(Z)‖Φγ
− ‖(PQ′ − PQ?)A†I?APQ?(Z)‖Φγ
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Some algebra and appealing to Lemma 26 leads to the conclusions that

‖PQ′A†I?A(PQ′ − PQ?)(Z)‖Φγ ≤ 2(5ω + 4κ?)‖I?‖2 max{γ, 1},

and that ‖PQ?(Z)‖Φγ ≥ (1 − (4κ? + 5ω)). Furthermore, denote Z1 = PΩ?(Z) and Z2 =
PT ?⊕span(1p1>p )(Z). Notice that ‖Z1‖2 ≤ ‖Z1‖∞θ(Ω?) ≤ ‖Z1‖∞d?. Again appealing to
Lemma 26:

‖(PQ′ − PQ?)A†I?APQ?(Z)‖Φγ ≤ (4κ? + 5ω)‖I?‖2(d?/γ + 1)

Putting things together, we have the first desired result. The second desired result follows
from a similar analysis as the first part.

Lemma 28 We begin with the following lemmas where we let Q? = Ω?× (T ? + span(1p1
>
p ))

and Q′ = Ω? × (T ′ + span(1p1
>
p )) where ρ(T ′, T ?) ≤ ω). Suppose

min
Z∈Q?,‖Z‖Φγ=1

‖PQ?A†I?APQ?(Z)‖Φγ ≥ β >
2(5ω + 4κ?)‖I?‖2 max{γ, 1}

1− (4κ? + 5ω)

+
(d? + γ)(4κ? + 5ω)‖I?‖2 max{γ, 1}

1− (4κ? + 5ω)
,

and

max
Z∈Q?,‖Z‖Φγ=1

‖PQ?⊥A
†I?APQ?(PQ?A†I?APQ?)−1(Z)‖Φγ ≤ ζ,

and

max
Z∈Q?,‖Z‖Φγ=1

‖PQ?⊥A
†I?APQ?(Z)‖Φγ ≤ δ.

Then,

max
Z∈Q′,‖Z‖Φγ=1

‖PQ′⊥A
†I?APQ?(PQ′A†I?APQ′)−1(Z)‖Φγ ≤

(2δ + 2‖I?‖max{γ, 1}(4κ? + 5ω) + ‖I?‖(d?/γ + 1)(4κ? + 5ω))
‖∆‖Φγ + 4κ? + 5ω

β

+ ζ(1 + 5ω + 4κ?) + ‖I?‖2 max{γ, 1}(5ω + 4κ?)
1 + 5ω + 4κ?

β

+ ‖I?‖2 max{γ, 1}(5ω + 4κ?)(1 + d?/γ)
1 + 5ω + 4κ?

β
,

where,

‖∆‖Φγ ≤
1

β̃
(2(5ω + 4κ?)‖I?‖2 max{γ, 1}+ (d? + γ)(4κ? + 5ω)‖I?‖2 max{γ, 1}) ,
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and

β̃ := β − 2(5ω + 4κ?)‖I?‖2 max{γ, 1} − (d? + γ)(4κ? + 5ω)‖I?‖2 max{γ, 1}.

Proof Take Z ∈ Q′. Let Z = PQ′A†I?APQ′(A). Define ∆ := PQ?A†I?APQ?(A)− Z. Then,
by Lemma 27

‖∆‖Φγ ≤ ‖A‖Φγ (2(5ω + 4κ?)‖I?‖2 max{γ, 1}+ (4κ? + 5ω)‖I?‖2(d?/γ + 1)) ,

and that ‖A‖Φγ ≤ 1/β̃ where

β̃ := β(1− (4κ? + 5ω))

− 2(5ω + 4κ?)‖I?‖2 max{γ, 1}
− (4κ? + 5ω)‖I?‖2(d?/γ + 1).

Let B = (PQ?A†I?APQ?)−1PQ?(Z). Then, PQ?A†I?APQ?(A − B) = ∆ + PQ?⊥(Z), which
implies that:

‖A−B‖Φγ ≤
‖∆‖Φγ + ‖PQ?⊥(Z)‖Φγ

β
≤
‖∆‖Φγ + 4κ? + 5ω

β
.

Note that:

‖PQ′⊥A
†I?APQ′(PQ′A†I?APQ′)−1(Z)‖Φγ ≤

‖PQ′⊥A
†I?APQ′(PQ?A†I?APQ?)−1PQ?(Z)‖Φγ︸ ︷︷ ︸

T1

+ ‖PQ′⊥A
†I?APQ′

(
(PQ′A†I?APQ′)−1(Z)− (PQ?A†I?APQ?)−1PQ?(Z)

)
‖Φγ︸ ︷︷ ︸

T2

.

Notice that for any M ∈ Rp×p × Rp×p, appealing to Lemma 26

‖PQ′⊥A
†I?APQ′(M)‖Φγ ≤ ‖PQ?⊥A

†I?APQ?(M)‖Φγ ,

+ ‖PQ′⊥A
†I?A(PQ′ − PQ?)(M)‖Φγ

+ ‖(PQ′⊥ − PQ?⊥)A†I?APQ?(M)‖Φγ ,
≤ 2δ + 2‖I?‖max{γ, 1}(4κ? + 5ω) + ‖I?‖(d?/γ + 1)(4κ? + 5ω).

T2 ≤ (2δ + 2‖I?‖max{γ, 1}(4κ? + 5ω) + ‖I?‖(d?/γ + 1)(4κ? + 5ω))‖A−B‖Φγ .
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To control T1, notice that for any M ∈ Rp×p × Rp×p, appealing to Lemma 26

‖PQ′⊥A
†I?APQ′(M)‖Φγ ≤ ‖PQ′⊥A

†I?APQ?(M)‖Φγ + ‖I?‖2 max{γ, 1}(5ω + 4κ?)

≤ ‖PQ?⊥A
†I?APQ?(M)‖Φγ + ‖(PQ′⊥ − PQ?⊥)A†I?APQ?(M)‖Φγ

+ ‖I?‖2 max{γ, 1}(5ω + 4κ?)‖PQ?(M)‖Φγ
≤ ‖PQ?⊥A

†I?APQ?(M)‖Φγ
+ ‖I?‖2 max{γ, 1}(5ω + 4κ?)(1 + d?/γ)‖PQ?(M)‖Φγ
+ ‖I?‖2 max{γ, 1}(5ω + 4κ?)‖PQ?(M)‖Φγ

Setting M = (PQ?A†I?APQ?)−1PQ?(Z) and noting that ‖M‖Φγ ≤ 1+5ω+4κ?

β , we have the
following bound for T1:

T1 ≤ ζ(1 + 5ω + 4κ?) + ‖I?‖2 max{γ, 1}(5ω + 4κ?)
1 + 5ω + 4κ?

β

+ ‖I?‖2 max{γ, 1}(5ω + 4κ?)(1 + d?/γ)
1 + 5ω + 4κ?

β

Combining the bounds on T1 and T2, we have the desired result.

Appendix E. A numerical approach to verifying Assumptions 1-3

In our numerical approach, we obtain lower bound for

min
Z∈Q?,‖Z‖Φγ=1

‖PQ?A†I?APQ?(Z)‖Φγ , (24)

and and an upper bound for

max
Z∈Q?,‖Z‖Φγ=1

‖PQ?⊥A
†I?APQ?(PQ?A†I?APQ?)−1(Z)‖Φγ . (25)

We then can appeal to Lemmas 27-28 to quantify the quantities in Assumptions 1-3. To
evaluate (24), consider Z = (Z1, Z2) where Z1 ∈ Ω? with ‖Z1‖∞ = 1 and Z2 ∈ T ? ⊕
span(1p1

>
p ) with ‖Z2‖2 ≤ γ. Then,

‖PQ?A†I?APQ?(Z)‖Φγ ≥ ‖PΩ?I?(Z1)‖∞ − ‖PΩ?I?(Z2)‖∞
≥ min

Z1∈Ω?,‖Z1‖∞=1
‖PΩ?I?(Z1)‖∞ − γ max

Z2∈T ?⊕span(1p1>p ),‖Z2‖2=1
‖PΩ?I?(Z2)‖∞.
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Now consider Z = (Z1, Z2) where Z1 ∈ Ω? with ‖Z1‖∞ ≤ 1 and Z2 ∈ T ? ⊕ span(1p1
>
p ) with

‖Z2‖2 = γ. Then,

‖PQ?A†I?APQ?(Z)‖Φγ ≥
1

γ
‖PT ?⊕span(1p1>p )I?(Z2)‖2 −

1

γ
‖PT ?⊕span(1p1>p )I?(Z1)‖2

≥ min
Z2∈T ?⊕span(1p1>p )

‖Z2‖∞=1

‖PT ?⊕span(1p1>p )I?(Z2)‖2

− 1

γ
max
Z1∈Ω?

‖Z1‖∞=1

‖PT ?⊕span(1p1>p )I?(Z1)‖2.

Thus, we obtain the following lower bound for (24):

min
Z∈Q?,‖Z‖Φγ=1

‖PQ?A†I?APQ?(Z)‖Φγ ≥

min

{
min

Z1∈Ω?,‖Z1‖∞=1
‖PΩ?I?(Z1)‖∞ − γ max

Z2∈T ?⊕span(1p1>p ),‖Z2‖2=1
‖PΩ?I?(Z2)‖∞,

min
Z2∈T ?⊕span(1p1>p )

‖Z2‖∞=1

‖PT ?⊕span(1p1>p )I?(Z2)‖2 −
1

γ
max
Z1∈Ω?

‖Z1‖∞=1

‖PT ?⊕span(1p1>p )I?(Z1)‖2

}
.

The individual terms above are computed approximately by sampling. To obtain an upper
bound for (25), consider Z = (Z1, Z2) where Z1 ∈ Ω? with ‖Z1‖∞ = 1 and Z2 ∈ T ? ⊕
span(1p1

>
p ) with ‖Z2‖2 ≤ γ. Then,

‖PQ?⊥A
†I?APQ?(PQ?A†I?APQ?)−1(Z)‖Φγ

≤ ‖PΩ?⊥I
?APQ?(PQ?A†I?APQ?)−1(Z1, 0)‖∞

+ ‖PΩ?⊥A
†I?APQ?(PQ?A†I?APQ?)−1(0, Z2)‖∞

≤ max
Z1∈Ω?,‖Z1‖∞=1

‖PΩ?⊥I
?APQ?(PQ?A†I?APQ?)−1(Z1, 0)‖∞

+ γ max
Z2∈T ?⊕span(1p1>p ),‖Z2‖=1

‖PΩ?⊥A
†I?APQ?(PQ?A†I?APQ?)−1(0, Z2)‖∞

Now consider Z = (Z1, Z2) where Z1 ∈ Ω? with ‖Z1‖∞ e1 and Z2 ∈ T ? ⊕ span(1p1
>
p ) with

‖Z2‖2 = γ. Then,

‖PQ?⊥A
†I?APQ?(PQ?A†I?APQ?)−1(Z)‖Φγ

≤ 1

γ
‖P

T ?⊕span(1p1>p )⊥
I?APQ?(PQ?A†I?APQ?)−1(0, Z2)‖2

+
1

γ
‖P

T ?⊕span(1p1>p )⊥
A†I?APQ?(PQ?A†I?APQ?)−1(Z1, 0)‖2

≤ max
Z2∈T ?⊕span(1p1>p ),‖Z2‖2=1

‖P
T ?⊕span(1p1>p )⊥

I?APQ?(PQ?A†I?APQ?)−1(0, Z2)‖2

+
1

γ
max

Z1∈Ω?,‖Z1‖∞=1
‖P

T ?⊕span(1p1>p )⊥
A†I?APQ?(PQ?A†I?APQ?)−1(Z1, 0)‖2
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Thus, we obtain the following upper bound for (25):

max
Z∈Q?,‖Z‖Φγ=1

‖PQ?⊥A
†I?APQ?(PQ?A†I?APQ?)−1(Z)‖Φγ

≤ max

{
max

Z1∈Ω?,‖Z1‖∞=1
‖PΩ?⊥I

?APQ?(PQ?A†I?APQ?)−1(Z1, 0)‖∞

+ γ max
Z2∈T ?⊕span(1p1>p ),‖Z2‖=1

‖PΩ?⊥A
†I?APQ?(PQ?A†I?APQ?)−1(0, Z2)‖∞

, max
Z2∈T ?⊕span(1p1>p ),‖Z2‖2=1

‖P
T ?⊕span(1p1>p )⊥

I?APQ?(PQ?A†I?APQ?)−1(0, Z2)‖2

+
1

γ
max

Z1∈Ω?,‖Z1‖∞=1
‖P

T ?⊕span(1p1>p )⊥
A†I?APQ?(PQ?A†I?APQ?)−1(Z1, 0)‖2

}

Again, the individual terms above are computed approximately by sampling. Finally, we
note that appealing to Lemmas 28 involves computing an upper-bound for:

max
Z∈Q?,‖Z‖Φγ=1

‖PQ?⊥A
†I?APQ?(Z)‖Φγ . (26)

To obtain an upper bound, consider Z = (Z1, Z2) where Z1 ∈ Ω? with ‖Z1‖∞ = 1 and
Z2 ∈ T ? ⊕ span(1p1

>
p ) with ‖Z2‖2 ≤ γ. Then,

‖PQ?⊥A
†I?APQ?(Z)‖Φγ ≤ ‖PΩ?⊥I

?(Z1)‖∞ + ‖PΩ?⊥I
?(Z2)‖∞

≤ max
Z1∈Ω?,‖Z1‖∞=1

‖PΩ?⊥I
?(Z1)‖∞ + γ max

Z2∈T ?⊕span(1p1>p )

‖Z2‖2=1

‖PΩ?⊥I
?(Z2)‖∞.

Now consider Z = (Z1, Z2) where Z1 ∈ Ω? with ‖Z1‖∞ ≤ 1 and Z2 ∈ T ? ⊕ span(1p1
>
p ) with

‖Z2‖2 = γ. Then,

‖PQ?⊥A
†I?APQ?(Z)‖Φγ ≤

1

γ
‖P

T ?⊕span(1p1>p )⊥
I?(Z2)‖2 +

1

γ
‖P

T ?⊕span(1p1>p )⊥
I?(Z1)‖2

≥ max
Z2∈T ?⊕span(1p1>p )

‖Z2‖∞=1

‖P
T ?⊕span(1p1>p )⊥

I?(Z2)‖2

+
1

γ
max
Z1∈Ω?

‖Z1‖∞=1

‖P
T ?⊕span(1p1>p )⊥

I?(Z1)‖2.
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Thus, we obtain the following lower bound for (26):

max
Z∈Q?,‖Z‖Φγ=1

‖PQ?⊥A
†I?APQ?(Z)‖Φγ ≥

max

{
max

Z1∈Ω?,‖Z1‖∞=1
‖PΩ?⊥I

?(Z1)‖∞ + γ max
Z2∈T ?⊕span(1p1>p )

‖Z2‖2=1

‖PΩ?⊥I
?(Z2)‖∞,

max
Z2∈T ?⊕span(1p1>p )

‖Z2‖∞=1

‖P
T ?⊕span(1p1>p )⊥

I?(Z2)‖2 +
1

γ
max
Z1∈Ω?

‖Z1‖∞=1

‖P
T ?⊕span(1p1>p )⊥

I?(Z1)‖2

}
.

Appendix F. Sufficient Hessian conditions and choice of γ that satisfies
Assumptions 1-3

Behavior of I? with respect to Ω?. Let

αΩ := min
N∈Ω?,‖N‖∞=1

‖PΩ?I?PΩ?(N)‖∞,

δΩ⊥ : max
N∈Ω?,‖N‖∞=1

‖PΩ?⊥I
?PΩ?(N)‖∞,

βΩ := max
N∈Ω?,‖N‖2=1

‖I?(N)‖2,

be functions I? with respect to Ω?. Here, αΩ quantifies the minimum gain of I? restricted to
subspace Ω? and with respect to the `∞ norm (the minimum gain of a matrix M restricted
to subspace S and with respect to norm ‖ · ‖ is minx∈S,‖x‖=1 ‖PSMPS(x)‖); the quantity

δΩ computes the inner-product between elements in Ω? and Ω?⊥ as quantified by the metric
induced by I?; and finally, βΩ quantifies the behavior of I? restricted to Ω? in spectral norm.

Behavior of I? with respect to T ?. Similar to Ω?, we control the behavior of I? associated
with the subspace T ?. We control the behavior of I? for tangent spaces T ′ close to the tangent
space T ?:

αT := min
N∈T ′⊕span(1p1>p ),ρ(T ′,T ?)≤ω,‖N‖2=1

‖PT ′⊕span(1p1>p )I?PT ′⊕span(1p1>p )(N)‖2,

δT⊥ := max
N∈T ′⊕span(1p1>p ),ρ(T ′,T ?)≤ω,

‖N‖2≤1

‖P
T ′⊕span(1p1>p )⊥

I?PT ′⊕span(1p1>p )(N)‖2,

βT := max
N∈T ′⊕span(1p1>p ),ρ(T ′,T ?)≤ω,‖N‖∞=1

‖I?(N)‖∞.

Here, αT quantifies the minimum gain of I? restricted to tangent spaces T ′⊕span(1p1
>
p ) that

are close to T ? with respect to the spectral norm; the quantify δT computes the inner-product
between elements in T ′ and T ′⊥ as quantified by the metric induced by I?; and finally, βT
quantifies the behavior of I? restricted to T ′ ⊕ span(1p1

>
p ) and T ′⊥ in infinity norm.

With these above quantities defined, and letting α̃ := min{αΩ, αT }, δ̃ := max{δΩ⊥ , δT⊥},
and β̃ := max{βΩ, βT }, the main assumptions are the following. Recall that d? := maxi

∑p
j=1 I[|S?ij|>0
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represents the maximal degree of the conditional graphical structure of the observed variables
conditioned on the latent variables and µ? := maxi ‖Pcol-space(L?)ei‖2 represents the denseness
of the latent effects with ei denoting a standard coordinate basis element.

Assumption 4 α̃ > 0.

Assumption 5 There exists ν̃ ∈ (2ω, 1/2) such that δ̃/α̃ ≤ 1− 2ν̃.

Assumption 6 The product of degree of sparsity of S?, d?, and the diffuseness of the latent
effects, µ?, is bounded as follows: d?(6µ?+ω) ≤ ν̃2α̃2

2β̃2(2−ν̃)2
where ν̃ and d? ≤ α̃2ν̃

32ωβ̃(2−ν̃(‖I?(F )‖2+‖I?‖2ω)
.

Assumption 7 The regularization parameter γ chosen in the following range:

γ ∈

[
2β̃d?(2− ν̃)

ν̃α̃
,min

{
ν̃α̃(1− ω)

β̃(6µ? + ω)(2− ν̃)
,

α̃

16ω(‖I?(F )‖2 + ‖I?‖2ω + 1)

}]

Assumption 8 κ? := ‖PT ?⊥(1p1
>
p /p)‖2 ∈

(
ω,min

{
2ν̃, α̃

16 max{γ,1}(‖I?(F )‖2+‖I?‖2ω+1) − ω
})

.

Assumptions (4)-6 are akin to conditions imposed in Chandrasekaran et al. (2012), al-
though our conditions the subspace T ′⊕ span(1p1

>
p ) that arises from the additional zero row

sum constraint in our estimator. Assumption 6 ensures that d? and µ? are not simultaneously
large, and this type of condition was shown to be sufficient for recovering a sparse and low-
rank matrix from their sum using mix of `1 and nuclear norm regularization (Chandrasekaran
et al., 2011). Assumption 8 is a new condition relative to Chandrasekaran et al. (2012) to
deal with the dual parameter t1p1

>
p that arises from the zero sum constraint.

Lemma 29 Under Assumptions 5-8, we have that Hessian assumptions 1-3 for some α =
α̃/2, ν = 2ν̃.

Proof Our analysis will depend on the following quantities for any pair of subspaces Ω, T ⊆
Rp×p:

θ(Ω) := max
N∈Ω,‖N‖∞=1

‖N‖2 ; ξ(T ) := max
N∈T,‖N‖2=1

‖N‖∞.

When Ω = Ω? and T = T ?, these quantities are closely connected to the maximal degree d?

and the incoherence parameter µ? (defined in Section 4.1). In particular, Chandrasekaran
et al. (2012) showed that µ(Ω?) ∈ [0, d?] and ξ(T ?) ∈ [µ?, 2µ?].

We consider the quantity minZ∈Q′,Φγ(Z)=1 ‖PH′A†I?APQ′(Z)‖Φγ . Let Z = (Z1, Z2) where
‖Z‖Φγ = 1, Z ∈ Q′. Suppose ‖Z1‖∞ = 1. Then using Lemmas 16 and 23, we have that:

‖PΩ?A†I?A(Z)‖∞ ≥ ‖PΩ?I?PΩ?(Z1)‖∞ − ‖PΩ?I?(Z2)‖∞
≥ α′ − ‖I?(Z2)‖∞

≥ α̃− γβ̃ξ(T ′ ⊕ span(1p1
>
p )) ≥ α̃− 3γβ̃ξ(T ′) ≥ α̃− (3ξ(T ?) + ω)

1− ω
β̃γ

≥ α̃− ν̃α̃

2− ν̃
.
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Now suppose that ‖Z2‖2 = γ. Then, we have using Lemma 19 that:

‖PT ′⊕span(1p1>p )I?A(Z)‖2 ≥ ‖PT ′⊕span(1p1>p )I?PT ′⊕span(1p1>p )(Z2)‖2
− ‖PT ′⊕span(1p1>p )I?(Z1)‖2

≥ α̃γ − 2β̃θ(Ω?) ≥ α̃γ − ν̃α̃γ

2− ν̃
.

Putting the previous bounds together, we have that:

min
Z∈Q′,Φγ(Z)=1

‖PQ′A†I?APQ′(Z)‖Φγ ≥ α̃−
ν̃α̃

2− ν̃
≥ α̃/2. (27)

Now we consider the quantity maxZ∈Q′,Φγ(Z)=1 ‖PQ′⊥A
†I?APQ′(Z)‖Φγ . Let Z = (Z1, Z2)

where ‖Z‖Φγ = 1, Z ∈ Q′. Suppose ‖Z1‖∞ = 1.

‖PΩ?⊥A
†I?A(Z)‖∞ ≤ ‖PΩ?⊥I

?PΩ?(Z1)‖∞ + ‖PΩ?⊥I
?(Z2)‖∞

≤ δ̃ + ‖I?(Z2)‖∞ ≤ δ̃ +
β̃γ(3ξ(T ?) + ω)

1− ω
≤ δ̃ +

ν̃α̃

(2− ν̃)
.

Now suppose that ‖Z2‖2 = γ. Then, we have using Lemma 19:

‖P
T ′⊕span(1p1>p )⊥

I?A(Z)‖2 ≤ ‖PT ′⊕span(1p1>p )⊥
I?PT ′⊕span(1p1>p )(Z2)‖2 + ‖P

T ′⊕span(1p1>p )⊥
I?(Z1)‖2

≤ δ̃γ + β̃θ(Ω?) ≤ δ̃γ +
ν̃α̃γ

(2− ν̃)
.

Combining the last two inequalities, we have:

max
Z∈Q′,Φγ(Z)=1

‖PQ′⊥A
†I?APQ′(Z)‖Φγ ≤ δ̃ +

ν̃α̃

(2− ν̃)
. (28)

Combining (27) and (28), we have that:

max
Z∈Q′
‖Z‖Ψ=1

‖PQ′⊥A
†I?APQ′(PQ′A†I?APQ′)−1(Z)‖Ψ ≤

δ̃ + ν̃α̃
(2−ν̃)

α̃− ν̃α̃
2−ν̃

≤ 1− ν̃.

Appendix G. Finite sample convergence guarantees of the empirical
variogram matrix

In addition to the identifiability assumptions, following Engelke et al. (2022c), we impose
conditions to characterize the convergence rate of the empirical variogram matrix to the pop-
ulation variogram matrix. Throughout, we suppose that the random vector X = (XO, XH)
is in the domain of attraction of the multivariate Pareto distribution Y following a latent
Hüsler–Reiss distribution with parameter matrix Γ; for details see Section 2.1 and 3.1.

44



S. Engelke and A. Taeb

Assumption 9 The marginal distribution functions Fi of Xi, i ∈ O, are continuous and
there exists constants ξ > 0, K <∞ such that for all triples of distinct indices J = (i, j,m) ⊂
O and q ∈ (0, 1],

sup
x∈[0,q−1]2×[0,1]

∣∣∣∣q−1P(FJ(XJ) > 1− qx)− P(YJ > 1/x)

P(Y1 > 1)

∣∣∣∣ ≤ Kqξ,
where FJ(x) = (Fi(xi), Fj(xj), Fm(xm)).

Assumption 9 is a second-order condition that essentially controls the speed of convergence
of the sample variogram matrix to the population variogram matrix.

Corollary 30 (Engelke et al., 2022c, Theorem 1) Let Assumption 9 hold. Let ` ∈ (0, 1]
be arbitrary. Suppose that n` ≤ k ≤ n/2 where k is the effective sample size in computing
the sample variogram matrix (see Section 3.3.1). Let ϑ ≥ 0 be any scalar satisfying ϑ ≤√
k/(log n)4. Then, there exists positive constants c5, C5, C̃5 only depending on K, ξ, `, ε, and

G(z) such that:

P

(
‖Γ̂O − Γ?O‖∞ > C5

{(
k

n

)ξ
(log(n/k))2 +

1 + ϑ√
k

})
≤ C̃5p

3e−c5ϑ
2
.

Further, if the random vector X is in the domain of attraction of a max-stable distribution,
then ξ = 1.

Appendix H. Proof of Theorem 9

H.1 Implied Hessian conditions

Combining Lemma 25 with Assumptions 1-3, and letting m = max{γ, 1}, we have that the
following three properties:

min
Z∈H′
‖Z‖Φγ=1

ρ(T ′,T ?)≤ω

‖PH′A†I?APH′(Z)‖Φγ ≥ α− 2(κ? + ω) ∈ (0,∞),

max
Z∈H′
‖Z‖Φγ=1

Q′∈U(ω)

‖PH′⊥A
†I?APQ′(PH′A†I?APQ′)−1(Z)‖Φγ ≤ 1− (ν − 2(κ? + ω)) ∈ [0, 1),

max
Z∈Q′
‖Z‖Φγ=1

Q′∈U(ω)

‖(PH′A†I?APH′)−1PH′A†I?APH′⊥(Z)‖Φγ ≤ 1− 4(κ? + ω)m(‖I?(F )‖2 + ‖I?‖2ω)

α− 2(κ? + ω)
∈ [0, 1).

The first property follows from κ? < α
4 and α > 4ω. The second property follow from

1 − ν + 2(κ? + ω) < 1 since ν > 2(κ? + ω). The final property follows from having
4(κ?+ω) max{γ,1}(‖I?(F )‖2+‖I?‖2ω+1)

α < 1 or equivalently that κ? ≤ α
8 max{γ,1}(‖I?(F )‖2+‖I?‖2ω+1) −
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ω with α > 8ωmax{γ, 1}(‖I?(F )‖2 + ‖I?‖2ω + 1). For notational simplicity and with slight
abuse of notation, we let:

α′ := α− 2(κ? + ω),

ζ := max

{
1

ν − 2(κ? + ω)
,

α− 2(κ? + ω)

4(κ? + ω)m(‖I?(F )‖2 + ‖I?‖2ω)

}
.

Then, we have the following Hessian conditions:

p1) min
Z∈H′
‖Z‖Φγ=1

ρ(T ′,T ?)≤ω

‖PH′A†I?APH′(Z)‖Φγ ≥ α′ ∈ (0,∞),

p2) max
Z∈H′
‖Z‖Φγ=1

Q′∈U(ω)

‖PH′⊥A
†I?APQ′(PH′A†I?APQ′)−1(Z)‖Φγ ≤ 1− 1

ζ
∈ [0, 1),

p3) max
Z∈Q′
‖Z‖Φγ=1

Q′∈U(ω)

‖(PH′A†I?APH′)−1PH′A†I?APH′⊥(Z)‖Φγ ≤ 1− 1

ζ
∈ [0, 1),

(29)

H.2 Full theoretical statement

Let c5, C5, C̃5 be constants that ensure Corollary 30 is satisfied. Let ψ = max{1, ‖(S? −
L?)+‖2}, C0 = 8 + 32

√
5h

α′(1−
√

1−(κ?2−ω)2)( 1
ζ
−2(κ?+ω))

[
1 + 1

3ζ

]
, C1 = ψ(m + d?), and C2 =

mmax{
(

4C0
α′ + 1

ψ

)
, 1}. We also define,

C4 = min

{
min

{
8α′

C1
,
min{α′, 1}(1

ζ − 2(κ? + ω))

16mψC2
2

}
α′(1

ζ − 2(κ? + ω))

4(1 + 1
3ζ )

,
α′(1

ζ − 2(κ? + ω))

64C1(1 + 1
3ζ )

,
α′2(1

ζ − 2(κ? + ω))2

6144ζ(1 + 1
3ζ )2

}
.

Theorem 31 Suppose that there exists α > 0, ν ∈ (0, 1], ω ∈ (0, 1) and the choice of the
parameter γ so that the Hessian I? satisfies Assumptions 1-3. Let m := max{1, 1/γ} and
m̄ := max{1, γ}. Let the effective sample size k be chosen such that k = o(bn2ξ/(1+2ξ)c).
Furthermore, suppose that:

k ≥ max

{
C2

51152m2ζ2p2 log(C̃5p)

C2
4c

2
5

+
72m2ζ2

C2
4

,

(
2C5

0.12√c5

√
log(C̃5p)

)−2/(3/2−(2ξ+1)/(2ξ))

,

log(k)2/(3/2−(2ξ+1)/(2ξ)), 4(3/2− (2ξ + 1)/(2ξ))8 log(C̃5p)

c5
log(k)8

}
and
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1. λn = C5

[
24mζ√
c5

√
p2 log(C̃5p)

k + 6mζ√
k

]
,

2. σmin(L?) ≥ max

{
16mm̄λnC2

ω ,
2ψC2

2λn
C0

,

(
mC2 +

α′( 1
ζ
−2(κ?+ω))

4
[
1+ 1

3ζ

]
)
λn

}
,

3. |S?ij | ≥ 12mm̄λnC2 whenever |S?ij | > 0.

Then, the estimate (Ŝ, L̂) is the unique minimizer of (9) with

P
(

sign(Ŝ) = sign(S?), rank(L̂) = rank(L?), ‖(Ŝ − L̂)− Θ̃?‖2 ≤ 2mC2λn

)
≥ 1− 1

p
.

To arrive at the scalings provided in Theorem 9, note that, ζ = O(1/ν), ζ = O(1/ν), C0 =
O(
√
hν/α′), C1 = O(md?), C2 = O(m

√
h/α′2), C4 = O(α′3ν/(d?m3

√
h). This scaling allows

us to conclude that: k & m3hd?2

α′6ν2 mνp log(p), λn = m
ν

√
p2 log(p)

k , σmin(L?) & m4hm̄
να′4

√
p2 log(p)

k ,

S?ij &
m3m̄

√
h

να′2

√
p2 log(p)

k , and finally ‖(Ŝ − L̂)− Θ̃?‖2 . m3
√
h

να′2

√
p2 log(p)

k .

H.3 Proof strategy

The high-level proof strategy is similar in spirit to the proofs of consistency results for sparse
graphical model recovery and latent variable graphical model recovery (Chandrasekaran et al.,
2012), although our convex program and the conditions required for its success are different
from these previous results. Consider the following convex program

(Ŝ, L̂) = arg min
S,L∈Sp

− log det(UT (S − L)U)− tr((S − L)Γ̂O/2) + λn(‖S‖1 + γ‖L‖?).

subject-to S − L ∈ span(1p1
>
p )

(30)

Comparing (30) with the convex program (9), the differences are: i) we have removed the
positive-definite constraints, ii) we have replaced tr(L) with ‖L‖? which is valid for positive
semi-definite L, iii) we have replaced the constraint (S −L)1p = 0 with S −L ∈ span(1p1

>
p )

which is equivalent since the matrices S,L are symmetric. Regarding item i), the positive
definiteness of Ŝ − L̂ is automatically met due to the log-det term. We show with high
probability that L̂ � 0.

Note that due to the log-det term, we have that UUT (S − L)UUT = S − L. Appealing
to Lemma 13, we conclude that U(UT (S − L)U)−1UT , which is the gradient of the negative
log-determinate term with respect to S is equivalent to (S − L)+. Similarly, since tr((S −
L)Γ̂0/2) = tr(UUT (S − L)UUT Γ̂0/2) = tr((S − L)UUT Γ̂0/2UU

T ), the gradient of the trace
term in the objective with respect to S is given by UUT Γ̂0/2UU

T . Standard convex analysis
states that (Ŝ, L̂) is the solution of the convex program (30) if there exists a dual variable
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t ∈ R with the following conditions being satisfied:

−UUT (Γ̂O/2)UUT − (Ŝ − L̂)+ + t1p1
>
p = −λ∂‖Ŝ‖1,

UUT (Γ̂O/2)UUT + (Ŝ − L̂)+ − t1p1>p = −λγ∂‖L̂‖?,
Ŝ − L̂ ∈ span(1p1

>
p ).

(31)

Recall that elements of the subdifferential with respect to nuclear norm at a matrix
M have the key property that they decompose with respect to the tangent space T (M).
Specifically, the subdifferential with respect to the nuclear norm at a matrixM with (reduced)
SVD given by M = UlQU

T
r is as follows:

N ∈ ∂‖M‖? ⇔ PT (M)(N) = UlV
T
r , ‖PT (M)⊥(N)‖2 ≤ 1,

where P denotes a projection operator. Similarly, we have the following for the subdifferential
of `1 norm:

N ∈ ∂‖M‖1 ⇔ PΩ(M)(N) = sign(N), ‖PΩ(M)⊥(N)‖∞ ≤ 1.

Let SVD of L̂ be ÛD̂V̂ T and let Z = (−λsign(Ŝ),−λγÛV̂ T ). Then, letting H = Ω(Ŝ)×T (L̂)
the optimality conditions of (30) reduce to:

PHA†(−UUT Γ̂O/2UU
T − (Ŝ − L̂)+ − t1p1>p ) = Z,

Φγ(PH⊥A†(−UUT Γ̂O/2UU
T − (Ŝ − L̂)+ − t1p1>p )) ≤ λn,

Ŝ − L̂ ∈ span(1p1
>
p ).

(32)

To ensure that the estimates (Ŝ, L̂) are close to their respective population parameters, the
quantity ∆S = Ŝ − S? and ∆L = L̂ − L? must be small. Since the optimality conditions
of (30) are stated in terms of (Ŝ − L̂)+, we bound the deviation between (Ŝ − L̂)+ and
(S? − L?)+. Specifically, the Taylor Series expansion of (Ŝ − L̂)+ around (S? − L?)+ is:

(Ŝ−L̂)+ = (S?−L?+A(∆S ,∆L))+ = (S?−L?)++(S?−L?)+A(∆S ,∆L)(S?−L?)++RΓ?0
A(∆S ,∆L).

where some algebra yields the following representation for the remainder termRΓ?0
(A(∆S ,∆L)):

RΓ?0
(A(∆S ,∆L)) = U(S?−L? + 1p1

>
p /p)

−1

[ ∞∑
k=2

(−A(∆S ,∆L)(S? − L? + 1p1
>
p /p)

−1)k

]
UT .

(33)
From Theorem 5, we have that (S − L)+ = UUT (−Γ?/2)UUT . Since UUT (S? − L?)UUT =
S? − L?, we appeal to Lemma 13 to conclude that (UT (S? − L?)U)−1 = UT (−Γ?O)U . Let

En := UUT (Γ̂O −Γ?)/2UUT . Then, we have the following equivalent characterization of the
optimality conditions (31):

PHA†((S? − L?)+A(∆S ,∆L)(S? − L?)+ +RΓ?0
A(∆S ,∆L) + En + t1p1

>
p ) = Z,

Φγ(PH⊥A†((S? − L?)+A(∆S ,∆L)(S? − L?)+ +RΓ?0
A(∆S ,∆L) + En + t1p1

>
p )) ≤ λn,

Ŝ − L̂ ∈ span(1p1
>
p ).

(34)

48



S. Engelke and A. Taeb

Finally, Since (S?−L?)1p1>p = 0 and A(∆S ,∆L)1p1
>
p = 0, we have the following formulation

of the optimality condition (34) in terms of the matrix I?

PHA†(I?(A(∆S ,∆L + t1p1
>
p )) +RΓ?0

A(∆S ,∆L + t1p1
>
p ) + En) = Z,

Φγ(PH⊥A†(I?(A(∆S ,∆L + t1p1
>
p )) +RΓ?0

A(∆S ,∆L + t1p1
>
p ) + En)) ≤ λn,

Ŝ − L̂ ∈ span(1p1
>
p ).

(35)

It is straightforward to show that if for some (Ŝ, L̂), the second condition in (35) is satisfied
with strict inequality, that is:

Φγ(PH⊥A†(I?(A(∆S ,∆L + t1p1
>
p )) +RΓ?0

A(∆S ,∆L + t1p1
>
p ) + En)) < λn.

H.4 Constrained optimization problem

We consider the following non-convex optimization problem:

argmin
S∈Sp,L∈Sp

− log det(UT (S − L)U)− tr((S − L)Γ̂O/2) + λn(‖S‖1 + γ‖L‖?),

subject-to S − L ∈ span(1p1
>
p ) ; (S,L) ∈M,

(36)

where:

M =

{
S,L ∈ Sp : S ∈ Ω?, rank(L) ≤ rank(L?)

‖PT ?⊥(L− L?)‖2 ≤
C0λn
ψ

; Φγ(A†I?A(S − S?, L− L?)) ≤ C0λn

}
,

with C0 = 10 + 32
√

5h

α′(1−
√

1−(κ?2−ω)2)( 1
ζ
−2(κ?+ω))

[
1 + 1

3ζ

]
. The optimization program (36) is

non-convex due to the rank constraint rank(L) ≤ rank(L?) in the set M. These constraints
ensure that the matrix L belongs to an appropriate variety. The constraints inM along T ?⊥

ensure that the tangent space T (L) is close to T ?. Finally, the last condition roughly controls
the error. We begin by proving the following useful proposition:

Proposition 32 Let (S,L) be a set of feasible variables of (36). Let ∆ = (S − S?, L− L?).
Then, Φγ(∆) ≤ C2λn where C2 = mmax{

(
4C0
α′ + 1

ψ

)
, 1}.

Proof [Proof of Proposition 32] Let H? = Ω? × T ?. Then:

Φγ [A†I?APH?(∆)] ≤ Φγ [A†I?A(∆)] + Φγ [A†I?APH?⊥(∆)]

≤ C0λn +mC0λn ≤ 2mC0λn.

Since Φγ [PH?(·)] ≤ 2Φγ [·], we have that: Φγ [PH?A†I?APH?(∆)] ≤ 4mC0λn. Then, appealing
to Property p1 in (29), we have that: Φγ [PH?(∆)] ≤ 4C0λn

α′ . Moreover, Φγ(∆) ≤ Φγ [PH?(∆)]+

49



Extremal graphical modeling with latent variables

Φγ [PH?⊥(∆)] ≤ λnm
(

4C0
α′ + 1

ψ

)
.

Proposition 32 leads to powerful implications. In particular, under additional conditions on
the minimum nonzero singular values of L?, any feasible set of variables (S,L) of (36) has
two key properties: (a) The variables (S,L) are smooth points of their underlying varieties
with L � 0 and S − L � 0, and (b) The constraints in M along T ?⊥ are locally inactive at
L. These properties, among others, are proved in the following corollary.

Corollary 33 Consider any feasible variables (S,L) of (36). Let T ′ = T (L). Let σ be the
smallest nonzero singular value of L? and s be the smallest in magnitude nonzero value of S?.
Let H′ = Ω?× T ′, CT ′ = PT ′⊥(L?) and CT ′⊕span(1p1>p ) = P(T ′⊕span(1p1>p ))⊥(L?). Suppose that

the following inequalities are met: σ ≥ max

{
16mm̄λnC2

ω ,
2ψC2

2λn
C0

,

(
mC2 +

α′( 1
ζ
−2(κ?+ω))

4
[
1+ 1

3ζ

]
)
λn

}
and s ≥ 12mm̄λnC2. Then,

1. L and S are smooth points of their underlying varieties so that support(Ŝ) = support(S?)
and rank(L̂) = rank(L?). Furthermore, L � 0, and S − L � 0

2. ‖PT ?⊥(L̂− L?)‖2 ≤ C0λn
2ψ ,

3. ρ(T ′, T ?) ≤ ω,

4. max{Φγ(A†I?CT ′),Φγ(A†I?CT ′⊕1p1>p )} ≤ λn
6ζ ,

5. Φγ [A†CT ′ ] ≤ 4λn
α′( 1

ζ
−2(κ?+ω))

[
1 + 1

3ζ

]
.

Proof [Proof of Corollary 33] We appeal to the results regarding the perturbation analysis
of the low-rank matrix variety.

1. Based on assumptions regarding the minimum nonzero singular value of L? and mini-
mum nonzero entry in magnitude of S?, one can check that since ω ≤ 1

σ ≥ 12mm̄
λnC2

ω
≥ 12mm̄λnC2 ≥ 8‖L− L?‖2,

s ≥ 12mm̄λnC2 ≥ 12mm̄λnC2 ≥ 2‖S − S?‖2.

Combining these results, we conclude that S,L are smooth points of their varieties,
namely that rank(L) = rank(L?) and support(S) = support(S?). The fact that L � 0
follows from σ ≥ 2‖L − L?‖2. Furthermore, to check that S − L � 0, first note that
σmin(S? − L?) ≥ 1√

ψ
. Then, ‖S − L − (S? − L?)‖2 ≤ 2mC2λn. From the choice of λn

and the condition on the sample size, we have that 4mC2λn <
1√
ψ

. Thus, S − L � 0.

2. Since σ ≥ 8‖L−L?‖2, we can appeal to Proposition 2.2 of Chandrasekaran et al. (2012)
to conclude that the constrain5 in M along PT ?⊥ is strictly feasible:

‖PT ?⊥(L− L?)‖2 ≤
‖L− L?‖22

σ
≤ C2

2λ
2
n

σ
<
C0λn
ψ

.
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3. Appealing to Proposition 2.1 of Chandrasekaran et al. (2012), we prove that the tangent
space T ′ is close to T ?:

ρ(T ′, T ?) ≤ 2‖L− L?‖2
σ

≤ 2mm̄λnC2ω

12mm̄λnC2
≤ ω.

4. Letting σ′ be the minimum nonzero singular value of L. One can check that:

σ′ ≥ σ − ‖L− L?‖2 ≥ σ −mC2λn ≥ 10mC2λn ≥ 8‖L− L?‖2.

One can also obtain the following lower bounds for σ′:

σ′ ≥ σ − ‖L− L?‖2 ≥ σ −mC2λn ≥ 6ζmC2
2ψλn −mC2λn ≥ 6ζmψC2

2λn

σ′ ≥ σ − ‖L− L?‖2 ≥ σ −mC2λn ≥
α′(1

ζ − 2(κ? + ω))λn

4
[
1 + 1

3ζ

]
where we have used C2ψ ≥ 1. Once again appealing to Proposition 2.2 of Chan-
drasekaran et al. (2012) and simple algebra, we have:

Φγ [A†I?CT ′ ] ≤ mψ‖CT ′‖2 ≤ mψ
‖L− L?‖22

σ′
≤ mψ C2

2λ
2
n

6ζmψC2
2λn
≤ λn

6ζ
.

From Lemma 20, we have that ‖CT ′⊕1p1>p ‖2 ≤ ‖CT ′‖2. Following the same logic as

above, we can then show that: Φγ [A†I?CT ′⊕1p1>p ] ≤ λn
6ζ .

5. Finally, we show that:

Φγ [CT ′ ] ≤ m‖PT ′⊥(L− L?)‖2 ≤ m
‖L− L?‖22

σ′
≤ mC2

2λ
2
n

σ′
≤ 4λn

α′(1
ζ − 2(κ? + ω))

[
1 +

1

3ζ

]
.

Consider any optimal solution (ŜM, L̂M) of (36). We will show that (ŜM, L̂M) is the
unique solution of the nonconvex program (36), as well as the unique solution of (30).

H.5 Variety constrained program to tangent space constrained program

Let (ŜM, L̂M) be any optimal solution of (36). In Corollary 33, we conclude that the variables
(ŜM, L̂M) are smooth points of their respective varieties. As a result, the rank constraint
rank(L) ≤ rank(L?) can be linearized to L ∈ T (L̂M). Since all the remaining constraints
are convex, the optimum of the linearized program is also the optimum of (36). Moreover,
we once more appeal to Corollary 33 to conclude that the constraints in M along T ?⊥ are
strictly feasible at L̂M. As a result, these constraints are inactive and can be removed in this
“linearized program”. We now argue that the constraint Φγ [A†I?A(ŜM − S?, L̂M − L?)] is
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inactive. For notational simplicity, we let T ′ = T (L̂M) and H′ = Ω? × T ′, we consider the
following optimization problem:

(S̃, L̃) = argmin
S∈Sp,L∈Sp

− log det(UT (S − L)U)− tr((S − L)Γ̂O/2) + λn(‖S‖1 + γ‖L‖?),

subject-to (S,L) ∈ H′, S − L ∈ span(1p1
>
p ).

(37)

We prove that under conditions imposed on the regularization parameter λn, the pair of
variables (ŜM, L̂M) is the unique optimum of (37). First, note that the optimum of (37)
is unique since it is a strictly convex program convex because the negative log-likelihood
terms have a strictly positive-definite Hessian due to property p1) in (29). To show that
(ŜM, L̂M) is the optimum of (37), it suffices to show strict feasibility of the constraint, that
is: Φγ [A†I?A(S̃ − S?, L̃− L?)] < C0λn.

From optimality conditions of (37), there exists QΩ ∈ Ω?⊥, QT ∈ T ′⊥, t ∈ R such that:

−Γ̂O/2− (S̃ − L̃)+ + t1p1
>
p +QΩ = −λ∂‖S̃‖1,

Γ̂O/2 + (S̃ − L̃)+ − t1p1>p +QT = −λγ∂‖L̃‖?,
S̃ − L̃ ∈ span(1p1

>
p ).

(38)

Let the reduced SVD of L̃ be given by L̃ = ŪD̄V̄ T and Z = (λsign(S̃), λγŪ V̄ T ). Following
a similar logic as in Section H.3 and restricting the optimality conditions to the space of H,
we have the following equivalent characterization of the optimality conditions:

PH′A†(I?(A(∆S ,∆L + t1p1
>
p )) +RΓ?0

A(∆S ,∆L + t1p1
>
p ) + En) = Z,

S̃ − L̃ ∈ span(1p1
>
p ).

(39)

Here, ∆S = S̃ − S?, ∆L = L̃−L?. In the remaining, we will denote ∆L+ = L̃−L? + t1p1
>
p .

Our result relies on the following propositions to control the remainder term.

Proposition 34 Suppose Φγ(∆S ,∆L+) ≤ 1
2C1

for C1 = ψ(m+d?) and any ∆S ∈ Ω?. Then,

Φγ [A†RΓ?0
(A(∆S ,∆L+))] ≤ 2mψC2

1Φγ(∆S ,∆L+)2.

Proof [Proof of Proposition 34] We have that:

‖A(∆S ,∆L+)‖2 ≤ ‖∆S‖2 + ‖∆L+‖2 ≤ θ(Ω?)‖∆S‖∞ + γ
‖∆L+‖2

γ
≤ (γ + θ(Ω?))Φγ(∆S ,∆L+)

≤ (m+ d?)Φγ(∆S ,∆L+) ≤ 1

2ψ
.

Therefore,

‖RΓ?0
(A(∆S ,∆L+))‖2 ≤ ψ

∞∑
k=2

(‖∆S + ∆L+‖2ψ)k ≤ ψ3‖∆S + ∆L+‖22
1

1− ‖∆S + ∆L+‖2ψ

≤ 2ψ3

(
1 +

α′

6ζ

)2

Φγ(∆S ,∆L+)2 = 2ψC2
2Φγ(∆S ,∆L+)2.
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Putting everything together, we have the desired result.

Notice that the bound on the remainder term is dependent on the error term Φγ(∆S ,∆L+).
In the following proposition, we bound this error so we can control the remainder term.

Proposition 35 Let S̃, L̃ be the solution of convex program (37). Define

r = max

{
4

α′(1
ζ − 2(κ? + ω))

[Φγ(A†En) + Φγ(A†I?CT ′) + λn],Φγ [(0, CT ′)]

}
.

If we have that r ≤ min

{
8α′

C1
,

min{α′,1}( 1
ζ
−2(κ?+ω))

16mψC2
2

}
, then Φγ(∆S ,∆L) ≤ 4r

√
5h

1−
√

1−(κ?2−ω)2

and Φγ(0, t1p1
>
p ) ≤ 4r

√
5h

1−
√

1−(κ?2−ω)2
.

The proof of the proposition relies on the following lemma which we state and prove first.

Lemma 36 Consider the following optimization:

argmin
S∈Sp,L∈Sp

log det(UT (S − L)U)− tr((S − L)Γ̂O/2) + tr(1p1
>
p (S − L)) + λn(‖S‖1 + γ‖L‖?).

subject-to (S,L) ∈ H′
(40)

Then, the solution of (40) is unique and is equal to S̃, L̃ (i.e. the solution of (37)).

Proof [Proof of Lemma 36] Note that by property p1) in (29), the estimator (40) is strictly
convex. We will denote the optimal solution of (40) by (S̃, L̃). We are using the same notation
as the optimal solution of (37) as we will show momentarily that these optimal solutions are
identical. Specifically, define Z as is done before Proposition 34. Let ∆S = S̃ − S? and
∆L = L̃− L?. The optimality condition of (40) is given by:

PH′A†(I?A(∆S ,∆L + t1p1
>
p ) +RΓ?0

A(∆S ,∆L + t1p1
>
p ) + En) = Z. (41)

Notice that the optimality condition (41) is identical to the first condition in (39). Since (40)
has a unique solution, then, the optimal solutions of (37) and (40) coincide.

Proof [Proof of Proposition 35] Since T ′ is a tangent space such that ρ(T ′, T ?) ≤ ω, we
have from Property p1 in (29) that the operator B = (PH′A†I?APH′)−1 is bijective and is
well-defined. Consider the following function taking as input (δS , δL+) ∈ Q′ where Q′ =
Ω? × (T ′ ⊕ t1p1>p ):

F (δS , δL+) = (δS , δL+)−B
{
PH′A†[I?A(δS , δL+) +RΓ?0

(A(δS , δL+ + CT ′)) + I?CT ′ + En − Z
}
.

Here, CT ′ = PT ′⊥(L?). Now a point (δS , δL+) is a fixed point of F if and only if PH′A†[I?A(δS
, δL+) +RΓ?0

(A(δS , δL+ +CT ′)) + I?CT ′ +En] = Z. Further, a fixed point (δS , δL+) provides
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certificates of optimality for (40). Specifically, let S̃ = S? + δS . By Lemma 21, find a
unique decomposition of δL+ = L + t1p1

>
p where L ∈ T ′. Then, let L̃ = PT ′(L?) + L. By

construction, the parameters (S̃, L̃) then satisfy the optimality condition for (41) and thus
also the optimality condition of (39) after appealing to Lemma 36. In other words, the fixed
point of the function F is PH′(∆S ,∆L) + (0, t1p1

>
p ).

Next, using Brouwer’s fixed point theorem, we show that F has a fixed point that lies in
the ball Br = {(δS , δL+) ∈ Q′|Φγ(δS , δL+) ≤ r}. An equivalent formulation of F is:

F (δS , δL+) = PH′⊥(δS , δL+)− B
{
PH′A†[RΓ?0

(A(δS , δL+ + CT ′)) + I?[CT ′ +APH′⊥(δS , δL+)]

+En − Z
}
.

First, note that by appealing to Lemma 19, we have that: Φγ

[
PH′⊥(δS , δL+)

]
≤ 2r(κ? +

ω). Similarly, we have from Property p3 in (29) that: Φγ

[
B
{
PH′A†IAPH′⊥(δS , δL+)

}]
≤

r
(

1− 1
ζ

)
. Finally, we note that:

Φγ

[
B
{
PH′A†[RΓ?0

(A(δS , δL+ + CT ′)) + I?C ′T + En − Z
}]

≤ 2

α′

(
Φγ [A†RΓ?0

(A(δS , δL+ + CT ′))] + Φγ [I?CT ′ ] + Φγ [En] + λn

)
≤
r(1
ζ − 2(κ? − ω))

2
+

2

α′

(
Φγ [A†RΓ?0

(A(δS , δL+ + CT ′))]
)

where the last inequality is by the definition of r. By the assumption on r, we have that
Φγ((δS , δL+) + (0, CT ′)) ≤ 1

2C1
. And so we can appeal to Proposition 34 to conclude that:

2

α′
Φγ [A†RΓ?0

(A((δS , δL+ + CT ′) ≤
8mψC2

1r
2

α′
≤ 16mψC2

2r

α′(1
ζ − 2(κ? + ω))

r(1
ζ − 2(κ? + ω))

2
≤ r/2,

where the last inequality uses the bound on r. So by Brouwer’s fixed point theorem, we
conclude that: Φγ [PH′(∆S ,∆L) + (0, t1p1

>
p )] ≤ r. Finally, note that: Φγ [PH′⊥(∆S ,∆L)] ≤ r.

Thus, Φγ [(∆S ,∆L) + (0, t1p1
>
p )] ≤ 2r. Finally, appealing to Lemma 22 and some manipula-

tions, we have the bound max{Φγ(∆S ,∆L), t1p1
>
p } ≤ 4r

√
5h

1−
√

1−(κ?2−ω)2
.

Proposition 37 Suppose that Φγ [A†En] ≤ λn
6ζ and suppose that:

λn ≤ min

{
min

{
8α′

C1
,
min{α′, 1}(1

ζ − 2(κ? + ω))

16mψC2
2

}
α′(1

ζ − 2(κ? + ω))

4(1 + 1
3ζ )

,
α′(1

ζ − 2(κ? + ω))

64C1(1 + 1
3ζ )

,
α′2(1

ζ − 2(κ? + ω))2

6144ζ(1 + 1
3ζ )2

}
.

Then, we have that: S̃ = ŜM, L̃ = L̂M.
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Proof From Corollary 33, we have that Φγ [A†I?CT ′ ] ≤ λn
6ζ . We then have that:

4

α′(1
ζ − 2(κ? + ω))

[Φγ(A†En) + Φγ(A†I?CT ′) + λn]

≤ 4λn

α′(1
ζ − 2(κ? + ω))

[
1 +

1

3ζ

]
≤ min

{
8α′

C1
,
min{α′, 1}(1

ζ − 2(κ? + ω))

16mψC2
2

}
.

We also have from Corollary 33 that Φγ(A†CT ′) ≤ 4λn
α′( 1

ζ
−2(κ?+ω))

[
1 + 1

3ζ

]
. Let r = 4λn

α′( 1
ζ
−2(κ?+ω))[

1 + 1
3ζ

]
. We can appeal to Proposition 35 to conclude that:

Φγ [∆S ,∆L] ≤ 16λn
√

5h

α′(1−
√

1− (κ?2 − ω)2)(1
ζ − 2(κ? + ω))

[
1 +

1

3ζ

]
.

From the bound on λn, we have that: Φγ [∆S ,∆L] ≤ 1
2C1

. So we can appeal to Proposition 34
to conclude that:

Φγ [A†RΓ?O
A(∆S ,∆L)] ≤ 2mψC2

1Φγ [∆S ,∆L]2 ≤ λn
6ζ
, (42)

where here again we use the bound on λn. Note that ∆L+ = ∆L + t1p1
>
p . We have from

Corollary 33 that Φγ [A†I?CT ′ ] ≤ λn
6ζ . From the optimality conditions of (37), we have that:

Φγ(PH′A†I?APH′(∆S ,∆L))

≤ 2λn + 2Φγ(0, t1p1
>
p ) + Φγ [A†RΓ?O

A(∆S ,∆L)] + Φγ [PH′A†I?CT ′ ] + Φγ [A†En],

≤ 2λn +
λn
2ζ

+
16λn

√
5h

α′(1−
√

1− (κ?2 − ω)2)(1
ζ − 2(κ? + ω))

[
1 +

1

3ζ

]
,

where the second inequality follows from bound on Φγ((0, t1p1
>
p )) in Proposition 35. Ap-

pealing to property p2 in (29): Φγ(PH′⊥A
†I?APH′(∆S ,∆L)) ≤ Φγ(PH′⊥A

†I?APH′(∆S ,∆L)).
Thus

Φγ(A†I?A(∆S ,∆L)) ≤ Φγ(PH′A†I?APH′(∆S ,∆L)) + Φγ(PH′⊥A
†I?APH′(∆S ,∆L))

+ Φγ [A†I?CT ′ ] ≤ 8λn +
32λn

√
5h

α′(1−
√

1− (κ?2 − ω)2)(1
ζ − 2(κ? + ω))

[
1 +

1

3ζ

]
< C0λn.
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H.6 Removing the tangent space constraint

It remains to connect the estimator (37) with (9). In particular, we check that S̃ = Ŝ and
L̃ = L̂ where (S̃, L̃) is the solution of (37) and (Ŝ, L̂) is the solution of (9). We formalize
this in the following proposition.

Proposition 38 Suppose that Φγ [A†En] ≤ λn
6ζ . Then, S̃ = Ŝ and L̃ = L̂.

Proof [Proof of Proposition 38] We must show that (S̃, L̃) satisfy the optimality conditions
of (30) in (35), namely that there exists a dual variable t such that

PHA†(I?(A(∆S ,∆L + t1p1
>
p )) +RΓ?0

A(∆S ,∆L) + En) = Z,

Φγ(PH⊥A†(I?(A(∆S ,∆L + t1p1
>
p )) +RΓ?0

A(∆S ,∆L) + En)) < 1,

S̃ − L̃ ∈ span(1p1
>
p ),

(43)

where ∆S = S̃ − S? and ∆L = L̃− L?. Notice that the first and third optimality conditions
are the same as (39). It remains to show the second inequality where the strict inequality is
to ensure that (S̃, L̃) is the unique solution. It suffices to show that:

Φγ(PH⊥A†(I?PQ′(A(∆S ,∆L + t1p1
>
p ))

< λn − Φγ [RΓ?0
A(∆S ,∆L)]− Φγ [A†I?CT ′⊕1p1>p ]− Φγ [A†En].

(44)

Manipulating the first optimality condition, we have that:

Φγ(PHA†(I?PQ′(A(∆S ,∆L + t1p1
>
p )) ≤ λn + 2(Φγ [RΓ?0

A(∆S ,∆L)] + Φγ [A†I?CT ′⊕1p1>p ]

+ Φγ [A†En]) ≤ λn +
λn
ζ

= λn

(
1 +

1

ζ

)
,

where we have here used the bound Φγ [A†I?CT ′⊕1p1>p ] ≤ λn
6ζ from Corollary 33 and the

bounds Φγ [RΓ?0
A(∆S ,∆L)] ≤ λn

6ζ from (42) and Φγ [A†En] ≤ λn
6ζ from proposition statement.

Appealing to property p2 in (29), we then have that:

Φγ(PH⊥A†(I?PQ′(A(∆S ,∆L + t1p1
>
p )) ≤ λn

(
1 +

1

ζ

)(
1− 1

ζ

)
= λn

(
1− 1

ζ2

)
< λn

(
1− 1

2ζ

)
.

Since Φγ [RΓ?0
A(∆S ,∆L)] + Φγ [A†I?CT ′⊕1p1>p + Φγ [A†En] ≤ λn

2ζ , (44) holds.
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H.7 Bounding the error term Φγ [A†En]

Let λn = C5

[
24mζ√
c5

√
p2 log(C̃5p)

k + 6mζ√
k

]
where c5, C5, C̃5 are defined in Theorem 30.

Lemma 39 Under the conditions of Theorem 9, we have:

P
(

Φγ [A†En] ≤ λn
6ζ

)
≥ 1− p−1.

Proof Note that Φγ [A†En] ≤ m‖Γ?O − Γ̂O‖2 ≤ pm‖Γ?O − Γ̂O‖∞. To show that, Φγ [A†En] ≤
λn
6ζ , it suffices to show that

‖Γ?O − Γ̂O‖∞ ≤
4C5√
c5

√
log(C̃5p)

k
+
C5√
k
. (45)

Based on the condition on k, it is straightforward to show that:

C5

{(
k

n

)ξ
(log(n/k))2 +

1 + ϑ√
k

}
≤ 4C5√

c5

√
log(C̃5p)

k
+
C5√
k
.

for ϑ = 2
√

log(C̃5p)/
√
c5. Note that ϑ ≤

√
k/ log(n)4. Furthermore, k ≤ n/2. Appealing to

Corollary 30, we have that with probability greater than 1− C̃5p
3e−c5ϑ

2
= 1− p−1 that the

bound in (45) is satisfied.

H.8 Summary and putting things together

Combining Propositions 37-38, we conclude that under the conditions of Theorem 9, with
probability greater than 1−1/p, the optimal solution (Ŝ, L̂) of (30) is unique and equal to an
optimal solution (ŜM, L̂M) of (36). From Corollary 33, we have that Ŝ−L̂ � 0, L̂ � 0. Thus,
(Ŝ, L̂) = (ŜM, L̂M) is also the unique minimizer of (9). The guarantees on the closeness of
(Ŝ, L̂) to the population parameters (S?, L?) follow from Corollary 33 and Proposition 32.

Appendix I. Refitting for eglatent

Suppose (Ŝ, L̂) is the solution of (9) in the first step. We then obtain refitted parameters
(S̃, L̃) as the second step by solving the following convex optimization program:

(S̃, L̃) = argmin
S∈Sp,L∈Sp

− log det(UT (S − L)U)− tr((S − L)Γ̂O/2),

s.t. S − L � 0, L � 0, (S − L)1p = 0,

support(S) ⊆ support(Ŝ), col-space(L) ⊆ col-space(L̂).
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Here, the constraint support(S) ⊆ support(Ŝ) restricts the graph structure of our refitted
solution to be contained in the graph estimated in the first step. Similarly, the constraint
col-space(L) ⊆ col-space(L̂) restricts the row/column space of the refitted low-rank term to
be contained in the row/column space estimated in the first step.

Appendix J. Additional experimental results

J.1 Synthetic experiments on different graph structure

We consider the exact same setup as in the simulation study in Section 5.1.1. The only
difference is that we specify the sub-graph G0 = (EO, O) among the observed variables to
be an Erdős–Rënyi with edge probability 0.08 and set Θ?

ij to −2 for every (i, j) ∈ EO and
zero otherwise. The rest of the simulation study is carried out as described in Section 5.1.1.
Figure 7 summarizes the performance of all the methods on 50 independent results. We
again observe that our approach outperforms eglearn, and accurately recovers the graphical
structure among the observed variables as well as the number of latent variables. In terms of
validation likelihood, eglatent is a bit weaker than in the simulation with the cycle graph.
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Figure 7: F -score (top row) and estimated number of latent variables (middle row) of eglatent method with
the selection of the tuning parameter based on the oracle and validation on the F -score for the random graph
with h = 1, 2, 3 latent variables and different effective sample sizes k = 200, 1000, 5000. The bottom row shows
the difference between best eglatent and best eglearn log-likelihoods on the validation set.
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J.2 Synthetic experiments on different values of γ

We consider the exact same setup as in the simulation study in Section 5.1.1. The only
difference is the values of γ that are used in the eglatent estimator. We generate k = 1000
effective samples. Figure 8 shows the performance of eglatent for γ ∈ {2, 4, 6}. We observe
that the performance of eglatent does not vary drastically with changes in γ, and continues
to perform better than eglearn, especially for h ∈ {1, 2}. We also notice that γ = 4 yields
the best-validated model for h ∈ {1, 2, 3}, hence why this value was chosen in our experiments
in Section 5.1.1.
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Figure 8: F -score (top row) and estimated number of latent variables (middle row) of eglatent method with
the selection of the tuning parameter based on the oracle and validation on the F -score for the cycle graph
with h = 1, 2, 3 latent variables and different regularization parameter γ = 2, 4, 6. The bottom row shows the
difference between best eglatent and best eglearn log-likelihoods on the validation set. The effective sample
size is set to k = 1000.
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J.3 Synthetic experiments on comparison to the performance of Gaussian
latent variable graphical model estimator

We compare the performance of our eglatent estimator to the Gaussian latent variable
graphical model estimator in Chandrasekaran et al. (2012) (denoted by LVGM). We gener-
ate the data according to the setting in Appendix J.1. As the approach in Chandrasekaran
et al. (2012) assumes Gaussian data, we transform the marginal distributions of each vari-
able to standard normal distribution, before supplying the data to the Gaussian estimator.
The following table compares the performance of the two estimators, where ‘CV’ is when
the regularization parameters are chosen via the validation set, and ‘Oracle’ is when the
regularization parameters are chosen to obtain the best F -score.

Table 2: Perfomance of eglatent compared with Gaussian estimator in Chandrasekaran
et al. (2012)

Oracle eglatent CV eglatent Oracle LVGM CV LVGM

# latents (h) F -score ĥ F -score ĥ F -score ĥ F -score ĥ

h = 1 0.94(±0.02) 1.58(±0.53) 0.92(±0.04) 1.68(±0.55) 0.08(±0.04) 1.68(±1.88) 0.06(±0.03) 8.1(±0.83)
h = 2 0.97(±0.01) 2(±0) 0.84(±0.07) 2.48(±0.54) 0.07(±0.04) 4.94(±3.01) 0.05(±0.04) 7.94(±0.86)
h = 3 0.93(±0.03) 3(±0) 0.70(±0.08) 3.42(±0.57) 0.06(±0.03) 4.58(±2.39) 0.05(±0.03) 8.41(±0.94)

J.4 Additional results concerning the application

We report here the results of the application in Section 5.2. For thresholds q = 0.85 and
q = 0.95, Figures 9 and 10 show the number of edges of eglatent and of eglearn and the
validation log-likelihood values as a function of the tuning parameter λn. Figure 11 compares
the different estimated graphs among the observed variables for the three thresholds.
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Figure 9: Results for threshold q = 0.85. Left: number of edges of the estimated graph of eglearn (dashed line)
and the estimated sub-graph of observed variables of eglatent (solid line) as functions of the regularization
parameter ρ; top axis shows the number of latent variables in eglatent. Right: corresponding log-likelihoods;
horizontal line is the validation log-likelihood of the fully connected graph.
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Figure 10: Results for threshold q = 0.95. Left: number of edges of the estimated graph of eglearn (dashed
line) and the estimated sub-graph of observed variables of eglatent (solid line) as functions of the regu-
larization parameter ρ; top axis shows the number of latent variables in eglatent. Right: corresponding
log-likelihoods; horizontal line is the validation log-likelihood of the fully connected graph.
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Figure 11: Airports in the Southern U.S. (dots) and flight connections, where the thickness of the nodes
indicates the average number of daily flights at the airports. Estimated sub-graphs corresponding to observed
variables of optimal eglatent models for exceendance thresholds 0.85 (left), 0.90 (center) and 0.95 (right).
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tions to extremes and Lévy processes, 2022b. URL https://arxiv.org/abs/2211.15769.

S. Engelke, M. Lalancette, and S. Volgushev. Learning extremal graphical structures in high
dimensions, 2022c. URL https://arxiv.org/abs/2111.00840.
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F. Röttger, J.I. Coons, and A. Grosdos. Parametric and nonparametric symmetries in graph-
ical models for extremes, 2023a. URL https://arxiv.org/abs/2306.00703.
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